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ABSTRACT
The convergence of various technologies, such as smartwatches,
smartphones, etc. has proven to be beneficial, although poses vari-
ous security and privacy risks. In this paper, we explore one such
risk where a smartwatch can be exploited to infer what a user is
typing on a physical keyboard while wearing the smartwatch. We
exploited the acoustic emanations of the keyboard as recorded by
the smartwatch to perform the proposed attack—SIA. To address
various environment-related challenges, SIA employs four stages:
Noise Cancelling, Keystroke Detection, Key Identification andWord
Correction, where several digital signal processing, machine learn-
ing, and natural language processing techniques are utilized to
produce the final inference. Our results show that an acoustic ema-
nation of a physical keyboard captured by a smartwatch recovers
up to 98% of the typed text. We also showed that utilizing the noise
cancellation, SIA is robust to the changes in the attack environment,
which further boosts the practicality of the attack. The findings are
alarming and call for further investigation on methods to cope with
inference attacks due to the convergence of those technologies.
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• Security andprivacy; •Human-centered computing→Ubiq-
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Natural language processing; Machine learning;
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1 INTRODUCTION
Smartwatches have skyrocketed in popularity for their mobility
features, which brings a lot of convenience, allowing improving
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users’ quality of life with the numerous features they support;
e.g., health and fitness monitoring, phone calls, voice commands,
activity recognition [19, 34], gesture recognition [8, 14, 36, 40], and
authentication [20, 22, 24, 40]. According to a recent survey by Rock
Health [12], the adoption of wearable devices increased from 24%
in 2018 to 33% in 2019. Per another report [1], the year-over-year
growth of the smartwatches market is expected to be 14.5% for
2020—2025. Moreover, the same report suggests that IoT-driven
smartwatches that are capable of operating standalone as well as
interacting with other devices are a key trend. Another study [35]
that quantifies smartwatches usages suggests that smartwatches
are nowadays used more frequently than smartphones.

To keep up with the ever-growing user expectations, mass-
market smartwatches are equipped with different I/O mechanisms,
e.g., motion sensors, touch screen, heart rate sensor, thermometer,
microphone, speaker, etc. Such a range of input mechanisms brings
about promising as well as controversial aspects of smartwatches.

Despite the rise of smartwatches, personal computers (PC), in-
cluding laptops, are still the most essential electronic devices for
many users. Per a survey by Statista (2017), 88% of respondents
(U.S.) stated they used a PC/laptop, either professionally or person-
ally. The COVID-19 outbreak pushed teleworking (i.e., “work from
home”) and further boosted personal computers usage.

Both PCs and smartwatches are used for collecting and storing
sensitive data of users [2, 5, 27, 30], and encryption is a commonly
used for protecting such data on those devices. However, I/O pe-
ripherals, such as keyboards, touch screens, and printers, which are
used for the input and output of unencrypted data, are a constant
target of attacks. For example, various recent studies have shown
the privacy risk introduced by keyboard acoustic emanations and
their use for inferring sensitive data. While those attacks are alarm-
ing, a number of them require a malicious microphone to be planted
by the adversary near the victim’s keyboard, limiting the practi-
cality of those attacks. Although using the victim smartphone’s
microphones is ideal for capturing the acoustic emanations and
facilitating such attacks, the assumption is quite strong and often
unrealistic, entailing that the phone should be in the same exact
position at all times or that the adversary has to be able to position
or control the victim’s smartphone.

Motivated by those intricacies, this paper explores the attack
surface due to a victim’s smartwatch, which addresses those short-
comings. Our contribution is SIA, an attack that is facilitated by
keyboard acoustic emanations captured by a smartwatch micro-
phone. The attack goal is to recover characters typed by a victim
using the keyboard acoustic emanations captured by the user’s
smartwatch. Obtaining the physical signals from the smartwatch
microphones alleviates (or even eliminates) the positioning problem
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introduced in the previous studies since the smartwatch is typically
near the physical keyboard; e.g., the user wears it while typing.
Contributions. In this paper, we make the following unique con-
tributions. (1) We propose a side-channel attack, SIA, which is
facilitated by the smartwatches of a victim. We use SIA to uncover
keystrokes using the physical signals of the acoustic emanations.
In designing SIA, We demonstrated a threat model that features
two plausible attack scenarios. (2) In realizing SIA, we building
a four-stage pipeline: Noise Cancelling, Keystroke Detection, Key
Identification andWord Correction. The noise canceling stage allows
us to neutralize the environmental changes in the captured data,
while the audio features representative, using multiple customized
learning techniques, allows us to identify the correct keys. On top
of the baseline performance, which is already promising, we employ
state-of-the-art natural language processing techniques to improve
SIA’s accuracy by word correction. (3) We present an extensive
set of experiments through which we show that an adversary can
recover up to 98% of the typed text by a victim. (4) We evaluate
various keyboards with different recording devices and use configu-
rations, and demonstrate the effect of the recording device mobility
as well as keyboards physical properties on the performance of
the attack. (5) We collected three types of test datasets to examine
how our attack performs under different types of use patterns. All
datasets will be made public upon the publication of this work.
Organization. The organization of the rest of this paper is as fol-
lows. In section 2we review the related work. In section 3we outline
the system and threat models. In section 4 we review our attack
methodology with the associated technical details. In section 5, we
present our evaluation, including a small user study and a practical
attack. In section 6 we enlist the limitations of our work and the
future directions, followed by our concluding remarks in section 7

2 RELATEDWORK
There has been a significant number of studies on side channels and
their utilization for physical keyboards inference, which we review.
We start by a brief background, followed by various techniques
falling under a broad set of mediums utilized for their operation.
Earlier Work and Theme. Several studies are reported in the
literature on the topic of keyboard inference using side-channel
information. However, those studies differ from our work in various
aspects, including their system settings and threat models, which
bring about additional challenges that we address in this work.

One of the earliest works to document keylogging side-channel
was introduced in the early 1970s [13] by researchers from Bell
Laboratory who observed that an unattached oscilloscope showed
“interesting” measurements whenever a key is pressed on a teletype
terminal. Since then, keylogging side-channel attacks have become
a topic of significant interest with many studies [28]. A central
theme in those studies has been around two aspects: the discovery
of mediums through which side-channel information is collected
and the development of techniques and using them for recovering
information from those signals to launch the inference attacks.
Exploited Medium for Attacks. Over the past few years, re-
searchers addressed the first aspect by identifying and examining

various mediums for side-channel information collection, includ-
ing acoustic emanations [4, 9, 11, 16, 41], electromagnetic emana-
tions [37], vibrations [7, 26], motion [23, 25, 38, 39], visually observ-
able clues [6, 32], andWiFi signal distortions [3, 10], etc.
Acoustic Emanation for Inference. The first keylogging attack
through acoustic emanationwas presented byAsonov andAgrawal [4],
where they developed and utilized a supervised learning algorithm
in which the fast Fourier transform (FFT) coefficients of the audio
signal are used as features. With their learning model, they rec-
ognized and classified the keystrokes of a particular user with an
accuracy of 79%, which demonstrated the risks caused by acoustic
emanations. Another study by Zhuang et al. [41] utilized unsuper-
vised learning by using the cepstrum features of keystroke mo-
ments in the audio signal. The cepstrum is the result of the inverse
Fourier transform (IFT) of the logarithm of the estimated signal
spectrum. They show various promising results, uncovering 90%
of 5-character random passwords using only letters in fewer than
20 attempts by the adversary. As an upgrade to the text inferences,
a dictionary-based attack is proposed by Berger et al. [9], where
the similarity of keystrokes in a word and the acoustic patterns
learned from dictionaries are exploited to infer the typed text. They
achieved 73% of accuracy from the top-50 word predictions.

