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ABSTRACT
In the past decade, the information security and threat
landscape has grown significantly making it difficult for
a single defender to defend against all attacks at the
same time. This called for introducing information shar-
ing, a paradigm in which threat indicators are shared in
a community of trust to facilitate defenses. Standards
for representation, exchange, and consumption of indi-
cators are proposed in the literature, although various
issues are undermined. In this paper, we rethink infor-
mation sharing for actionable intelligence, by highlight-
ing various issues that deserve further exploration. We
argue that information sharing can benefit from well-
defined use models, threat models, well-understood risk
by measurement and robust scoring, well-understood
and preserved privacy and quality of indicators and ro-
bust mechanism to avoid free riding behavior of selfish
agent. We call for using the differential nature of data
and community structures for optimizing sharing.

1. INTRODUCTION
With the emergence of new information and commu-

nication technology platforms, such as cloud computing,
mobile computing, social networks, and the Internet of
Things (IoT), the security landscape has become more
sophisticated in the past decade. What used to be an
unmotivated form of vandalism during the early days of
the Internet has become a diverse ecosystem of cyber-
crime, where providers and consumers come together to
achieve various end-goals and utilities. The persistence,
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complexity, size, and capabilities of today’s adversaries
are unbounded, and their threat does not only affect in-
dividuals or organizations, but also nations as a whole:
according to a recent study [32], direct and indirect costs
due to security breaches have costed the global economy
about $491 billion in 2014 alone.
The need for information sharing. Defending against
the unknown is a difficult task [6]. Accordingly, visi-
bility into the behavior and capabilities of adversaries
to form detection signatures is an essential first step
towards containing and defending against them, and
ultimately thwarting their harms [14]. On the other
hand, with the unprecedented complexity and size of the
threat ecosystem, no single defender can defend against
all attacks all the time. Even when facing attacks, de-
fenders need to have the right skills to recognize them
before performing defense efforts. With the skill gap on
the rise, visibility into attacks and malicious actors be-
comes a challenge. Thus, a coordinated solution based
upon the collective knowledge of multiple defenders is
required. In such a solution, multiple stakeholders share
information about security incidents observed and col-
lected from their security operations, with the hope that
such information would be useful to other stakeholders
in improving their security posture.
Information Sharing. Recently, information sharing
as a concept has emerged as a plausible solution to ad-
dressing the aforementioned problems. Threat informa-
tion sharing is utilized for efficiently and effectively de-
fending against emerging threats. One even went as far
as to say that “threat intelligence sharing is the only
way to combat the growing skills gap” [23]. In prac-
tice, information sharing is used to communicate opera-
tional security experience between a set of participants
in a sharing system with the hope that sharing would
1) enable participants to defend their systems against
ongoing attacks, and 2) improve their defense posture
by proactively addressing possible attacks even before
they target them.
Initiatives of information sharing. Information shar-
ing is not a theoretical idea, and there has been a lot of
work in the past on defining tools for representing in-
formation, or mechanisms for exchanging such informa-
tion between information sharing participants in shar-
ing communities. Information sharing also has been em-
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braced by various communities, and leaders in such com-
munity have created their own sharing exchange points,
where participants could deliver and retrieve the shared
raw data and annotated data (intelligence) from other
participants using standard application program inter-
faces (APIs): for example, Facebook has created Threa-
tExchange [9], and Verisign has created the IntelGraph,
among others. Such initiatives are not limited to the
private sector: the public sector initiated information
sharing in the US Department of Homeland Security’s
(DHS) Critical Infrastructure Cyber Information Shar-
ing and Collaboration (CISCP) program [1], which aims
to facilitate sharing of threat indicators between the pri-
vate and public sectors and vice versa.
Risks of sharing. The risk of not sharing information
is clear, which can be seen in more and more security
breaches using the same attack vectors and capabili-
ties, and re-examining the same vulnerabilities. Despite
the various benefits of information sharing for security,
even within a limited community of participants, shared
information without proper restrictions, however, may
leak a significant amount of information about the par-
ticipants and their operation context. For example, in-
formation shared for the good and security of the partic-
ipating community can be also used by the adversary to
learn about vulnerabilities of those participants. Also,
the same vulnerabilities can be used to test their ap-
plicability on other systems: with the lag in patching
vulnerabilities, the adversary will be able to utilize such
information for attacking other unpatched systems.

This risk of sharing can be mitigated in information
sharing by limiting the sharing community to highly
trusted participants, and informing potentially subjected
participants with the risk ahead of time, and certainly
before sharing such information with a broader com-
munity. However, limiting sharing to a highly trusted
community of participants in general security applica-
tions, while reducing risk of information exposure to un-
intended parties—including adversaries—may have an
equally damaging consequence: the security of today’s
systems with the presence of multiple stakeholders ex-
hibit the end-to-end principle of design characterized by
fate-sharing. For example, an unpatched system under
the control of uninformed player simply because that
player is not trusted (enough) can be used to attack
other systems under the control of the highly trusted
participants. Classification of participants’ risk in shar-
ing communities is provided in the literature, despite the
lack clarity on how such risk should be assessed [2]1.

Another scenario of sharing where negative conse-
quences may arise is privacy of individuals, and how
sharing may affect civil liberties [16]. The sharing of
public data that does not in of and itself identify in-
dividuals would serve the goal of information sharing
without any side effects on privacy. However, it is be-
lieved that privacy does not often go along well with

1Indeed, the work in [2] while being seminal in imple-
menting various ideas to realize an information sharing
system, it does not address how such risk should be as-
sessed, and how audit (for both security and privacy)
should be performed. It rather leaves to users to decide
which levels of risk they should assign to themselves

security: to be able to attribute attacks and perform
various security analyses, context information should be
present along with the threat indicators for further in-
ferences that would serve security. For example, along
with an end point (i.e., hostname, or IP address) an in-
cident indicator typically shared would include e-mail
addresses, URLs, etc., from which intelligence is gath-
ered, and security risk is assessed.

