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Abstract—Many security problems in distributed systems
are challenging by nature, and are caused by the lack of
trust in such systems. There has been a recent direction in
solving such problems by relying on the trust fabric and
the wealth of algorithmic properties in social networks.
For example, the Sybil attacks, in which a node generates
multiple identities with the intention to use these identities
as that node is multiple nodes, are addressed using social
networks: a single node in the social network can have
a single identity, and is limited by the number of edges it
creates with other nodes. Accordingly, detecting Sybil iden-
tities generated by malicious nodes become possible when
such algorithmic assumptions hold in a social network used
for bootstrapping the operation of distributed systems.

The mixing characteristics of social graphs, on the other
hand, are the main algorithmic property used for building
detection algorithms to Sybil identities in distributed sys-
tems. In this work we relate the mixing time of social graphs
to graph degeneracy, which captures cohesiveness of the
graph. We experimentally show that fast-mixing graphs
tend to have a larger single core whereas slow-mixing
graphs tend to have smaller multiple cores. Equipped with
these findings we propose several heuristics to improve
the mixing of slow-mixing graphs using their topological
structures. We finally show that our heuristics improve
Sybil defenses built on top of social networks for the
accepted honest suspects per honest verifiers, even in some
cases at lower cost.

Keywords—Sybil Attacks and Defenses, Social Networks,
Mixing Time, Improvement.

I. INTRODUCTION

The Sybil attack is a very challenging security threat
in distributed systems. In its simplest form, a single ma-
licious node claims multiple identities with the intention
to disrupt the normal operation of the distributed system
by acting as if she is multiple nodes [6]. For example,
many distributed system utilize voting mechanisms to
create consensus among users, and a malicious node with
multiple Sybil identities can easily outvote benign users
in such system, thus deciding their fate, and dominating
the operation of the distribution system [21]. To defend
against this attack, there has been several attempts that
can be broadly classified into two schools of thoughts:
centralized and decentralized solutions [4].

In the centralized solutions proposed to defend against
the Sybil attack, a centralized authority is used to provide
digital credentials, such as cryptographic keys, and to

bind them to the identity of participating nodes in the
system. Accordingly, a node can only participate in the
distributed system if she is registered and its creden-
tials are provided by the centralized authority. While
these solutions are simple, and provides the strongest
guarantees to defend against the attack, it poses several
challenges. First of all, it is usually hard to find such cen-
tralized authority in many distributed systems settings,
put aside the complexities associated with running that
authority—take for example a file sharing system, an ad-
hoc network, among others. Second, and even when such
authority is made available, such authority would rely
on privacy-sensitive information, like an identification
number, physical address, and alike, to bind between
the digital identity and real identity of the participating
nodes. Thus, these requirements would likely scare users
away from using the system, reducing its usability to
only defend against the attack. Finally, even when all of
the abovementioned issues are addressed in a system, the
existence of the centralized authority is very challenging
to the scalability and security of the distributed system
in general; a malicious adversary would target that
authority with attacks making it a potential bottleneck,
with its failure determining the fate of the system. To
this end, while they are promising in several contexts
with a limited distributed nature, centralized solutions
are impractical in largely distributed systems.

The decentralized solutions to address the Sybil attack,
on the other hand, replace the centralized authority by
decentralized mechanisms to limit a malicious node
by her unforgeable credentials and publicly verifiable
resources. For example, nodes in distributed systems
oftentimes have physical resources that are limited in na-
ture, such as processing capabilities, memory, addresses,
and geographical location, among others, and these can
be verified by other nodes in the distributed system to
establish the identity of that node. On the one hand,
these solutions overcome several of the shortcomings of
the decentralized solutions: no single point of failure,
and (mostly) no privacy concerns associated with the
solution. On the other hand, these solutions work effec-
tively on the premise that the adversary has a user-level
resources. However, a powerful adversary can easily
surpass such assumptions and gain control over more
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resources, thus bypassing the detection mechanism and
introducing more Sybil identities in the system.

A recent direction for addressing the Sybil attack
makes use of social networks and their building fabric
of trust [4], [9], [13], [15], [23], [24]. In essence, this
direction has common features and characteristics with
decentralized solutions for its operation, like not requir-
ing a centralized authority for such operation, and with
centralized solutions, in its reliance on resources that are
harder to forge. In many of the solutions proposed in this
direction, social networks are used for bootstrapping the
trust and operation of the distributed system, and only
nodes that are existent in the social networks (or those
that are the result of the social network’s or distributed
system’s natural growth) are allowed into the operation
of the distributed system. In such solutions, it is ensured
that nodes in the social network cannot create large
number of Sybil identities because such identities need
to be associated with nodes that are well connected
to other honest nodes in the social networks. To make
such identities well enmeshed into the social graph, the
adversary needs to create many edges between himself
and the rest of the social graph, collectively representing
honest users, which is associated with a high cost.