Halevi and Saxena [16] performed another keylogging attack
with a new similarity measure, the time-frequency classification,
which considers time- and frequency-domain characteristics, and
achieved 64% key detection accuracy. Compagno et al. [11] studied
the risks due to the acoustic signals transmitted through IP tele-
phony; the used the audio signals emitted by a keyboard at the
victim’s end to guess random keystrokes with 83% accuracy.
Motion-based Techniques. Another type of side-channel infor-
mation is the readings of motion sensors, i.e., accelerometer and
gyroscope. Liu et al. [23] exploited the signals retrieved from the
accelerometer of a smartwatch to track the hand movements of a
user and infer keyboard inputs with 55% top-5 word accuracy. Maiti
et al. [25] used accelerometer and gyroscope readings to detect
wrist movements and inferred the keystrokes with 51% top-10 word
accuracy via physical position detection.

Besides the hand dislocation information retrieved from the
motion sensors,Wang et al. [39] utilized a languagemodel to further
increase the leakage and achieved 30% top-5 word accuracy. Wang
et al. [38] also performed training- and context-free attacks for
key-based security systems, e.g., ATM and electric lock doors, and
predicted what is entered by observing the motion trajectories of
the smartwatch. The attacks recovered 80% of the PINs.
Vibration-based Techniques. The motions around a physical key-
board induced by typing actions creates a vibration on the under-
lying surface which propagates over short distances. Keylogging
side-channel attacks exploited the vibration propagation by captur-
ing it using a laser microphone [7] or a hijacked smartphone with
capable sensors within proximity [26].
Visual Cues. Visual cues are also considered as side-channel in-
formation in the literature. Sabra et al. [32] proposed an attack
framework that only uses the video feed in video call software,
such as Skype or Zoom, to perform a keylogging side-channel at-
tack. In this attack framework, they performed a dictionary-based



Table 1: A summary of the related work. The detection is measured by TPR (True Positive Rate). UP in training stands for User
Profiling, and HM in the exploited medium stands for Hand Movement. Blank proximity and detection indicate that those
values are not provided in the corresponding study.

Reference Year Exploited Medium Proximity Training? Performance
Detection Identification

Asonov et al. [4] 2004 Keyboard acoustics 1m Yes (UP) - 79% (top-1 key)
Berger et al. [9] 2006 Differences of keyboard acoustics - No - 73% (top-50 word)
Balzarotti et al. [6] 2008 Video of the typing hands <1m No - 46% (top-1 word)
Zhuang et al. [41] 2009 Bootstrapped keyboard acoustics - No - 90% (top-1 word)
Marquardt e al. [26] 2011 Vibrations sensed via smartphone 50mm Yes (UP) - 43% (top-10 word)
Halevi et al. [16] 2014 Keyboard acoustics - Yes - 64% (top-1 key)
Ali et al. [3] 2015 WiFi CSI distortion 4m Yes (UP) 98% 96% (top-1 key)
Chen et al. [10] 2015 WiFi Multipath localization 5m Yes (UP) - 92% (top-5 key)
Wang et al. [39] 2015 Dislocation of hand Smartwatch Yes 57% 30% (top-5 word)
Liu et al. [23] 2015 HM+Acoustic emanations Smartwatch Yes - 55% (top-5 word)
Maiti et al. [25] 2016 HM+Acoustic emanations Smartwatch Yes - 51% (top-10 word)
Wang et al. [38] 2016 Hand movement Smartwatch No - 80% (top-1 PIN)
Compagno et al. [11] 2016 Acoustics via VoIP Remote Yes (UP) - 83% (top-1 key)
Sabra et al. [32] 2020 Video feed Remote No 92% 35% (top-50 word)
SIA 2021 Acoustics via Smartwatch Remote Yes (UP) 99% 98% (top-1 key)
SIA 2021 Acoustics via Smartwatch Remote Yes 99% 85% (top-1 key)

attack considering the displacements in between video frames and
achieved 35% top-50 word accuracy with their practical settings.
WiFi Signals. Any motion in an environment with wireless sig-
nals distorts the signals, which is then leveraged as side-channel
information for keylogging attacks. Ali et al. [3] exploited patterns
in the time series of the Channel State Information (CSI) values be-
tween sender and receiver WiFi devices for inference. Their method
achieved 96% top-1 key accuracy. Chen et al. [10] used five anten-
nas to localize the hand movements using the WiFi signals to trace
keystrokes, which resulted in 92% top-5 key accuracy.

A summary of the related work and a comparison with SIA,
across various aspects, is shown in Table 1.

3 SYSTEM AND THREAT MODEL
In the following we review the details of the system model in which
our attack is launched, and the threat model, which characterizes
the capabilities of the adversary under which the attack is viable.
System Model. In this paper, we assume a system that consists
of a user typing on a keyboard to input various texts, e.g., email
addresses, passwords, etc., to a computer terminal. We also assume
that the user is equipped with a smartwatch that features a micro-
phone. We note that the overwhelming majority of smartwatches
on the market today are equipped with microphones (e.g., Ap-
ple Watch, Fossil Gen 5 Carlyle, TechWatch Pro, Samsung Galaxy
Watch, Huawei Watch 2, etc.). We also assume that the user is
equipped with a smartphone (although this assumption is only nec-
essary for rationalizing and demonstrating multiple attack avenues,
it is not necessary for the attack in the abstract).
Threat Model. In this paper, we assume an adversary that is con-
sistent with assumptions made in the literature concerning ad-
versaries’ objectives and capabilities. Namely, the objective of the
adversary in our threat model is to infer what the targeted user
in our system model is typing on the keyboard by utilizing the
acoustic signals associated with the keystrokes.

In our threat model setting, we assume that the targeted user
types some passage, or username password tuples while wearing

Scenario	1

Scenario	2

Figure 1: System and Threat Model Scenarios. Scenario 1 as-
sumes an infected smartwatch for data transmission, while
scenario 2 exploits the acoustic emanations in a phone call.

the smartwatch. We consider two plausible scenarios for our threat
model, as shown in Figure 1: (i) the targeted user types a passage
while wearing a smartwatch that is infected by a malicious applica-
tion with access to the microphone (Scenario 1), or (ii) the targeted
user is engaging with the adversary in a phone call while typing
on the keyboard (Scenario 2). In both cases, we assume that the
adversary and the targeted users are not in the same physical space,
which further emphasizes the power and versatility of the remote
adversarial setting. In Scenario 1, the smartwatch records the sur-
rounding acoustic signals while the targeted user is typing on the
keyboard and uploads the recordings to a server maintained by the
adversary. In Scenario 2, the adversary and the targeted user are in
a phone call and the adversary records the call.
Challenges. While our system and threat models are to a great
extent consistent with the literature, the fact that we use a physical
keyboard and a smartwatch as the source and the recording devices,
respectively, bring about four challenges (C-1–C-4), as follows:
C-1. The smartwatch mobility adds another layer of challenges,

impacting the observed signal quality and consistency.
C-2. The difference in background noises creates an unknown

factor that vastly affects the prediction performance.



C-3. Similar to C-2, the changes in the environmental setting af-
fects the acoustics scale, causing identification inaccuracies.

C-4. The lower quality of the smartwatch microphones due to the
space constraints enforced by the wearability influences the
signal quality, which implicitly affects the predictions.

In the Methodology section (§ 4), we address those challenges.