Privacy risks due to sharing are arguably mitigated by
a minimalistic approach, where only a limited amount
of data is collected and shared [2]. However, whether
such a minimalistic approach is being implemented in
today’s sharing paradigms or not is unclear. Further-
more, such an approach goes against security utilities.
We conjecture (with confidence based on various plau-
sible applications) that the additional context informa-
tion of the threat information shared is often times as
important as the indicators themselves. To this end,
a new approach to thinking privacy is required beyond
simple minimization. Such a technique could perhaps
utilize techniques for safeguarding all necessary infor-
mation to improve the security posture of a defender,
while ensuring the privacy of users, and confidentiality
of shared information.

Related to the community of trust problem above and
perceived risk of over sharing (whether it is for security
or privacy) is the problem of “free-riding”. As a result
of the perceived risk of sharing, some actors might be
actually joining communities of sharing, although not
sharing sufficient information to the community that
others can benefit from it [18, 19]. When a commu-
nity member joins and shares information there is al-
ways the risk of the shared information (e.g., about a
vulnerability) being leaked to the public (or even worse,
to the adversary), resulting in both monetary and rep-
utation loses. Such scenario leads to that some actors
might not truthfully share information due to their own
self-interests. While recent works have been focused on
addressing problem in a theoretical framework [38, 37],
assuming the level of participation as an indicator of
contribution in information sharing, there is no work
that extends beyond that to account for quality of in-
dicators. For example, an actor that contributes stale
indicators, indicators that are not timely to be utilized
operationally, while not considered a free-rider in the
typical sense, is not contributing sufficiently and mean-
ingfully to the missing of information sharing.

Believing in their beneficial aspects, the goal of this
study is to shed light on various issues associated with
information sharing, including understanding commu-
nity structures, use and adversary models, privacy is-
sues and quality of indicators for detecting free riding
in information sharing for actionable threat intelligence.
With standard sharing formats being widely advocated
as the next step towards effective sharing, we identify
the need for understanding privacy and risk. To under-
stand this risk in context, we identify a plausible sharing
scenario for which we define the adversary models asso-
ciated with both internal or external adversaries. We
introduce to the analysis the various sharing paradigms
under them. By identifying the need for security, we



advocate an approach that combines various aspects
of design techniques that exploit the differential nature
of data and community structure. Finally, we identify
quality of indicators as an important direction, suggest
various directions to assessing quality, and call the re-
search community to further the suggested directions.
Organization. The rest of this paper is organized as
follows. In section 2, we provide our broad vision of var-
ious directions for rethinking sharing towards actionable
threat intelligence. In section 3 we ellaborate on one of
directions, namely privacy. In section 4 we elaborate on
another issue, namely, quality of indicators. Concluding
remarks are in section 5.

2. RETHINKING SHARING
Realizing actionable intelligence by striking a balance

between utility of the information sharing systems and
other requirements, including privacy, security, and com-
plexity of the sharing system, is a non-trivial task. In
the following, we offer to rethink sharing by touching
on various fundamental issues and building blocks in
typical sharing systems. We identify the following is-
sues as rich areas that require further research and ex-
ploration, and offer various directions associated with
each of those issues in the subsequent sections. We of-
fer to understand use models (§2.1), sharing communi-
ties (§2.2), adversaries in sharing paradigms, including
both outsider and insider adversaries (§2.3), quantifying
understanding privacy in information sharing, towards
measurement

2.1 Defining the Use Model
Information sharing is inseparable from its use model

and scenario. Thus, understanding the various techni-
cal details of the use model of information sharing tools
and paradigms is essential to understanding various is-
sues, including security, privacy, and functional issues.
We offer to touch on various scenarios of use and issues
associated with in the following.

We classify the use models of information sharing for
threat intelligence into various types based on various
classification criteria, as follows:

• Structure: Based on the structure and format of
the shared information, we classify information
sharing tools into structured (standard) and un-
structured sharing models.

• Centralization: Based on whether a centralized shar-
ing entity (repository) exists or not, we classify
such models into centralized and decentralized sys-
tems.

• Scope and function: Information sharing tools can
be also classified based on their scope and func-
tion. While it is difficult to enumerate such scopes
and functions for unstructure sharing systems, struc-
tured systems that use standards are classified into
enumeration, scoring, languages, and transport mech-
anisms. More details are provided in §3.

Unstructured Sharing. The end goal of information
sharing is to realize a secure cyberspace by exchanging

operational security experience across multiple players
in a sharing community. Whether data used in the in-
formation sharing paradigm is structured or not is ir-
relevant to the main goal of information sharing. Tra-
ditionally, threat information concerning incidents has
been collected and shared as unstructured data, and ex-
changed via generic communication tools and services,
including electronic mail, or file transfer services. To-
day, and despite the rise of structure via standardized
formats and sharing schemas, proprietary formats are
widely used in by vendors in security market, making in-
teroperation between structures hard to achieve. While
it is easier to understand structured schemas, where var-
ious attributes are indicated, understanding the privacy
of sharing when using unstructured formats is not pos-
sible. To this end, in the rest of this work we focus on
structured sharing format, although we believe that un-
structured sharing also may have various privacy risks
that should be studied and addressed based on actual
assessments.
Sharing Using Standard Formats. For efficient use
of shared information in an automated manner, it is
desirable to share information in a standard and struc-
tured format. For that, there has been a lot of work in
the literature on understanding use scenarios, and de-
veloping the relevant schemas of structured formats for
information sharing. By understanding the type of data
in such information sharing formats, it would not only
be possible to understand the capabilities embodied in
the various sharing formats, but also to understand the
privacy risks in the abstract, and possibly develop tech-
nical solutions to address it. Examples of such sharing
paradigms include CVE, CCE, CWE, etc. CyBox, etc.
More on those schemas and formats are in §3.1.

2.2 Defining Communities
Sharing is defined around“communities of trust”, which

are the structure in which (potentially) threat informa-
tion is shared to reach a common goal of strengthening
the security posture of various participants in the com-
munity. Sharing today is defined based on the nature
of the participants (whether they are public or private
sector participants) into private-private, public-private,
and public-public. An example of the private-private
sector information sharing communities include partic-
ipants in the likes of ThreatExchange, or IntelGraph,
while an example of the public-private partnernships in-
clude DHS’s CISCP [1].