Informally, many social network-based designs to
defend against the Sybil attack [4], [13], [23], [24]
rely on the mixing characteristics of social graphs for
their operation. In particular, these designs assume that
social networks that consist of honest social nodes are
fast mixing, meaning that a short random walk (formal
definition of random walks is below) from any node in
the graph after a small number of steps will end up on a
node that is random selected from the entire graph. On
the other hand, the introduction of large number of Sybil
identities hidden behind a few nodes that are connected
by a few edges with the rest of the graph would violate
this property: the honest and dishonest parts of the
graphs are slow mixing. Both properties are to build
Sybil defenses that make use of the structural properties
of social graphs. More formally, the prior literature on
defending against the Sybil attack makes the assumption
that a random walk of O(log n) steps, where n is the
number of nodes in the social graph, is enough to obtain
a sample that is driven from a distribution close to the
stationary distribution of the random walk, a distribution
that is representative to the entire graph. Furthermore,
these designs make the assumption that a random walk of
length 10 to 20 steps is sufficient to sample nodes from
the stationary distribution. Furthermore, the theoretical
guarantees of Sybil defenses and their practicality rely
greatly on such parameters: the number of tolerable
Sybil identities per an attack edge, an edge connects an
honest node with a malicious node, is proportional to the
random walk length that is considered the mixing time.

We recently demonstrated that the mixing time of
social graphs is slower mixing than anticipated and used
in the literature, thus calling for further investigation and
shedding light on several immediate conclusions [19].
First, the theoretical guarantees that make use of cer-
tain qualities of the mixing time of social graphs are
inaccurate, since the property does not hold in these
graphs as being assumed. Second, although the mix-
ing time is larger than expected, Sybil defenses still
work fairly reasonably on many of the graphs with
the relatively large mixing time, indicating that a more
relaxed property than the one used in the theoretical
reasoning about the operation of Sybil defenses. Finally,
different graphs have different quality of the mixing
time, and in certain graphs—which are mostly the result
of face-to-face interactions—the slow mixing prohibits
the applicability of Sybil defenses on them.

The main intuition behind the quality of the mixing
time is hypothesized to be the community structure in
them: whereas face-to-face graphs have slower mixing
characteristics because of their clear community struc-
ture, online social networks have faster mixing times
because they are likely subject to noise and weak social
ties, resulting in flat and less clear community structures.
However, no prior work tested this intuition to show
its validity in social networks used for building such
applications. Yet more importantly, no prior work used
the inherent properties of slower mixing social graphs to
improve their mixing time, and make them more suitable
for such applications as Sybil defenses. To this end, we
set out to investigate the reasons why certain graphs are
slower mixing than others. We use our findings on why
certain social graphs are slower mixing to improve their
mixing time, and thus improve the security of social
network-based systems when operated on top of them.

A. Contributions
Motivated by the lack of prior work on understanding

the mixing time of social graphs, our contribution is two-
fold. First, we explore understanding the mixing time of
social graphs by identifying why some social graphs are
fast mixing whereas others are slow mixing. We relate
the quality of the mixing characteristics of social graphs
to the degeneracy (coreness) of graphs: we find that
whereas slow mixing graphs have multiple small cores,
fast mixing graphs have a single large core. Second,
we use this observation to propose three heuristics that
utilize the structure of slow mixing social graphs to
improve their mixing characteristics. We show that the
improvement in the mixing time affects Sybil defenses
built on top of social graphs.

B. Organization
The rest of this paper is organized as follows. In

Section III, we review preliminaries used in this work;
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including the graph model and the formal definition
of the mixing time, as long as the k-coreness, the
main metric used for understanding the mixing time.
In Section IV, we present measurements on relating the
mixing time of social graphs to core structure followed
by heuristics to improve the mixing time in section V.
Conclusion remarks are drawn in section VI.

II. RELATED WORK

To the best of our knowledge, there is no prior work
on understanding the mixing time, improving the mixing
time of slow mixing social graphs, and studying the
impact of that on the operation of Sybil defenses, except
of our preliminary work in [17] which is limited to the
first part. Concurrent to this work, rewiring of social
graphs to improve the mixing time is proposed in [25],
without identify reasons why some social graphs are
slow mixing, and without considering the context of
Sybil defenses for the improvement. Our prior work
in [15] improves the performance of Sybil defenses by
accounting for trust, not the underlying honest social
graphs: selection on nodes and edges in Sybil defenses
are biased based on differential trust. As pointed out in
the introduction, there has been several works on the
design of defenses that make use of the mixing time of
social networks, including [3], [4], [10], [14], [15], [19],
[23], [24], among others.