4 SIA EXPLAINED
In this section, we introduce the methodology of SIA, followed for
implementing the attack objectives in our threat model. Figure 2
demonstrates SIA’s pipeline. The attack takes a recording denoted
as raw signal as input, which is readily available to the attacker
due to the above threat scenarios and outputs a prediction of what
is typed in the input recording by analyzing the signal. The attack
pipeline consists of four main stages: Noise Cancelling, Keystroke
Detection, Key Identification, and Word Correction. We elaborate on
each of those stages in the following subsections.

4.1 Noise Cancelling
Since the recording devices record every sound that exists in the
environment, they record the background noises, which affect the
quality of the recordings. The type and structure of the noise de-
pend on various external and internal factors, such as the ambient
noises (external) and the quality of the recording equipment (inter-
nal). Especially the inferiority of a microphone embedded in the
smartwatch has the biggest influence on the background noises.

During our preliminary experiments, we observed that the alter-
nations of the background noise significantly affect the performance
of the identification. Therefore, as a first step, we prepare the data
by cleaning any background noise. Two types of background noise
exist, which we address in the following: (i) the white noise (hiss)
and (ii) other ambient noise in the environment, e.g., street noises,
computer fan noise, etc.

4.1.1 White Noise Canceling. Our white noise canceling algorithm
utilizes the Fourier analysis where the fingerprint of the static
background noise is structured using the spectrum of the pure
tones in the quiet parts of the recording.

First, the noise in the whole recording is filtered using the fin-
gerprint of the background noise. This fingerprinting is a crucial
step, since cleaning the frequency bands of the white noise directly
from the recording also cleans the actual keystroke acoustics.

Figure 3 shows the spectrum of the white noise and the acoustics
of a keystroke event. The significant overlap in the frequency bands
restrains us to directly crop the frequency components structuring
the white noise. Second, to facilitate processing, the recording is
divided into segments and the frequency spectrum of each segment
is calculated. Third, the spectrum of each segment is analyzed
such that the volume of any pure tones that are no louder than the
average levels obtained in the fingerprint is reduced. This procedure
is typically named as spectral noise gating.

More technically, in the first step of Noise Cancelling, the Fast
Fourier Transform (FFT) using a Hann window is calculated for
each windowed segment of the recording. FFT requires data with
a certain length (2048). Therefore, the signal is divided into equal-
length segments, which may cause discontinuity around the edges.
The Hann windowing corrects such discontinuities at the edges of

the segments before they are forwarded to the FFT. After having
the spectrum (FFT of a time-domain signal), statistics, including
the mean power, are tabulated for each frequency band. Those
statistics and the sensitivity parameter determine a threshold for
each frequency band. Gain control for each frequency band is set
such that if the sound exceeds the threshold, the gain is set to 0dB,
otherwise, the gain is set to the Noise Reduction parameter (e.g.,
-12dB), to suppress the noise. Next, time smoothing is applied to
obtain a smooth transaction over frequency bands. Then, frequency
smoothing is applied to avoid suppressing or boosting a single
frequency in isolation. Finally, the gain controls are applied to the
FFT of the signal and the inverse FFT is applied, followed by another
Hann window. The output signal of each segment is combined to
structure the whole recording of which the noise is reduced.
4.1.2 Ambient Noise Canceling. Due to the unpredictable nature of
ambient noise, i.e., what quantity of noise (what) and wherein the
time domain it is injected (when), canceling it is more challenging
than canceling the white noise. In this part, we first manually locate
the signal pieces where an ambient noise profile is intertwined with
keystrokes to answer the “when" question. For each piece, the noise
profile is structured as done with the white noise, which answers
the “what” question. The noise profile is then removed only from
the corresponding signal piece. Hereafter, we refer to the output of
this stage by the “clean signal”.

4.2 Keystroke Detection
For Keystroke Detection, we locate the keystroke events in a clean
signal, a task that is possible using two observations: (i) a keystroke
event yields two peaks, a hit peak and a release peak, in the acoustic
signal which lasts typically for 200 ms total together with the small
inactive portions at the start and the end [4, 11, 26, 28, 41], (ii) the
acoustic signal emanated when a key is pressed is more powerful
than the one when the key is released.

Based on these observations, we simplify the keystroke detection
problem to finding the strong peak observed in a keystroke event.
Locating the strong peak suffices to locate a keystroke event by
encapsulating the hit peak with a 200 ms window. For the simplified
version of the detection problem, the solution is based on another
observation: a typical hit peak lasts for only 10 ms. Therefore, we
slide a 10 ms window, 𝑤 , over the clean signal and calculate the
spectrum energy 𝐸 along the way, yielding a set of window-energy
(𝑤𝑖 , 𝐸𝑖 ) tuples (Part b in Figure 4). Then, the maximum number of
keystrokes, 𝑛, is calculated considering the typical duration of a
keystroke (200 ms), the typical pause duration (500 ms) between
keystrokes, and the length of the recording. Since the solution
builds on the idea that the energy of a hit peak is greater than the
other parts, it is reasonable to assume that the windows with high
energy are likely to contain the hit peak.

We capitalize on this observation by sorting the (𝑤𝑖 , 𝐸𝑖 ) tuples
in terms of the energy component 𝐸𝑖 (Part c in Figure 4). From
this sorted list, energy_list, we start to form the actual 200 ms
windows,𝑊𝑖 , encapsulating a whole keystroke event. However, we
observe that the energy_listmay contain 10 ms windows that are
encapsulated in a single 200 ms window. To avoid creating multiple
keystroke windows for a single keystroke, we use a suppression
technique: whenever a 200 ms window,𝑊𝑖 , is created, the suppres-
sion technique discards the 10 ms windows that overlap with𝑊𝑖
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from the energy_list (Part d in Figure 4). Once the number of 200
ms windows, i.e., keystroke events, reaches 𝑛, the events are sorted
in terms of the timestamps, and the detection process is completed.

4.3 Key Identification
After locating the keystroke events, the next step is to find which
signal belongs to which key. For that, we extract various discrimi-
native features from the time-domain signal and use a multi-class
classifier to determine the key that is pressed as our outcome.

4.3.1 Feature Extraction. The most common feature candidates
for audio are evaluated before deciding which one is utilized. In
the following, we consider the Fast Fourier Transform (FFT) coeffi-
cients, Cepstrum coefficients, Mel-Frequency Cepstral Coefficients
(MFCCs), and Chroma features.
FFT Coefficients. FFT is an optimized algorithm that computes
the Discrete Fourier Transform (DFT) of a signal. DFT, implicitly an
FFT, converts the input signals from their original domain (typically
time or space) to the frequency domain, where the FFT coefficients
are the coefficients of this frequency-domain representation. FFT
coefficients signify the frequency components, which is useful for
associating similar signal structures.
Cepstrum. Cepstrum converts a signal in the time domain to a
signal in the quefrency domain. The quefrency domain is intuitively

(w a, 
E a)

(w a+
𝛆, 
E a+

𝛆)

(w c+
⍺, 

E c+⍺
) t

(w b, 
E b)

(w c, 
E c)