On the one hand, various of those communities are
vetted carefully to ensure that the information being
shared between the various participants in the sharing
system is safeguarded and not used to attack any partic-
ipant in the system. On the other hand, circumstantial
evidence (or even conclusive evidence [33]) has shown
that information being shared in the sharing system
could potentially be used as an attack vector against
another participant in the system. Understanding the
make up of the sharing community is perhaps a first
step to account for such risk.
Redefining communities. Redefining communities
structure by relaxing the meaning and assumptions of
“trust” in a way that would allow for a greater par-



ticipation of players in a sharing system results, thus
potentially resulting for improved defenses and security
awareness by a larger number of participants, would po-
tentially result in a higher risk of sharing. Such risk
is not only seen in increasing the security attack sur-
face, but potentially in disincentivizing major commu-
nity members from meaningful and sharing of quality
information that could result in actionable intelligence.
Understanding how relaxing the definition of the com-
munity would affect both utility of the sharing system
and the risk of sharing is to be considered further in
light of actual and measurable risk.
Privacy-based community definition. So far, com-
munities have been defined for their trustworthiness with
respect to their risk awareness, or for utilizing the vari-
ous tools and paradigms of information sharing, but not
understood with respect to privacy. Thus, we believe
it is a worthwhile to incorporate privacy as a metric
(along with other metrics of risk or in isolation) as a
criteria for defining communities. Furthermore, techni-
cal solutions that take into account a clear definition of
privacy-awareness and its presence (or lack) in a certain
community (or players in a community) could be further
optimized to suite the underlying assumptions of such
community.

2.3 Redefining Adversaries
Security and privacy of communication and computa-

tion protocols are often analyzed under various settings
of adversaries. Adversaries are characterized by capa-
bilities under which security and privacy definitions are
formalized, and security and privacy guarantees (in light
of a formally defined advantage of the adversary) are
outlined. With the complexity and involved nature of
information sharing paradigms, and the end-goal that
they try to achieve, we argue that both insider and out-
sider (external) adversaries are relevant to studying the
information sharing in the field. In the following, we
elaborate on both forms of threat, and open directions to
address in order to realize a formally-backed exchange.
External adversary. Outsider adversaries in the con-
text of information sharing are defined broadly as ad-
versaries who are not part of the system or protocol
being analyzed, and they include various forms of ac-
tors, ranging simply from a passive eavesdropper [5, 12]
or honest-but-curious [21] to the more advanced active
adversary–an adversary that could potentially interfere
with communication or manipulate computations in or-
der to affect the security of the system, or breach the
privacy of a participant. This adversary can be a single
malicious actor, or multiple of them. The main qualifier
of this adversary, however, is that it is not included in
the set of participants of the system.

Examples of instances of such adversary include sim-
ple observers on the communication channel between
participants in the information sharing system, with
their risks being mitigated by the various in-place cryp-
tographic techniques. Another example of the observer
could be a publicly shared infrastructure, like cloud,
where the cloud provider may have a great incentive
not to act maliciously, but would be interested in know-
ing some details about the information being shared and

hosted in the cloud. While auditing and strict policies
are one direction to tame this adversary, relinquishing
trust and enforcing a stronger form of audit—perhaps
by utilizing cryptographic approaches, is yet another
method. We elaborate on such methods in the sub-
sequent sections.

The same example above of cloud could be also viewed
as a totally untrusted, and potentially malicious, thus
being an instance of the malicious adversary. Such state
of being malicious could be a property of the cloud
itself; i.e., the cloud provider is untrusted, or due to
other externalities, e.g., the cloud is being compromised
by an outsider through, for example, a malware cam-
paign. The way that such adversary is realized is irrele-
vant to understanding the privacy of the various sharing
paradigms, although the capabilities of such adversary
are.
Insider adversary. Motivated by the various risks
that potentially could be the result of misuse of the
information shared an information sharing system [33],
another adversary model that needs to be formalized is
the insider adversary. Whereas typical threats in vari-
ous systems include the external adversary highlighted
above, the nature of information sharing systems high-
light that insider adversaries are real risks. Such ad-
versaries could be in multiple forms, and stem out of
various system and operation realities. For example,
such adversary could be another participant in the in-
formation sharing system acting maliciously to reach a
certain objective, or an individual acting on behalf of a
participant in the system.

Understanding how information sharing is prone to
such class of adversaries is necessary to enable sharing.
Furthermore, such adversary could perhaps be studied
well under other notions of risk associated with infor-
mation sharing and definition of communities of trust,
their risk and privacy awareness.

2.4 Measurements
One may argue that the problem at hand is not any

different from any other privacy problem due to data
exposure, thus thinking of the privacy issues in infor-
mation sharing for threat intelligence in the abstract
is meaningful and the way this problem should be ad-
dressed given the large number of use scenarios.

We argue that while thinking of this problem in the
abstract is worthwhile, also approaching the problem
with technical solutions that stem from the actual size
and shape of privacy exposure in the various informa-
tion sharing paradigms is equally important. A first
step towards understanding the actual size and shape
of exposure is facilitated by an actual quantification of
exposure in real data. However, one cannot quantify
what he cannot measure, thus measuring data exposure
in the various sharing paradigms, under the various set-
tings of threat models or in isolation, is necessary and
important for understanding the problem in practice. In
particular, measurements would give analytical and ab-
stract studies context that highlight the actual meaning
of findings related to indicators, privacy, and risk.

Measuring privacy leakage in the various paradigms
of sharing and under various use models is not an easy



task. We argue that privacy cannot be understood in
the abstract, and without a clear context of the shar-
ing [30]. Even worse, what constitute a privacy con-
cern to one individual might not be of value to another
individual in the same context. Thus, a first step to
measuring privacy leakage in information sharing is to
formalize what we mean by privacy, what are the pri-
vate attributes that should be treated with care and
hidden from adversaries and other (potentially honest-
but-curious) participants, and how sensitive (with re-
spect to their privacy value) alone or when associated
with other data about the subject.