III. PRELIMINARIES

A. Graph model

Let G = (V,E) be an undirected and unweighted
graph over n vertices and m edges, where the set of
vertices V = {v1, v2, . . . , vn} and the set of edges E =
{eij} for every vi ∼ vj (vi is adjacent to vj). For G, let
P = [pij ]

n×n be a transition probability matrix s.t. pij =
1/ deg(vi) if vi ∼ vj (i.e., if eij ∈ E) and 0 otherwise.
kx denotes a fully connected graph on x vertices.

B. The mixing time

Informally, we define the mixing time of a graph as
the length of a random walk in order to reach a con-
stant (possibly very small) distance from the stationary
distribution of that walk, when starting from any node
in the graph. The stationary distribution is defined as
a probability distribution for any node to be selected
as the final node in a random walk after an infinite
number of steps. For the same graph defined above, the
stationary distribution is defined as π = [πi]

1×n, where
πi = [deg(vi)/2m] for 1 ≤ i ≤ n. Formally, the mixing
time is defined as

T (ε) = max
j

min
t
{t : ||π − π(j)P t|| < ε}, (1)

where π(j) is the delta distribution (also known as
the Kronecker delta function) concentrated on the j-th
position in that vector. This is, π(j) is defined as:

π(j) = δ[x] =

{
0 x 6= j

1 x = j
(2)

and the norm || · || in (1) is defined as

||π − π(j)|| = 1

2

n∑
i=1

|πi − π(j)
i | (3)

In the literature, two methods are used for measuring
the mixing time of social graphs. The first method uses
the definition in (1); given that the mixing time converges
as the sample of the starting distribution increases, and
because the property of interest in many social network-
based Sybil defenses is the distribution over ε, rather than
a fixed ε as defined for the largest t in (1), one can start
from a random set of nodes and obtain different values
of ε as t increases. The different values of ε can be used
to measure its distribution and characterize the mixing
time of social networks. On the other hand, the second
method for measuring the mixing time makes use of the
second largest eigenvalue of the the matrix P defined
above, and only provides an upper and lower bound on
the mixing time as defined in (1). In this paper, we use
the first method for measuring the mixing time.

Graphs are either fast or slow mixing depending on
how quickly walks on them reach the stationary distribu-
tion [19] (i.e., how large is t for a given ε in the model
in (1)). It has been claimed that the mixing time does not
relate to any of the graph structural properties, making
the mixing time interesting in its own right [5]. We re-
examine this claim, and find that mixing characteristics
of a graph are closely related to the core structure, which
captures graph cohesiveness. We show that fast mixing
graphs have large single core, whereas slower mixing
graphs have multiple small cores and use that observation
to propose several herustics to improve the mixing time.

C. k-coreness

For the undirected graph G we defined in § III-A, let
k be a parameter such that k ≥ 1. We define the graph
Gk = (Vk, Ek), where Vk = {vik, . . . , v

nk

k }, and Ek =
{eij} for all vik ∼ v

j
k ∈ Vk, to be a subgraph in G such

that |Vk| = nk, min{deg(vik)} ≥ k for all vik ∈ Vk. The
subgraph Gk is said to be a k-core of G if it satisfies the
above degree condition, it is maximal in size, and it is a
connected graph. By relaxing the connectivity condition,
we obtain a set of cores (potentially more than one),
each of which satisfies the degree condition. For such
k-core, we define the normalized size as sk = nk/n.
Formally, Gk consists of tk ≥ 1 components denoted as
{G1

k, G
2
k, . . . , G

tk
k }. We denote nodes that are in Gi

k as
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Fig. 1. An illustration of the k−core decomposition of the graph. The original graph G = G1 is shown in 1(a). Notice that G4 is an empty
graph, which results from trimming nodes in G3, which is shown in Figure 1(c), with degrees ≤ 3. Notice that G1 and G2 consist of a single
component, whereas G3’s major core is either of the two components with the equal size.

vi1k , . . . , v
i|V i

k |
k . We refer to the largest connected Gi

k as
the major core and others for a given k as minor cores.