Energy
(wa, Ea)
(wc, Ec)
(wa+𝛆, Ea+𝛆)
(wc+⍺, Ec+⍺)
(wb, Eb)

t

n = 2

t

event1 event2 Wa

t

Wc

Su
pp
re
ss
ed

Su
pp
re
ss
ed

Wb

t

……

Wa

Wb

Wc

a b c

def

Wa Wc

Clean Signal

Figure 4: The maximum number of keystrokes, 𝑛, is com-
puted considering the length of the clean signal coming
fromNoise Cancelling stage. (a) A 10mswindow is slid over the
clean signal. (b) The spectrum energy, 𝐸𝑎 , of each 10 ms win-
dows𝑤𝑎 is calculated. (c) Thewindow-energy tuples, (𝑤𝑎, 𝐸𝑎),
are sorted in terms of the energy. (d) Starting from the most
powerful 10 ms window, 200 ms windows, 𝑊𝑎 , encapsulat-
ing keystroke events are created. Whenever a new window
is created, the subsequent 10 ms windows (𝑤𝑎+𝜖 ) , which are
less powerful and overlaps with it, are suppressed. (e) The
𝑛-most powerful 200 ms windows are fetched and sorted in
time. (f) Keystroke Detection returns a set of windows encapsu-
lating the keystroke events.

defined as the rate of change in the different spectrum bands, and
its formulation, for a signal 𝑓 (𝑥 ), is given as follows:

𝐶𝑝 = |FFT(log(|FFT(𝑓 (𝑥 ))|2))|2 . (1)

The inner FFT function in Equation 1 converts the signal to the
frequency domain and the outer FFT converts the frequency domain
to the quefrency domain. The Cepstrum method is effective for
pitch detection in human speech. Since a keystroke event consists
of peaks, Cepstrum is a preferred candidate feature for our task.
MFCC. MFCCs are derived from the cepstral representation of a
sound signal, i.e., Cepstrum. MFCC differs from Cepstrum by the
spacing of the frequency bands. In MFCC, the frequency bands are
spaced on the mel scale which approximates the human’s auditory
perception. In Cepstrum, the frequency bands are linearly-spaced.
In other words, with the mel scale, the human perceptible por-
tions of the audio are boosted and are made more distinguishable.



Table 2: A comparison of feature options for Key Identification
in terms of True Positive Rate (TPR). Mel-Frequency Cep-
stral Coefficients (MFCC) performed best for the task.

Feature FFT Cepstrum MFCC Chroma
TPR 0.07 0.70 0.85 0.37

MFCC is commonly used in speech recognition, music informa-
tion retrieval, and audio similarity measurements; its performance
is proved to be successful on these tasks. Since our classification
is based on the similarity of the sounds, MFCC is an appropriate
feature candidate for our purpose.
Chroma. Chrome features, also known as the pitch class profiles,
are most capable of providing high-quality representation when
pitches exist in the audio. Chrome features are particularly powerful
for music audio where the spectrum is projected onto 12 bins, i.e., 12
chromas. Chroma features are designed based on the observation
that notes one octave apart are perceived as similar. Therefore,
knowing about Chroma even without the frequency information
can give us insights about the similarity. Although it is handy for
music audio, it would still give us some sense of similarity; thus it
is worth exploring as a feature for our purpose.

We conducted experiments on a small data sample and found
out that MFCC stands out among the other approaches discussed
above (the results are shown in Table 2).

4.3.2 Multi-Class Classification. Once the features of the signal
are obtained, the detection of the keys associated with the signal is
done by employing a machine learning algorithm in the multi-class
classification task. For our multi-class classifier, we considered mul-
tiple models, which ranged from simple to more complex: logistic
regression, support vector machine, multi-layer perceptron, and
convolutional neural network, which we review in the following.
Logistic Regression (LR). LR explains the relationship between
one dependent binary variable and one or more independent vari-
ables. Although LR is a probabilistic model typically used when the
target (dependent variable) is binary, the idea behind it can be ex-
tended to the multi-class classification using a one-vs-rest scheme,
in which a classifier per class is trained to return positive if the
sample belongs to the class, and negative otherwise. LR assumes
that data from the different classes have no high correlation. In
some cases where our data show similar patterns, especially when
the keys are in close proximity, LR is not an ideal choice and comes
second per our empirical results (Table 3).
Support Vector Machine (SVM). SVM aims to find a set of hyper-
planes that best separate classes in the feature space by maximizing
the margin from the hyperplane to the data points. SVM is ideal
for binary classification. Similar to LR, the one-vs-rest scheme is
used to support multi-class classification. We used the Radial Basis
Function (RBF) kernel, and we set the regularization parameter,
which dictates the degree of importance given to misclassifications,
to 1.0. Since SVM outperformed the other classification methods,
we employ SVM as the multi-class classifier in our study.
Multi-Layer Perceptron (MLP).MLP is the stepping stone to the
deep learning area and is a feedforward fully-connected neural
network capable of solving complex problems. Using non-linear
activation functions, MLP can capture complex relations/patterns
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Figure 5: The Convolutional Neural Network (CNN) archi-
tecture employed during the classifier selection. Three sub-
sequent convolutional layers (CONV ) with the depth of
16, 32, 64 are utilized. Then, a MAXPOOL layer selects the
maximum weights in the convolutions. Before the fully-
connected layer (FC), a dropout regularization is performed
to avoid overfitting. The softmax at the end of FC returns
the class probabilities for the given input.

in data, which is helpful considering our feature space. Although
we used a quite deep architecture (100 hidden layers), MLP cannot
provide an optimal recall for the task.
Convolutional Neural Network (CNN). CNN is one of the most
advanced deep learning methods in the literature. With the help
of convolutional layers, CNN can capture not only the complex
relations but also the temporal patterns in a given sample.

The CNN architecture used in this evaluation is demonstrated
in Figure 5. First, the input (MFCC features) is reshaped into a two-
dimensional (2D) array. Three consecutive convolutional layers
(CONV) are then applied to the input. Due to the enlarging depth
in the convolutions, the architecture becomes more capable of
capturing complex patterns in the input. The kernel size of each
convolutional filter is determined as (3 × 3) and the stride is deter-
mined as (1 × 1). The following max pooling layer (MAXPOOL) then
fetches the most important portions of the features by selecting the
maximum weights in (2 × 2) kernel with (1 × 1) stride. Such a deep
architecture has lots of weights/parameters which typically lead
to overfitting. To avoid overfitting, a dropout regularization [33]
with 0.5 probability is applied to the output of MAXPOOL. Next, the
output of the dropout layer is flattened and forwarded to the fully-
connected layer (FC). Softmax at the end of FC computes the class
probabilities, and the most likely class is returned as the prediction.
For all the applicable layers, i.e., CONV and FC, the ReLU activation
function is used. Adam [17] optimization is utilized for training and
the architecture is compiled with the Categorical Cross-Entropy
(CCE) loss function. CCE is the combination of a softmax (𝑓 (𝑦)) and
cross-entropy loss:

𝑓 (𝑦)𝑖 =
𝑒𝑦𝑖∑𝐶
𝑗
𝑒𝑦 𝑗

𝐶𝐶𝐸 = −
𝐶∑
𝑖

𝑦𝑖 log(𝑓 (𝑦)𝑖 ), (2)

where 𝑦 is the target vector, 𝑦 is the output of the model, 𝐶 is the
number of classes. CCE loss is beneficial for multi-class classifica-
tions where the last layer is a softmax, and the target vector can be
represented as a one-hot vector.
Preliminary Results. We use those techniques for comparison,
and our empirical results with MFCC features (Table 3) showed that
SVM performed better than any other algorithm for the given clas-
sification task. Since MFCC features are frequency-domain features,
the capability of capturing temporal patterns could not give much



Table 3: Comparison of different multi-class classifiers with
MFCC features in terms of TPR. Support Vector Machine
(SVM) is the best classifier alternative.

Classifier LR SVM MLP CNN
TPR 0.83 0.85 0.73 0.73

of an advantage for our task. Therefore, CNN could not perform
better when compared to others.