2.5 Quality and Privacy
Quality of the indicators and privacy are at odds: in

order to provide the highest accuracy in security opera-
tions, access to raw and highlight annotated indicators
that can be of use for actionable intelligence is necessary.
On the other hand, having such raw indicators with-
out any sanitization or masking of any of their contents
could potentially leak the privacy of entities associated,
or reveal sensitive information about the operation con-
text where they are collected, directly or indirectly. To
this end, another direction to pursue is by answering the
following question: How much quality of indicators
should be given up to satisfy various privacy no-
tions and guarantees.

This question is not easy to answer: there are various
competing and varying notions of privacy, and system-
atically and formally analyzing and modeling how they
are met (or violated) at various levels of exposure of
indicators. Before even approaching this question, it
would be necessary to formalize metrics for evaluating
the quality of the indicators.

3. UNDERSTANDING RISK IN SHARING
There is a clear risk of sharing, whether it is pri-

vacy or security. Understanding such risk is the first
step towards providing practical solutions to the vari-
ous aspects of risk. In the following, we elaborate on a
road-map for understanding risk in information sharing,
mainly emphasizing privacy risks. In §3.1 we review the
various sharing schemes. In §3.2 we highlight risks of
information sharing through various measurements and
examples from anonymized sharing datasets. In §3.3 we
argue for a privacy leakage assessment design that takes
into account the various issues raised on the risk of the
sharing paradigms. In §3.4 we advocate architectural
design that takes into account privacy and community
structure as a design principle.

3.1 An Overview of Sharing Standards
As noted previously, there are various standards for

information sharing that are used by government and in-
dustry to automate and structure the exchange of infor-
mation within an organization and between autonomous
systems and organizations. We can classify these shar-
ing standards into four main categories:
Enumerations. Standardized enumerations of plat-
forms, configurations, software weaknesses, and attacks.
Examples include Common Configuration Enumeration

(CCE), Common Weakness Enumeration (CWE), and
Common Vulnerabilities and Exposures (CVE). A list-
ing of such enumeration techniques is shown in Table 1.
Scoring systems. Standards to assess the severity
of computer system-related issues and assigning scores
to each one, allowing responders to prioritize remedi-
ation tasks. Common standards that fit this category
include Common Vulnerability Scoring System(CVSS)
and Common Weakness Scoring System(CWSS). A list-
ing of such scoring systems is shown in Table 2.
Languages. Those sharing standards are intended for
encoding high-fidelity information about systems in a
manner that facilitates parsing this information in soft-
ware tools and converting them to human-readable for-
mats. This includes formats like Incident Object De-
scription Exchange Format (IODEF) and Open Vulner-
ability and Assessment Language (OVAL). A listing of
such standards is shown in Table 3.
Transport. Those standards represent Inter-network
communication formats to facilitate exchange of infor-
mation between hosts. Standards such as Real-time
Inter-network Defense (RID) and Trusted Automated
eXchange of Indicator Information (TAXII) fit this cat-
egory. In the following, we elaborate on the different
category of standards and how they are used to auto-
mate information sharing within organizations. A list-
ing of such standards is shown in Table 4.

3.2 A Privacy Risk in Standards
In this section, we highlight the various risks associ-

ated with information sharing. For that, anonymized
examples depicted from sharing operations utilizing the
standard schemas for information sharing. For illustra-
tion, we label the leaking fields with different colors de-
pending on class of data being exposed, specifically, we
designate red color for PII fields, light blue for non-PII
sensitive fields (e.g., related to business context), and
yellow for inference-leaking fields.

Legend:

Inference Sensitive PII

In the following, we highlight such risk through various
examples obtained from real shared information.

1 <IncidentID name="csirt.example.com">189493 </
IncidentID >

2 <ReportTime >2001-09-13T23:19:24+00:00</ReportTime >

3 <Assessment><Completion="failed" type="admin"
/></Assessment>

4 <ContactName >Example.com CSIRT</ContactName >

5 <Email >contact@csirt.example.com</Email>

6 <Address >192.0.2.200</Address >

7 <Address >192.0.2.16/28</Address >

8 <Service \hlcyan{ip_protocol="6"}>

9 <Port>80</Port>

10 <Expectation action="block-host" />

11 <DateTime >2001-09-13T18:11:21+02:00</DateTime >

12 <Item>GET /default.ida?XXXXXXXXXXXXXXXXXXX’</Item >

13 <DateTime >2001-09-14T08:19:01+00:00</DateTime >

14 <Description >sent to constituency-con-
tact@192.0.2.200</Description>

Figure 1: Annotated private, sensitive, and confidential
information (inference) information in IODEF.

1 <IncidentID name="csirt.example.com">59334</
IncidentID >

2 <ReportTime >2006-08-02T05:54:02-05:00</ReportTime >

3 <Assessment><Impact type="recon" completion="succeeded"
/></Assessment>

4 <ContactName >CSIRT for example.com</ContactName >

5 <Email >contact@csirt.example.com</Email>

6 <Telephone >+1 412 555 12345</Telephone >

7 <Contact role="tech" type="person" restriction="need-to-
know">

8 <ContactName >Joe Smith</ContactName >

9 <Email >smith@csirt.example.com</Email>

10 <!-- Scanning activity as follows: 192.0.2.1:60524 >
192.0.2.3:137 192.0.2.1:60526 >192.0.2.3:138
192.0.2.1:60527 >192.0.2.3:139 192.0.2.1:60531 >
192.0.2.3:445 -->

11 <!-- Scanning activity as follows: 192.0.2.2 >
192.0.2.3/28:445 -->

Figure 2: Annotated private, sensitive, and confidential
information (inference) information in IODEF

Figure 1: Annotated private, sensitive, and confidential
information (inference) information in IODEF.



Table 1: Enumeration Standards
Name Description
Common Vulnerability Exposure Standard identifiers for publicly-disclosed cybersecurity vulnerabilities.
Common Weakness Enumeration Standard identifiers for software weaknesses or flaws.
Common Attack Pattern Enumeration and Classification Enumeration of cyber-attack techniques.
Common Configuration Enumeration Enumeration of configurations covering various platforms and controls ref.
Common Platform Enumeration Standard identifiers for platforms, operating systems and applications.