An example illustrating the definition stated above is
shown in Figure 1 of a graph over 11 nodes and 14 edges,
with a lowest degree of 1 and highest degree of 3, thus
the k−core number of the graph is less than or equal to
3. By recursively omitting nodes in G with degree less
than or equal to 1, we get G2, shown in Figure 1(b).
Similarly, omitting nodes with degree less than or equal
to 2 in Figure 1(b) produces G3 shown in Figure 1(c),
which consists of two components, each of which is a
fully connected graph defined over 4 nodes. Given that
they are equal in size, either of the components can
be considered as the major component, and the other
is considered as the minor component. Given that the
highest degree in G3 is 3 as well, the original graph
has a maximum k of 3, and this dissolves entirely when
omitting nodes with degree less than or equal to 3.

Computing the k-cores of a graph for any k is done
efficiently using off-the-shelf algorithms. An efficient
algorithm for decomposing a simple graph on m edges
and n nodes to its k−cores by iteratively pruning nodes
with degree less than k has the complexity of O(m) [2].
To this end, the overall complexity of running algorithms
described in the rest of this paper is linear in both
the maximum k value and the number of edges in the
graph G. Finally, notice that the definition of k-core [12]
is related to k-coloring [7], and thus can be naturally
connected to the connectivity of the graph.

IV. MEASUREMENTS AND RESULTS

Now we show how the mixing time of graphs is
related to their core structure. We use the datasets in
Table I in our measurements: DBLP, Physics 1, and
Physics 2 are scientific collaboration graphs, Slashdot
is a blog following graph, and Wiki-vote is wikipedia’s
admin voting graph. Some of these datasets are directed
(i.e., Slashdot and Wiki-vote). All of these datasets are
widely used as benchmarking graphs in the literature [3],
[11], [16]–[18]. Accordingly, we follow the literature’s
standard method, used for example in [3] and [11], and
convert these directed graphs into undirected ones, by
considering an edge between two nodes in the undirected
graph if it exists in either direction in the directed one.
We use the definition in (1) to compute ε for a varying
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Fig. 2. Mixing time measurement of graphs in Table I.

t when starting walks from different nodes in the graph.
For feasibility, we sample the initial distributions of the
walks: we start from 1000 uniformly distributed nodes
in each graph and compute the mixing time as per the
definition in (1) and the average ε for each walk length.
The mixing characteristics of these graphs are shown in
Fig. 2—maximum in Fig. 2(a) and average in Fig. 2(b).

TABLE I
DATASETS USED IN EXPERIMENTATION AND VALIDATION.

Dataset # nodes # edges

DBLP 769, 641 3, 051, 127
Slashdot 70, 355 459, 620
Physics 2 11, 204 117, 619
Physics 1 4, 158 13, 422
Wiki-vote 1, 300 36, 529

For each of these graphs in Table I, we use an off-
the-shelf implementation of the linear-time algorithm
in [2] to compute the k−core by relaxing the connectiv-
ity assumption as described above. As k increases to
its ultimate value at which the graph diminishes, we
compute the following: (1) the number of cores in each
k-core, (2) the normalized size of each k-core. Results
are shown in Fig. 3. Notice that graphs in Fig. 3(a)-3(b)
are slow mixing and graphs in Fig. 3(c)-3(d) are fast
mixing, as demonstrated in Fig. 2 for both the maximum
and average mixing time cases.

By comparing Fig. 3(a), Fig. 3(c), and Fig. 3(d),
we observe that slow mixing graphs are less cohesive
whereas fast mixing graphs are more cohesive. This
observation is reflected in the number of cores in the
k-core of each graph as we increase k until the graph is
dissolved entirely. Also, whereas slow mixing graphs—
shown in Fig. 3(a) and Fig. 3(b)—are decomposed into
multiple cores as we increase k, fast mixing graphs resist
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Fig. 3. The core structure of slow mixing (3(a) and 3(b)) versus fast mixing (3(c) and 3(d)) graphs. The slow mixing graph dissolves into
multiple cores as k, the minimum degree in the k−core algorithm increases, unlike fast mixing graphs which consist of a single large core.

this decomposition and remain cohesive as k increases,
even for larger k than in the slower mixing graphs.