4.4 Word Correction
We observed that Key Identification stage may produce misspelled
word predictions due to the signal similarities, especially between
the keys are in close proximity. To further improve the prediction ac-
curacy, we added aWord Correction stage to the attack pipeline. We
evaluated three methods forWord Correction: Simple Spell Checker,
Machine Translation, and Next Word Prediction. Each method is
explained in the following.

4.4.1 Simple Spell Checker. In the simple spell checker (SSC)method,
an algorithm based on the Levenshtein distance is used to find per-
mutations within an edit distance of 2 from the original word [29].
Levenshtein distance (LD) [21] is a string metric that measures the
difference between two sequences. It counts the minimum number
of single-character edits, such as insertion, deletion, or substitution
required to make two strings identical. After finding all candidates
within LD of 2, all permutations are compared to known words in
a word frequency list. Those words that are found more often in
the frequency list are more likely the correct results.

4.4.2 Machine Translation. In themachine translation (MT)method,
we utilized one of the most advanced approaches in Natural Lan-
guage Processing (NLP): Transformers. With the help of transform-
ers, the spell correction task is converted into a machine translation
task, an NLP task where two languages are automatically translated.
For this, we used the xfspell [15] tool. xfspell views the mis-
spelled words and their correct versions as languages, and trains
the network accordingly. For training, the tool developer mined
data from GitHub. The commits correcting ‘typos’ are fetched and
the so-called language datasets are built. However, such training
data yielded highly technical spell corrections. To avoid this bias,
the developer used the machine translation technique itself to en-
hance the datasets. By reversing the machine translation model, he
provided correctly spelled English words and got the misspelled
version from the other end, and retrained the model.

Although this is in many ways a creative method for addressing
this task, the misspelling errors we observed in the key identifica-
tion predictions are unusual. For instance, the sample ‘CONCERNS’
can be predicted as ‘DLMCERNX’ where the mispredicted char-
acters are one-hop neighbors of the actual character. Such spelling
errors may remain uncovered with such a method. However, the
idea is worth further exploration. To this end, we can slightlymodify
the xfspell tool by providing different languages. The misspelled
dataset can be synthetically created by modifying the correct words.
Then, the model can be retrained with the correct and misspelled
correspondences. We left this improvement as future work.

4.4.3 Next Word Prediction with Language Model. The idea of using
a next word (NW) prediction as a word correction mechanism is

based on the following observation: some word predictions are not
misspelled, but simply do not align with the context of the sentence.
For example, the predicted sentence “Thank toy for attending the
call." has no misspelled words. However, if the context is considered,
the word that does not align with the context can be predicted using
the next word prediction methods to convert the original sentence
into “Thank you for attending the call.” In this method, we utilized a
state-of-the-art GPT-2 [31] language model as a next word predictor.
GPT-2 uses a unidirectional transformer model that is pretrained
using language modeling on a very large corpus of 40 GB of text
data. We feed the predicted words, 𝑤𝑜𝑟𝑑𝑖 for all 𝑖 , to the model
sequentially and get the most likely next word 𝑤𝑜𝑟𝑑𝑛

𝑖
from the

model. If the likely next word produces a better score than the ac-
tual prediction, we replace𝑤𝑜𝑟𝑑𝑖 with𝑤𝑜𝑟𝑑𝑛𝑖 . Otherwise, we keep
𝑤𝑜𝑟𝑑𝑖 as it is. Although this method corrects the out-of-context
words, in some cases it can still decrease the overall accuracy of
the prediction. For example, for the predicted sentence “Please let
me know if you have any zlmcervx.”, this model outputs “Please
let me know if you have any questions.”. For this particular case,
even though the new word completes the sentence by following the
context, it changes the word from “concerns” to “questions” which
reduces the prediction accuracy.

5 EVALUATION
For our experiments, we collected three types of test data for two
keyboards from two users, and evaluated SIA pipeline, including
Keystroke Detection, Key Identification, and Word Correction stages.
In the following, we elaborate on the data collection process and
the experiments of the pipeline stages.

5.1 Data Collection
We collected two sets of data: training data and test data, using
various devices, which we choose for their popularity. For both the
training and test data collection, Samsung Galaxy Watch Active
2 and Samsung s10e Smartphone are used as recording devices; a
MacBook Air with Magic Keyboard (MBA) and a Bluetooth Magic
Keyboard (BMK) are used as the target keyboards. All used devices
were among the best selling in 2020.

For data collection, we implemented a keylogger interface that
logs the timestamp and key information when a key is pressed.
Using the timestamps, each keystroke event is encapsulated in a
200 ms window and the window is labeled with the key.

Two users are used to perform data collection,USER A andUSER
B, and they placed the keyboard in a convenient position. Theywore
the smartwatch on their left wrists and put the smartphone to the
left side of the keyboards. There are no enforced constraints in terms
of which side they should wear/put the smartwatch/smartphone.
The dataset and the keylogger can be found in SIA Git Repository.

5.1.1 Training Data. In training data collection, for each keyboard-
recording device combination, 45 pangrams are typed by a single
user (USER A), acting as an adversary, and the acoustic emanations
are recorded. A pangram is a string that includes all alphanumeric
characters (36 characters) in the English language. The order of the
characters is randomized in the pangrams. Therefore, the transition
movements from one key to another, which may affect the acoustic
emanations, are randomized implicitly. The training data is recorded

https://github.com/ulkumeteriz/SIA
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Figure 6: The cumulative character-wise distribution of the
test datasets. The colors on the keys encodes the associated
hand and finger.

in a quiet room, without any ambient noise. The white noise is
canceled using the Noise Cancelling stage of the pipeline.

Scaling is an important step for optimizing the learning process.
The scale and distribution of the data may be different for each
sample. Differences in the scales across samples may complicate
the problem being modeled. For instance, large input values can
result in large weights in the model. Large weights make a model
unstable - the model with large weights performs poorly during
learning and may have high sensitivity to the input values resulting
in generalization errors. Thus, before training, the training data is
scaled using a MinMaxScaler and the scaler parameters are saved
for scaling the test data.

5.1.2 Test Data. Three types of test data for each target keyboard
and each recording device are collected from two users, USER A
and USER B. (1) E-mail: A randomly selected e-mail sample from
Enron mail dataset [18]. The e-mail consists of 213 letters and 42
words. (2) Random Password: 32 randomly generated passwords
of length 8. Hereafter, this data is referred to as “Random”. (3)
Selected Password: 20 randomly selected passwords from the
RockYou password dataset. Hereafter, this type of data is referred
to as “Selected”. Figure 6 shows the character-wise distribution of
the characters in the test dataset.

The first user (USER A) participating in the test data collection is
the same person collecting the training data. Since the model in Key
Identification is trained with the data collected from the same user
USER A, the experiments on the USER A’s test data are considered
as user profiling(§ 5.2). The experiments on the USER B’s test data
are considered as a practical attack(§ 5.3).

Unlike in the prior studies [11] where the evaluations are done
with the k-fold cross-validation techniques, we recorded our test
data in a different room which demonstrates the practicality of
the attack. For example, Compagno et al. [11] collected a single
dataset and directly evaluated the performance using k-fold cross-
validation without noise canceling. For comparison, we imple-
mented their method and tested our data on it. Table 4 shows
the empirical result of this comparison.

We observed that Compagno et al.’s method (Noisy Data + LR)
does not work as well when the test data is recorded in a different
room (we label this recording as “Practical” in Table 4). Using the
k-fold cross-validation method is implicitly biased for such evalu-
ation. Because the test split contains very similar samples to the
training split when the environmental acoustics are stable, which is

Table 4: A comparison between different inference tech-
niques (Clean Data+SVM / Noisy Data+LR) and evaluation
methods (5-fold / Practical). In the practical evaluation, the
test data recorded in a different environment is used.