Table 2: Scoring System Standards
Name Description
Common Vulnerability Scoring System (CVSS) Standard rating for calculating a score on severity of vulnerabilities.
Common Weakness Scoring System (CWSS) Risk rating of software vulnerabilities considering access complexity.

IODEF worm report. An example of a CSIRT re-
porting an instance of the Code Red worm, encoded in
IODEF, is depicted in Figure 1 (notice that a substan-
tial part of the document is omitted, and only essential
information is shown for demonstration). As shown, the
document contains contact information (name, registry
handle, email) for the constituent responsible for the
incident report. This type of information may become
personally identifiable in the case when contact informa-
tion of a particular individual is used. The document
also includes other fields that are less sensitive. This
includes reporting time, record datetime, IP addresses
of the node or network that were targeted in the attack,
as well as the targeted service port number.

In this example, the Code Red worm attempted to
target the HTTP port for a host machine with an IP
address of 192.0.2.200. The raw HTTP request sent by
the worm is also captured in the reporting. The worm
intended to fiddle with the web server and the request
was presumably an attempt for a buffer overflow attack
in order to escalate to administrative privileges. Con-
sequently, if the worm was successful in gaining access
to the machine the information captured from the raw
HTTP request may become highly sensitive. However,
we know from the “assessment” field in the document
that it was a failed attempt. Another example, with
some information masked, based on the same standard
is shown in Figure 2.
MAEC package dynamic triage. An example to
demonstrates how a package using the MAEC standard
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192.0.2.1:60527 >192.0.2.3:139 192.0.2.1:60531 >
192.0.2.3:445 -->

11 <!-- Scanning activity as follows: 192.0.2.2 >
192.0.2.3/28:445 -->

Figure 2: Annotated private, sensitive, and confidential
information (inference) information in IODEF

Figure 2: Annotated private, sensitive, and confidential
information (inference) information in IODEF

can be used to capture multiple dynamic analysis tool
outputs for a malware instance is shown in Figure 3—
shortened for summary only. It builds upon static triage
example that shows the actions and details of the pro-
cess tree associated with the instance. As depicted, the
packaged output has few fields that may be considered
sensitive, such as the domain name of the command &
control server (reallybadguy.com; only for illustration).
Exposing the domain name server to entities outside of
the trusted community may inform the attacker about
the detection of their malware instance, and thus link
the malware reported by the subject with a campaign.

In addition to exposing the domain name field, the
output also includes a field about bundle actions that

Table 3: Language Standards
Name Description
Malware Attribute Enumeration and Characterization
(MAEC)

Language to describe malware characteristics, behavior, and actions.

Open Vulnerability and Assessment Language (OVAL) Language to express machine state, writing assessment tests and reporting
results.

Incident Object Description Exchange Format (IODEF) Format to define computer and network security-related incidents.
Extensible Configuration Checklist Description Format
(XCCDF)

Language for writing security checklists, benchmarks and other related
documents.

Structured Threat Information Exchange (STIX) Format to express information about cyber-security threats.

Table 4: Transport Standards
Name Description
Real-time Inter-network Defense (RID) Transport standard that facilitates sharing of incident-handling data, typ-

ically stored in IODEF-formatted documents.
Trusted Automated eXchange of Indicator Information
(TAXII)

Standard that defines protocols and messages to exchange cyber-threat
information.

Simple Object Access Protocol (SOAP) Messaging framework typically used in implementation of web services.
Reputation Services (Repute, DKIM) Standards that define query methods for reputation data services.



are associated with the malware and the status of these
actions. In this example, the malware successfully cre-
ated a file on the host filesystem but failed to resolve
the DNS for the command control server.
MAEC package configuration parameter. An-
other example using MAEC, which demonstrates how
to specify configuration parameters related to a malware
instance characterized by a malware subject, is shown
in Figure 4. The configuration parameters are captured
for tools such as remote access tools or reverse shell util-
ities and may include mutual exclusions, passwords, or
IDs, for example. As shown below, a password value is
specified as a configuration parameter. This may not be
highly critical for malware samples that are password-
protected, but it can be if the credentials provided in
these fields are for accessing real sensitive documents or
remote services.

1 <FileObj:File_Name >dg003_improve_8080_V132.exe</

2 <cyboxCommon:Type ...>MD5</cyboxCommon:Type>

3 4EC0027BEF4D7E1786A04D021FA8A67F

4 <maecBundle:Action id=maec-example-act-19 context=Host
action_status=Success>

5 create file</cybox:Name>

6 <maecBundle:Action id=maec-example-act-15 context=Network
action_status=Fail>

7 <cybox:Name xsi:type="maecVocabs:
DNSActionNameVocab -1.0">send dns
query</cybox:Name>

8 <URIObj:Value>reallybadguy.com</URIObj:Value>

Figure 3: MAEC for dynamic triage

1 <FileObj:File_Name >dg003_improve_8080_V132.exe</

2 <cyboxCommon:Type ...>MD5</cyboxCommon:Type>

3 4EC0027BEF4D7E1786A04D021FA8A67F

4 <maecBundle:Action id=maec-example-act-19 context=Host
action_status=Success>

5 create file</cybox:Name>

6 <maecBundle:Action id=maec-example-act-15 context=Network
action_status=Fail>

7 <cybox:Name xsi:type="maecVocabs:
DNSActionNameVocab -1.0">send dns
query</cybox:Name>

8 <URIObj:Value>4.test.3322.org.cn</URIObj:Value>

Figure 3: MAEC for dynamic triage

IDs, for example. As shown below, a password value is
specified as a configuration parameter. This may not be
highly critical for malware samples that are password-
protected, but it can be if the credentials provided in
these fields are for accessing real sensitive documents or
remote services.

1 <FileObj:File_Name >Investor Relations
Contacts.doc\hlcyan{MD5}
<cyboxCommon:Simple_Hash_Value>\hlcyan
{875767086897 e90fb47a021b45e161b2}\
hl{password}\hl{wwwst@Admin}

Figure 4: An example of information leakage using
MAEC for information sharing for configuration param-
eters

Other countless examples that demonstrate various
levels of risk to information that falls under one or more
of the categories above exist. By showing those exam-
ples above, we hope to trigger interest in the commu-
nity of pursuing research on understanding the level of
leakage (and its context) for various of those sharing
schemes in various application contexts.