Method 5-fold Practical
Clean Data + SVM 0.99 0.85
Noisy Data + LR 0.94 0.53

a very idealized environment setting/assumption and yields imprac-
tical experiments. Table 4 also demonstrates that SIA outperforms
Compagno et al. [11] (0.85 for SIA vs 0.53 for their model). We
emphasize that our better results in comparison with [11] are ob-
tained in a more practical system setting: Compagno et al. [11] has
an advantage (strong assumption; weakness) in the threat model,
where they assume the recording device to be static and fixed in
location (laptop microphone). SIA, using the smartwatch, on the
other hand, uses a moving recording device with the user’s wrist,
which affect the quality of the observed raw signals.

5.2 User Profiling
In this set of experiments, we trained the model in Key Identification
with the data recorded by USER A and used the USER A’s test data,
i.e., USER A is the targeted user. Such evaluation setting assumes
an adversarial strength: the adversary has some knowledge about
the acoustic emanations of the targeted user’s unique typing style.
In the following sections, we elaborate on the evaluation of each
stage of the pipeline.

5.2.1 Keystroke Detection. Keystroke Detection returns a set of win-
dows,𝑊keystrokes = {𝑊𝑖 }𝑛𝑖=1, and those windows encapsulate the
keystroke events. Given each ground truth keystroke event 𝑔𝑡 𝑗
in 𝐺𝑇 = {𝑔𝑡 𝑗 }𝑀𝑗=1, and upon prediction, we associate each key tap
segment𝑊𝑖 in𝑊keystrokes with the ground truth event 𝑔𝑡 𝑗 which is
closest to𝑊𝑖 in time.

For Keystroke Detection, as an evaluation metric, we used the
intersection-over-union (IoU), which is a common evaluation metric
for temporal localization problems. IoU is a measure of the overlap
ratio between the detected and the ground truth keystroke events
in time. For two keystroke events, 𝐸1(𝑡1, 𝑡2) and 𝐸2(𝑡3, 𝑡4), where 𝑡1
and 𝑡3 are the start, 𝑡2 and 𝑡4 are the finish timestamps, and 𝑡3 > 𝑡1,
IoU between 𝐸1 and 𝐸2 is:

IoU(𝐸1, 𝐸2) =
min(0, 𝑡2 − 𝑡3)

(𝑡4 − 𝑡1)
∈ [0, 1]. (3)

When the events fully overlap, the IoU value is 1. This process pro-
duces a set of associations (𝐴) of keystroke events together with
their IoU values. We then eliminate the associations with IoU < 0.75
from 𝐴, where 0.75 is the IoU threshold that we set. (Typical IoU
threshold is set as 0.5 in temporal localization problem—higher
value means more overlap.) Following the common evaluation
methodology in temporal localization problems, we interpret the
events in 𝐴 as true positives,𝑊keystrokes \𝐴 as false positives, and
𝐺𝑇 \𝐴 as false negatives. Table 5 shows the TPR, False Negative
Rate (FNR), and Precision (P) of the Keystroke Detection on each
dataset-keyboard-recorder combinations.



Table 5: Keystroke detection results. The IoU threshold is 0.75. True Positive Rate (TPR), False Negative Rate (FNR), and Preci-
sion (P) values for each test data (E-mail/Random/Selected), recording device (Phone/Watch), and target keyboard (MBA/BMK).

Device MBA (Watch) BMK (Watch) MBA (Phone) BMK (Phone)
Metrics TPR FNR P TPR FNR P TPR FNR P TPR FNR P
E-mail 0.994 0.006 0.900 0.965 0.035 0.754 0.994 0.006 0.855 0.994 0.006 0.855
Random 0.996 0.004 0.988 0.984 0.016 0.933 0.988 0.012 0.941 0.996 0.004 0.910
Selected 0.994 0.006 0.900 0.983 0.017 0.818 0.988 0.012 0.895 0.967 0.033 0.931

Observations on Random Text. Users typically type relatively
slower when typing random text, since they have to keep track of
the next character by looking at the display when knowledge of
the text is of very limited value. Therefore, the margin between the
keystroke events is wider. When two keystroke events are wide
apart, the distinct gap in between two keystroke events facilitates
the keystroke detection. Therefore, the TPR in keystroke detection
for the random dataset is generally higher than the others. Overall,
the low FNR, high precision, and TPR demonstrate the robustness
of the keystroke detection method.

5.2.2 Key Identification. In this section, we discuss our results for
the Key Identification stage for all devices and datasets. The Key
Identification stage takes keystroke event windows𝑊 from the
Keystroke Detection stage and returns a string corresponding to
the given keystroke events. Each keystroke event window𝑊 is
forwarded to the trained model and the most likely class is assigned
to the window. For the Key Identification evaluations, we performed
three sets of experiments: (i) character-wise TPR for each keyboard
and recording device, (ii) cross-entropy of the probability distribu-
tion estimated by the model, and (iii) string-wise evaluations, where
we calculated the TPR and the Normalized Levenshtein Distance
(NLD) for each recording device, keyboard, and test dataset. Before
discussing the results, we present the evaluation metrics.
Cross-entropy. The cross-entropy is a measure of the difference
between two probability distributions for a given random variable.
To evaluate the performance of our classifier, we used the cross-
entropy of the predicted probability distribution, 𝑓 , relative to the
actual distribution, 𝑝 . The cross-entropy formula is given as:

𝐻 (𝑝, 𝑓 ) = −
∑
𝑖

𝑝(𝑥𝑖 ) log(𝑓 (𝑥𝑖 ) + 𝜖) (4)

The 𝜖 value in (4) is used to avoid the undefined values yielded
by log(0). For our evaluations, we calculated (i) the cross-entropy
between the probability distribution that our model estimates and
that of the actual distribution, 𝐻 (𝑝, 𝑓SVM), (ii) the cross-entropy be-
tween the uniform distribution and the actual distribution, 𝐻 (𝑝, 𝑓𝑢 ),
and (iii) the cross-entropy between the actual distribution and itself
representing the ideal cross-entropy, 𝐻 (𝑝, 𝑝). 𝐻 (𝑝, 𝑝) is calculated
as a reference point for all other cross-entropy calculations.
Normalized Levenshtein Distance (NLD). As briefly mentioned
above, LD is a string metric that measures the difference between
two strings. It measures the minimum number of edits (insertion,
deletion, or substitution) to make the strings identical. For our
experiments, we used its normalized variant as a string comparison
metric. NLD is calculated by dividing the LD between two strings
(predicted and target) by the length of the target string.

Table 6: Similarity measures for the keyboards. The aver-
age cross correlation of the key tuples that are “most con-
fused” and “never confused” by the keyboard models. BMK
emanates more similar acoustics than MBA.

Setting MBA BMK
Most Confused 67895 104834
Never Confused 54219 80835

Character-wise TPR. Figure 7 shows the character-wise TPR for
each recording device and keyboard. While computing the TPR
for each character, the whole test data is concatenated into one
big test dataset and forwarded to the model for prediction. Then, a
36 × 36 confusion matrix is generated. From the confusion matrix,
the TPR for each class, i.e., character, is calculated. Figure 7a shows
the character-wise TPR for the MBA keyboard and smartwatch
recording device. The TPR values range from 0.75 to as high as
1.00, which demonstrates the success of the attack on the MBA
keyboard. Figure 7a also shows the location of each key and the
colors emphasize the finger that presses that key. The most suc-
cessful predictions, with an average of 0.96, are done on the keys
pressed with the left little finger, left index finger, right ring finger,
and right little finger. The least successful predictions are recorded
with the left middle finger with an average of 0.86.

Figure 7c shows the character-wise TPR for the BMK keyboard
recorded by the smartwatch. The results range from 0.55 to 1.00.
For the BMK keyboard, the highest TPR, an average of 0.85, was
observed with the left index finger. The smallest TPR is observed
with the right middle finger, with an average of 0.70. When the
used hands are considered, TPR for right hand (MBA → 0.94, BMK
→ 0.81 ) is slightly higher than that of left hand (MBA→ 0.93, BMK
→ 0.78 ). This is reasonable, because the smartwatch is worn to
the left wrist, and the location of the microphone does not change
when the right hand is in use.
MBA vs. BMK.When the character-wise TPR results are consid-
ered as a whole, we observed that the attack performed better with
the MBA keyboard than with the BMK keyboard. We claim that
such an outcome is expected when a keyboard emanates “similar”
acoustic signal from the different keys. To support this claim, we
calculated the similarity between the keys using cross-correlation.
To be able to compare the similarity, we calculated the similarity
of (i) the key tuples that are most confused by the models, and
(ii) the average similarity between the key tuples that are never
confused by the model (Table 6). The similarity measurements on
scaled data show that the BMK keyboard (80835) emanates more
similar acoustics when compared to the MBA keyboard (54219).
Our claim is further supported by the cross-correlation of the most
confused keys. The average similarity between the most confused
keys is greater than that of the never confused keys.
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(c) Keyboard: BMK, Recorder: Smartwatch
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Figure 7: Character-wise TPR obtained on the test data after Key Identification stage for every keyboard model and recording
device combinations. The colors encode the hand and finger used for each key.

Smartwatch vs. Smartphone. To compare the effect of the mobil-
ity introduced with the smartwatches, we performed the same eval-
uations with the data collected from the smartphone. In principle,
we notice that when the overall TPR averages are considered, the
models performed slightly better with the smartphone recordings
than with the smartwatch. We note, however, that two key reasons
contributing to this performance improvement: (i) the smartphone
is static in position compared to the mobile smartwatch, (ii) the
smartphone has a better recording quality, as a result of a higher
quality microphone compared to that of the smartwatch. In partic-
ular, the smartphone is equipped with higher-grade microphones
with a higher sampling rate (44.1 kHz) than smartwatches (16 kHz).
For a comparable setting and to mitigate the gap in the microphone
quality, we down-sampled the recordings from the smartphone
and used them as our data source. Moreover, we observed some
differences in the background white noises between the recordings
coming from different devices. However, the Noise Cancelling stage
of the pipeline is shown to be useful in normalizing the signals by
addressing the gap and reducing the differences. Since we evaluated
after eliminating the quality gap between recording using those
steps, the increase in TPR shows that the mobility of the recording
device has a slight performance effect.
Cross-entropy. To observe how much the attack improves the
entropy, we computed the cross-entropy between the actual prob-
ability distribution, which is a one-hot vector (1 on the correct
class), and the probability distribution returned by the classifier
(Table 7). The perfect match with the actual distribution (“Ideal” col-
umn in Table 7) is a very small number 𝜖 . The Frequency column
in Table 7 shows different cross-entropy values for the different
datasets considering the character frequency for the corresponding
domain. For the E-mail dataset, Uniform shows the cross-entropy

with the character probability distribution of the English language.
For the “Selected” dataset, it shows the cross-entropy with the
character probability distribution against the RockYou leaked pass-
word dataset. For the “Random” dataset, it shows the cross-entropy
against the uniform distribution. The entropy loss introduced with
our method shows the severity of the attack.
String-wise Evaluations.Wealso evaluated the predictions’ string-
wise TPR against the ground truth. Table 8 shows the TPR, TPRwith
one-hop, NLD, and NLD with one-hop for each dataset, device, and
keyboard model. The choice of one-hop is not arbitrary. During our
experiments, we observed that some of the mispredicted letters are
within the one-hop distance with the actual key (on the keyboard
layout). This is reasonable since the acoustic emanations coming
from keys within close proximity are similar to one another. To un-
derstand to what extend the mispredictions caused by the proximity
affect the performance, we also computed the one-hop variations
of the string measures. We found that the average improvement
in the TPR of MBA is 4.5%, where that of the BMK is 14.3%. We
can interpret these values as a measure of the confusion among
the keys nearby. The high TPR improvement for the BMK further
supports our claim that BMK emanates more similar acoustics.

Since the success of the keystroke detection propagates to the
subsequent stages and keystroke detection performs better on Ran-
dom, the TPR of Random is generally higher than the others.

5.2.3 Word Correction. Weused the threemethods outlined in § 4.4
for word correction.Word Correction stage is only applicable for the
E-mail dataset since other datasets do not include actual English
words. Table 9 shows the performance improvements of the word
correction methods. SSC and MT improved the prediction’s TPR
in all cases. However, NW is shown to decrease the TPR in some



Table 7: Cross entropy shows the difference between two probability distribution. Ideal row is the cross entropy of the actual
distribution (one-hot vector) with itself (𝜖 = −1× 10−9). Frequency raw is the cross entropy between the actual distribution and
the frequency distribution associated with each dataset (E-mail dataset (E)→ English letter frequency, Random dataset (R)→
Uniform distribution, Selected dataset (S) → Character distribution of RockYou leaked passwords) Ours row shows the cross
entropy between the actual distribution and the distribution estimated by our method.

Device MBA (Watch) BMK (Watch) MBA (Phone) BMK (Phone)
Dataset E R S E R S E R S E R S
Ideal 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖

Frequency 14.02 3.58 18.98 14.02 3.58 18.98 14.02 3.58 18.98 14.02 3.58 18.98
Ours 0.66 0.40 0.86 0.65 0.33 0.80 0.88 1.20 0.96 0.41 1.79 1.10

Table 8: String-wise evaluation results of Key Identification for all device-keyboard-dataset combinations. The predictions for
the Key Identification stage are compared with the ground truth strings. E: E-mail, R: Random, and S: Selected datasets.

Device MBA (Watch) BMK (Watch) MBA (Phone) BMK (Phone)
Dataset E R S E R S E R S E R S
TPR 0.918 0.972 0.878 0.796 0.812 0.679 0.901 0.980 0.933 0.901 0.777 0.442
TPR (1-hop) 0.988 0.992 0.939 0.918 0.921 0.834 0.971 1.000 0.966 0.976 0.929 0.712
NLD 0.065 0.025 0.110 0.164 0.177 0.290 0.079 0.018 0.060 0.798 0.210 0.505
NLD (1-hop) 0.009 0.007 0.055 0.065 0.073 0.150 0.023 0.000 0.030 0.018 0.066 0.260

Table 9: String-wise evaluation results of Word Correction on E-mail dataset for all device-keyboard-method combinations.
The output of Word Correction stage is compared with the ground truth strings.

Device MBA (Watch) BMK (Watch) MBA (Phone) BMK (Phone)
Method None SSC MT NW None SSC MT NW None SSC MT NW None SSC MT NW
TPR 0.918 0.970 0.953 0.866 0.796 0.877 0.970 0.872 0.901 0.959 0.970 0.912 0.901 0.965 0.970 0.918
TPR (1-hop) 0.988 0.988 0.994 0.936 0.918 0.930 0.988 0.953 0.971 0.988 0.994 0.965 0.976 0.971 0.988 0.982
NLD 0.065 0.023 0.037 0.112 0.164 0.023 0.023 0.103 0.079 0.033 0.023 0.070 0.798 0.028 0.028 0.065
NLD (1-hop) 0.009 0.009 0.004 0.053 0.065 0.009 0.009 0.037 0.023 0.009 0.004 0.028 0.018 0.023 0.023 0.014

cases, for the reasons highlighted earlier: since NW may replace
the misspelled word (e.g., “nusiness” for “business”) with another
word (e.g., “work”) fitting in the sentence context, it may decrease
the TPR in some cases, leaving some room for improvements.