3.3 Privacy Leakage Assessment
With a clear understanding of what constitute at-

tributes that would result in privacy violation, the pres-
ence or absence of such attributes in one instance of
sharing could be used to assess privacy leakage in to-
tal. Informally speaking, we define a privacy leakage
metric, a single number associated with instances of
standards when fully utilized to quantitively analyze the
existing (potentially) private information in them. This
metric can then be used to obtain numbers for each field
in the schema of the standard, that could be aggregated
to reflect a single score on the privacy level of other
words.

An example scoring system that assigns real values to
various pieces of information in a sharing standard is as
follows (just an example).2

• Score 0: Public data or non-leaking
2The basic question we concern ourselves with is the
creation of such privacy-oriented scoring system rather
than realizing an exact numbering that would suite all
applications: various information sharing applications
weigh privacy di↵erently, and may adjust individual
scores di↵erently.

• Score 1: Inferential data

• Score 2: Sensitive data

• Score 4: PII data

The aggregate score is simply a summation of the
scores for each field in the data schema of the standard.
This is, let the schema of a standard have attributes
a1, a2, . . . an. Based on the scoring system above, we
generate scores s1, s2, . . . , sn, which correspond to the
various attributes. Using scoring system, we then calcu-
late a single score for the standard, namely s =

Pn
i=1 si.

Notice that the weights on the scoring metric can be
modified depending on the level of emphasis on each
class of data. In this example, one point is given for an
inferential field, two points for a sensitive field, and four
points for a PII field. Since PII is protected through reg-
ulations, we give more weight for a PII field to be twice
as significant as sensitive field and four times as signifi-
cant as inferential field. Interpreting the score is trivial;
the standard is considered highly privacy-leaking when
the score number is large and more privacy-friendly when
the number is small.

Table 5 shows privacy leaking fields in schemas of var-
ious information sharing standards using and following
a similar analysis to the one in the previous section.
As can be seen, out of the four classes of standards the
languages class have leaked the most personally identifi-
able information fields, particularly CyBox with a score
of 56, STIX with a score of 36 and XCCDF with a score
of 38. We notice that those standards embody various
standards, and are inclusive of a large schema (with a
large number of fields and attributes that cover mul-
tiple applications). Some standards have leaked fields
that are considered sensitive but not PII, such as times-
tamps, host attributes like IP addresses, and organiza-
tional information. Other standards, such as enumer-
ation standards, have mostly inference leaks related to
vulnerability indices and platform identification num-
bers, which could potentially utilized and misused by
an adversary.

Notice also that we do not advocate a specific scor-
ing system for the risk assessment, since such scoring is
context dependent. For example, an organization that
views confidential information, information to do with
business-related matters, might score confidential and
inferential information higher than PII, since PII is not
important to their security operation.

Figure 4: Information leakage when using MAEC for
information sharing for configuration parameters.

Other countless examples that demonstrate various
levels of risk to information that falls under one or more
of the categories above exist. By showing those exam-
ples above, we hope to trigger interest in the commu-
nity of pursuing research on understanding the level of
leakage (and its context) for various of those sharing
schemes in various application contexts.

3.3 Privacy Leakage Assessment
With a clear understanding of what constitute at-

tributes that would result in privacy violation, the pres-
ence or absence of such attributes in one instance of
sharing could be used to assess privacy leakage in to-
tal. Informally speaking, we define a privacy leakage
metric, a single number associated with instances of
standards when fully utilized to quantitively analyze the
existing (potentially) private information in them. This
metric can then be used to obtain numbers for each field
in the schema of the standard, that could be aggregated
to reflect a single score on the privacy level of other
words.

An example scoring system that assigns real values to
various pieces of information in a sharing standard is as
follows (just an example).2

• Score 0: Public data or non-leaking

• Score 1: Inferential data

• Score 2: Sensitive data

• Score 4: PII data

The aggregate score is simply a summation of the
scores for each field in the data schema of the standard.
This is, let the schema of a standard have attributes
a1, a2, . . . an. Based on the scoring system above, we
generate scores s1, s2, . . . , sn, which correspond to the
various attributes. Using scoring system, we then calcu-
late a single score for the standard, namely s =

∑n
i=1 si.

Notice that the weights on the scoring metric can be
modified depending on the level of emphasis on each
class of data. In this example, one point is given for an
inferential field, two points for a sensitive field, and four
points for a PII field. Since PII is protected through reg-
ulations, we give more weight for a PII field to be twice
as significant as sensitive field and four times as signifi-
cant as inferential field. Interpreting the score is trivial;
the standard is considered highly privacy-leaking when
the score number is large and more privacy-friendly when
the number is small.

Table 5 shows privacy leaking fields in schemas of var-
ious information sharing standards using and following
a similar analysis to the one in the previous section.
As can be seen, out of the four classes of standards the
languages class have leaked the most personally identifi-
able information fields, particularly CyBox with a score
of 56, STIX with a score of 36 and XCCDF with a score
of 38. We notice that those standards embody various
standards, and are inclusive of a large schema (with a
large number of fields and attributes that cover mul-
tiple applications). Some standards have leaked fields
that are considered sensitive but not PII, such as times-
tamps, host attributes like IP addresses, and organiza-
tional information. Other standards, such as enumer-
ation standards, have mostly inference leaks related to
vulnerability indices and platform identification num-
bers, which could potentially utilized and misused by
an adversary.

Notice also that we do not advocate a specific scor-
ing system for the risk assessment, since such scoring is
context dependent. For example, an organization that
views confidential information, information to do with
business-related matters, might score confidential and
inferential information higher than PII, since PII is not
important to their security operation.

3.4 Architectural Solutions for Privacy
A first step towards ensuring privacy is understanding

the risk highlighted earlier through the actual sharing

2The basic question we pose is the creation of such
privacy-oriented scoring system rather than realizing an
exact numbering that would suite all applications: var-
ious information sharing applications weigh privacy dif-
ferently, and may adjust individual scores differently.



Table 5: Privacy leaking fields in schemas of various information sharing standards and example risk assessment using
the indicated scores for the various leaked attributes. Scores are for illustration only.

Standard Cat-
egory

Standard Privacy Leak

PII (4) Sensitive (2) Inference (1) Score
Enumeration CVE CVE-ID 1

CWE CWE-ID 1
CAPEC Submission:Source, Organization,

Date
Relationship:ViewID, Tar-
getForm, Nature, TargetID

10

CCE cce:modified reference cce:cce id, cce:platform 4
CPE cpe:title cpe:platform id 3

Scoring Sys-
tems

CVSS 0

CWSS 0

Languages OVAL contributor timestamp, submitted:date, sta-
tus change, affected:family, platform,
title, description

definition, reference 20

XCCDF Benchmark:metadata,
test:identity

cpe2:platform-specification, platform,
status, test:organization, test:profile,
test:target, test:target-address,
test:target-facts, test:target-id-
ref, test:start-time, test:end-time,
test:fact

affected:family, platform,
benchmarkIdType, re-
solved, test:authenticated,
test:priviledged

38

MAEC CommentType:author ArtifactObj:Raw Artifact, maecPack-
age:Configuration Parameter, maec-
Package:Name, maecPackage:Value,
maecBundle:Collections.timestamp,
AnalysisType:start datetime, Anal-
ysisType:complete datetime, Analy-
sisType:complete datetime, Analy-
sisType:lastupdate datetime, Anal-
ysisType:Comments, Comment-
Type:timestamp

maecBundle:Action,
maecBundle:CVE

26

CEE time, host, dst, ipv4, ipv6, src, port status 15
IODEF Contact, IncidentSource DetectTime, StartTime, EndTime,

ReportTime
Assessment, IncidentID, Al-
ternativeID

19

STIX stixCommon:Identity, stix-
CiqIdentity:Specification,
xnl:PersonName, stixCom-
mon:Name, xpil:Address,
xpil:ElectronicAddressIdentifier,
xpil:ContactNumber

timestamp, xpil:OrganizationInfo,
xnl:OrganisationName,
xpil:Nationalities/xpil:Country/xal:NameElement

36

Cybox EmailMessageObj:Recipient,
EmailMessageObj:From, Ad-
drObj:Address Value, EmailMes-
sageObj:Raw Header, Contrib-
utors, ContributorType: Role,
Name, Email, Phone

HTTPSessionObj:Value, URI-
Obj:Value, PortObj:Port Value,
ArtifactObj:Raw Artifact,
EmailMessageObj:Date,
X509CertificateObj:Subject,
X509CertificateObj:Issuer, Time-
Type: Start Time, End Time, Pro-
duced Time, Received Time, Observa-
tion Location, Observable Location,
ContributorType:Organization, Date,
Contribution Location

65

paradigms. Using a concrete notion of privacy, it would
be then required to provide a technical solutions to meet
such privacy notion, while enabling queries on the data
shared using the various standards. In the following,
we advocate architectural design that takes privacy and
community structure into account for actionable intelli-
gence through sharing. We start by reviewing the var-
ious notions of privacy, and then highlight the design
space that could be exploited to ensure privacy.

3.4.1 Privacy Notions
Over the years, there has been various attempts in the

literature to define the notion of the privacy, and provide
techniques to ensure it. In the following, we review three
notions that are of relevance, and advancing them could
potential aid addressing the problem of privacy in the
domain of information sharing: the k-anonymity, the
l-diversity, the differential privacy
k-anonymity. Sweeney [36] formulated the concept
of k-anonymity as an attempt to solve the problem of
anonymizing person-specific field-structured data with
formal guarantees while still producing useful data. A
dataset is said to have the k -anonymity property if the
information for each person in the dataset cannot be
distinguished from at least k-1 individuals. Two com-
mon methods are available for achieving k -anonymity,
namely supression, where certain values of the dataset
attributes are left blank, and generalization, where indi-

vidual values of attributes are replaced by with a broad
category, typically a range of values. Meyerson and
Williams [25] demonstrated that optimal k -anonymity
is an NP-hard problem, however heuristics given by [35]
often yields effective results. K-anonymization is not
a good method to anonymize high-demensional dataset
and have performed poorly for certain applications, such
as mobile phone datasets [3].
l-diversity. As an extension to k -anonymity, Machanava-
jjhala et al. proposed l-diversity [22], a model that han-
dles some of the weaknesses in the k -anonymity model
by increasing group diversity for sensitive attributes in
the anonymization mechanism. The l-diversity model
addresses the problem in k -anonymity where sensitive
attributes within a group exhibit homogeneity. That is,
when all values for a sensitive attribute within records
in a group are identical, making it easily identifiable.
Furthermore, the l-diversity is claimed to be resistent
against background knowledge attack, whereby an ad-
versary gains information through side-channel means
to reduce the set of all possible values for the sensitive
attribute.
Differential Privacy. Dwork introduced the notion of
ε-differential privacy that provides a definition of pri-
vacy in statistical databases. It provides rigorous guar-
antees against what an adversary can infer from learn-
ing the results of some randomized algorithm. In other
words, an algorithm that statisfies differential privacy



will not alter the distribution of the output of query-
ing a database regardless whether a particular entry is
present or absent from the database. This notion has
become an increasingly popular area of research in terms
of both theoretical analysis and practical instantiations.
Kairouz et al. [17] have proposed a composition theo-
rem for differential privacy that characterize the level of
overall privacy degradation as a function of the number
of queries based on hypothesis testing. McSherry and
Talwar [24] have studied the application of differential
privacy to digital goods auction where participants are
incentivized to be honest. Xiao et al. [41] developed
data publishing technique based on wavelet transforms
that ensures differential privacy while maintaining ac-
curate answers for range-count queries.

3.4.2 Redesigning Sharing
As we highlighted so far, sharing is a complex func-

tion, which should take into account various issues, in-
cluding the structure of the community of trust, the fi-
nal objective of sharing, and (as advocated in this work)
privacy as an additional measure.