5.3 Practical Attack
Now we introduce the results of a practical instance of SIA. The
result of the practical attack demonstrates the applicability and
generalizability of the attack to arbitrary individuals. For this attack,
we trained the model using the training data recorded by USER A
and used the test data collected from USER B as the test data. In
such setting, USER A acts as the adversary targeting USER B.

First, we forwarded the test data through the attack pipeline.
The background noises are canceled, and the keystroke events are
detected. The MFCC features of each signal associated with a key-
stroke event are then extracted. The MFCC features are then scaled
using the MinMax scaler parameters of the training data collected
fromUSER A. Then, the features are forwarded to the SVMmodel in
the Key Identification stage that is previously trained with the data
of USER A. The predictions of the Selected and Random test data
are obtained after the Key Identification. Finally, E-mail test data is
forwarded to the Word Correction stage and the last predictions are
obtained. The evaluations of each stage of the pipeline are elabo-
rated on below. For this set of experiments, the same evaluation
metrics explained in Section 5.2 are utilized.

5.3.1 Keystroke Detection. The performance of the Keystroke De-
tection for the practical instance of SIA was almost identical with
the results provided earlier in Table 5— we achieved about 0.98 in
terms of average TPR. Therefore, we did not include another table
for the Keystroke Detection evaluations for the lack of space.
5.3.2 Key Identification & Word Correction. Figure 8 demonstrates
the character-wise TPR for the practical attack. When we compare
the results in Figure 7 and Figure 8, we observe a slight decrease
in the overall TPRs for the BMK (0.798 → 0.764) and a relatively
large decrease for the MBA (0.937→ 0.776). The difference between
the unique typing styles of the subjects leads to a decrease in the
detection performance. Table 11 shows the cross-entropy decreases
through the practical attack. Although the decrease is not as much
as in Table 7, we are able to significantly reduce the difference
against the actual probability distribution. The reduced difference
can be utilized to further reduce the search space.

Table 10 shows the string-wise evaluations for each dataset—after
Key Identification—and each word correction method for the E-mail
dataset. When comparing Table 10 with Table 8 and Table 9, we
can observe a decrease in the TPR; i.e., as observed in the character-
wise TPRs. However, the difference between the tables is reduced
when the one-hop variances are considered. This shows that, in
the practical attack, most of the mispredicted characters are within
the one-hop distance of the correct character. This observation
gives some hints about the mispredicted characters, which further
reduces the search space.



Table 10: String-wise evaluation of key identification and word correction (practical attack). The predictions obtained from
identification (Random(R)/Selected(S)/E-mail(E)) and from correction (SSC/MT/NW) are compared with the ground truth.

Device BMK MBA
Method R S E SSC MT NW R S E SSC MT NW
TPR 0.769 0.762 0.761 0.848 0.709 0.734 0.792 0.758 0.680 0.790 0.709 0.734
TPR (1-hop) 0.921 0.933 0.930 0.959 0.883 0.878 0.949 0.912 0.877 0.918 0.883 0.878
NLD 0.217 0.215 0.192 0.122 0.234 0.214 0.195 0.210 0.258 0.169 0.234 0.214
NLD (1-hop) 0.073 0.060 0.056 0.032 0.093 0.098 0.047 0.070 0.098 0.066 0.093 0.098

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 0.560.85 0.69 1.00 0.64 0.67 1.00 0.50 0.82

0.86 0.900.92 0.78 0.85 0.80 0.75 0.77 0.77 0.83

0.77 0.930.38 0.62 0.70 0.81 1.00 0.94 0.97

0.92 0.690.50 0.80 0.70 0.41 0.94

(a) The character-wise TPR for the MBA keyboard.

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.890.85 0.77 0.88 0.90 1.00 0.86 1.00 0.33

0.86 0.830.62 0.65 0.67 0.89 0.95 0.86 0.50 0.67

0.70 0.870.58 0.75 0.80 0.90 0.40 0.94 0.62

0.75 0.881.00 0.50 0.33 0.75 0.78

(b) The character-wise TPR for the BMK keyboard.

Figure 8: The character-wise evaluation results for the practical attack.

Table 11: The cross-entropy changes for the practical attack.

Device Dataset Ideal Frequency Ours

MBA
E-mail 𝜖 14.02 1.19
Random 𝜖 3.58 1.29
Selected 𝜖 18.98 1.09

BMK
E-mail 𝜖 14.02 1.29
Random 𝜖 3.58 1.12
Selected 𝜖 18.98 1.18

6 LIMITATIONS AND FUTUREWORK
Despite the very promising results, which show the successful exe-
cution of SIA, this research is subject to several limitations which
we outline in the following. First, due to COVID-19 restrictions, this
study had to be performed on a limited number of test subjects. In
the future, we are going to perform the experiments onmultiple sub-
jects to show the applicability of the attack at scale—guided by the
robustness of the features employed, and the subject generalization
results provided in this study, we expect that the results will hold
on a large number of subjects. Second, although we demonstrated
the performance difference across different widely used keyboards,
the variety of the recording devices and keyboard models are lim-
ited. In our future work, we will utilize different smartwatch and
keyboard models, specifically the ones that are widely used. Third,
similar to the previous studies, the data is collected in a relatively
quiet environment (i.e., in a room with a wall adjacent to a public
street), when compared to a recording while actually on the street,
or at a café. Therefore, the effect of excessive background noise is
not considered in this study, which will be explored in the future.
Finally, although the same type of data is used for both of the attack
scenarios, the cellular network characteristics (and imperfections)
are not considered in this work. In our future work, we will examine

the effect of the potential cellular network problems on the record-
ings, including connection problems, latency, hot-cuts, etc. While
anticipating that those issues will minimally affect the underlying
principles of the attack, and the attack will still hold nevertheless,
quantifying that effect is an open direction.

7 CONCLUSION
In this work, we demonstrated a keylogging attack framework
through the acoustic emanations captured by a smartwatch—SIA.
We proposed a system and threat model supported by two plausible
attack scenarios. The threat model leverages the smartwatch micro-
phone as a recorder and collects data of the acoustic emanations
of a physical keyboard. By neutralizing the effect of background
noises, which vary depending on the environmental settings, we
lay a base for a robust identification framework. We then utilize
digital signal processing techniques to locate keystroke events in
data and extracted the most descriptive feature among the alter-
natives; MFCC. MFCC features are then scaled and forwarded to
the best performing learning technique (SVM) for identification.
Finally, we further increased our prediction accuracy using various
state-of-the-art NLP techniques. We performed two types of exper-
iments: user profiling and practical attack. With user profiling, we
are able to recover up to 98% of the typed text. For the practical
attack, we are able to recover up to 85% of the typed text.

We conducted our experiments on popular devices and verified
the potential privacy leakage. We believe the high accuracy and
the practicality of such an attack should be yet an alarming tale to
smartwatch users regarding the privacy issues introduced with the
integration of new technologies into our daily lives.
Acknowledgement. This work was supported by NRF grant num-
ber 2016K1A1A2912757, a seed grant from CyberFlorida, and a GPU
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