One way to deal with information shared through in-
formation sharing schemas and paradigms as private,
in its entirety, and provide technical solutions that can
address them accordingly by enabling computations on
private data. Such computations may include aggre-
gates (private statistics [20, 31, 4]), set membership
(private set operations [21, 8]), among others. Tech-
niques for performing such computations may include
homorphoic encryption [7, 13, 34, 10, 39] or secure mul-
tiple party computation[11]—among other techniques
and variants.

All of those techniques, when applied to the sheer
volume of shared information through the information
sharing paradigm, and including simple techniques like
k-anonymity and l-diversity highlighted earlier, yield
computationally inefficient solutions. To this end, a
practical solution that is aimed towards efficiency should
take into account the differential nature of information
being consumed through sharing paradigms, as well as
the differential nature of community structures in shar-
ing systems.

One way to achieve efficiency is to consider privacy
and risk as highlighted in this paper as an optimization
parameter for sharing designs. Taking such parame-
ter into account, it is potentially possible to reduce the
size of the data to be processed in a privacy-preserving
manner. For example, one could split a given schema
of information sharing tool into multiple schemas, based
on the classification of the features and attributes of the
given sharing standard. As a result, expensive compu-
tations that require advanced cryptographic techniques,
or are geared towards achieving one of the aforemen-
tioned privacy notions—e.g., adding noise for differen-
tial privacy, or dummy items to ensure l-diversity and
k-anonymity—could be tolerated on a small subset of
attributes of the information being shared, whereas effi-
cient computations could be performed on the raw and
plain information that does not have any privacy, sen-
sitive, or confidential markers.

Privacy is not the only optimization parameter that

could be taken into account, but also the structure of the
community of trust. For example, highly homogenous
and trusted communities, e.g., a result of public-public
partnership, could get away without implementing the
partitioned architecture for optimization, but rather us-
ing minimization (i.e., for what is being shared, and for
how long) on the raw data, thus achieving a higher ac-
curacy, and better efficiency.

Architectural innovation in information sharing is re-
quired to improve practicality. Such innovation is facili-
tated by the differential nature of data and sharing com-
munities, and we argue that they should be taken into
to realize efficient sharing solutions. However, to take
them into account, further research would be required
for understanding the hidden costs in implementing such
architecture, the actual trade-off provided by such split
architecture, and how to perform complex queries and
function (the ultimate purpose of information sharing)
on such split architecture, also in a privacy preserving
manner.

4. QUALITY OF SHARING
So far we have focused on the issue of privacy associ-

ated with the sharing, as well as the threat of sharing
due to poorly understood communities of trust, which
deserve further considerations. Another important re-
search issue in the context of information sharing for
actionable intelligence is the quality of shared informa-
tion. Without high quality of shared information, no
actionable intelligence can be obtained. Unfortunately,
this issue is not well understood in the literature, and
requires further exploration by identifying meaning of
quality, and basic methods and tools for assessing it.

We believe that the quality of indicators is of paramount
importance to the end-goal of information sharing: a
timely indicator, like a source of attack, could be used
to defend against an emerging attack, unlike a stale indi-
cators that could be hardly used for postmortem anal-
ysis. Thus quality of indicators is a central issue in
information sharing, and requires further attention for
realizing the proper definitions, tools for quantification,
and incentives for improvement. Little work, however,
has been done in the literature on understanding this
central notion.

In section 2.5, we hinted on the potential correlation
between the quality of indicators and privacy. How-
ever, privacy is not the only factor that affects the qual-
ity of indicators (albeit perhaps negatively, when pri-
vacy of indicator is ensured). Indicators are often time-
sensitive, and time is another way to assess the quality
of indicator. Finally, a meaningful annotation and la-
bel of the indicator is another potential assessor of the
quality of the indicator.

How to assess the value and quality of an indicator
is a nontrivial task: if a consumer in the information
sharing community knew the information provided to
him through the sharing community, he would not need
the sharing of the data in the first place.

One way to deal with the quality of indicators is to
use historical information provided by various commu-
nity members as a metric for their quality. A commu-



nity member that provided information that turned to
be useful and timely in the past could be annotated as
a quality indicators provider, and vice versa. However,
such approach for determine the quality of indicators
would fall short in multiple aspects. First, it assesses
providers of indicators, rather than individual indica-
tors. Second, certain community members might be well
known for certain indicators, e.g., domain names, and
other indicators, e.g., binaries, and taking the average
of both indicators contributed by them might penalize
them, thus not allowing community members to benefit
from the (partially) valuable indicators they provide. A
possible technique to overcome this shortcoming is to
assess community members on various types of indica-
tors, rather than giving them a single score.

However, even with such consideration, scoring is still
for a coarse grained feature of the community member.
A scoring that considers history of the community mem-
ber as a whole, or per class of indicators, and does not
assign meaningful scores to individual indicators, is less
meaningful. Individual indicators could be more im-
portant than the reputation or general quality of the
community member, as they are ultimately consumed
by the various community members, and their quality
indicates the effectiveness of information sharing.

Recent advances in machine learning and applications
to security could be a fruitful direction to answer this
question [15, 40, 27, 28, 29, 26] in two ways. First, indi-
vidual indicators, like a label of malware sample, could
be easily vetted through other streams of labels by other
vendors [28]. Second, labels of indicators, even that are
not known to a consumer, could be regenerated by ex-
trapolation, and using machine learning techniques and
underlying features of the indicator if the consumer of
the indicator had prior samples with the same (or sim-
ilar label) [27]. Exploring how machine learning could
be used to assess the quality of indicators is still an open
direction that calls for further investigation.

5. CONCLUDING REMARKS
This paper provides a roadmap of issues that need

to be explored in order to realize efficient and effec-
tive information sharing paradigms for actionable in-
telligence. With the evolution of the threat and secu-
rity landscape, no single defender will be able to defend
against all threats alone, calling for the utilization of
sharing paradigms. However, in order to utilize such
paradigms a finer understanding of the various issues as-
sociated with sharing is required, including, but not lim-
ited to, the underlying community of trust, threat and
use models, and privacy highlighted through measurable
contexts from various sharing standards and datasets.
We argue that utilizing the differential nature of data
and communities of trust could be nicely utilized as a
feature for optimizing the overhead of sharing, the role
that machine learning could play in understanding and
assessing the quality of indicators.
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