Second, despite that slow mixing graphs are decom-
posed into multiple cores, these cores are relatively small
in size and the graph dissolves quickly as k increases.
Fast mixing graphs on the other hand remain in a
single core, which is relatively larger in size than the
counterpart core in slow mixing graphs

V. IMPROVING THE MIXING TIME AND SYBIL
DEFENSES ON TOP OF SOCIAL NETWORKS

With a different motivation, there has been several at-
tempts in the literature to design algorithms that improve
the mixing time of random walks on social graphs [1],
[8]. The main motivation of these designs is to provide
a better method for sampling large graphs and to obtain
representative samples of the large population in these
graphs [8], [16], [20]. However, these solutions fall short
in providing the desirable features for Sybil defenses.
For example, existing solutions that improve the mixing
characteristics of social graphs by providing uniform
teleportation probability to any node in the graph at
any step in the random walk are expensive [1], since
they require each node to know the entire social graph.
More importantly, these designs are impractical for Sybil
defenses, which use the mixing time for their operation.
This impracticality comes from the fact that these algo-
rithms will ultimately improve the mixing characteristics
of both honest and dishonest nodes arbitrarily, since
the probability of choosing an honest and a Sybil node
in the graph as a next step of the random walk due
to the teleportation is equal, even when the algorithm
is performed in a centralized fashion. Notice the latter
shortcoming can be prevented if the label of destination
is known in advance. However, deviation based on the
label would of the nodes will reduce the effectiveness of
the algorithm by not achieving the claimed improvement
in the mixing time in aforementioned work.

As we have shown in the previous section, the mixing
characteristics of social graphs, which influences the
operation of Sybil defenses on top of social networks,
depend on the core structure of these graphs. Slower
mixing graphs tend to have multiple cores as the pa-
rameter k increases, whereas fast mixing graphs resist
dissolution and consist of a single core as k increases.

Using this observation, we proceed to describe several
heuristics to improve the mixing time, and ultimately
improve the operation of Sybil defenses on top social
networks. The main goal of these heuristics is to prevent
the dissolution of social graphs into multiple cores, thus
improving its connectivity in a meaningful way. Our
work is different in both objective and tools we use,
and is tailored for random walks on social graphs with
security applications such as Sybil defenses in mind.

A. Heuristics to Improve the Mixing Time
From our previous measurements we observe that

as k increases the graph dissolves into multiple cores,
particularly in slow mixing social graphs. Accordingly,
we refer to the largest core for a given k value as the
main core, and other cores as minor cores. In each of
the following heuristics we aim to improve the mixing
time by preventing the creation of multiple cores as k
increases using auxiliary edges. We call this process of
adding edges as core wiring. We introduce these heuris-
tics with sybil defenses in mind as potential applications.

1) Heuristic X-1-C: The main intuition of this heuris-
tic is to add edges so that only prevent the dissolution of
the graph into multiple cores as k increases. Accordingly,
for Gk = {G1

k, . . . , G
tk
k } (k ≥ 1 and tk > 1), where G1

k

is the main core and Gi
k for i ≥ 2 is a minor core,

we add an edge between only one random node vijk in
the minor core Gi

k (where j is chosen at random) and
v1lk in the major core G1

k. We repeat that process as k
increases to its ultimate value upon which the whole
graph diminishes. The total number of added edges in
the original graph G is [(

∑kmax

k=1 tk)−kmax], where kmax

is the largest k of a core in G.
An illustration of the operation of the heuristic is

highlighted in Figure 4. As k increases, for k = 1 and
k = 2, the resulting graph is a single component, so no
edges are added to it. However, when k = 3, the graph
dissolves into two components, as shown in Figure 1(c).
In such case, two nodes are randomly selected; one from
each component (i.e., one is from the major and the
other is the minor component, which these labels used
interchangeably for the graph in G3). Then an edge is
created between the two selected nodes, which is the
dotted edge in Figure 4, created between node v5 and
v2. Notice that this heuristic adds one edge to the graph.
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Fig. 4. An illustration of how the k−core decomposition of the graph
is used to improve graph connectivity. A single node from the minor
core is connected by one additional edge to a node in the major core
as in the heuristic X-1-C. The edge v5v2 is add added in G3, after the
removal of v10 in G2 to prevent producing two components in G3.

2) Heuristic X-A-C: Unlike in the previous heuristic
where only dissolution prevent measure is taken to
improve the connectivity of the graph, in this heuristic
we aim to further improve the connectivity by adding
multiple edges that would improve resilience of the
graph to the removal of edges in between of different
components. The heuristic accordingly adds multiple
edges between each component in the k-core graph, as k
increases. This is, for Gk = {G1

k, . . . , G
tk
k } (k ≥ 1 and

tk > 1), where G1
k is the main core and Gi

k for i ≥ 2 is
a minor core, we add an edge between every node vijk in
the minor core Gi

k and random nodes v1lk in the major
core G1

k. We repeat that process as k increases to its
ultimate value upon which the whole graph diminishes.
The total number of added edges in the original graph
G is [(

∑kmax

k=1 tk)− k].
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Fig. 5. An illustration of how the k−core decomposition of the graph
is used to improve graph connectivity. Every node from the minor core
is connected by one additional edge to a node in the major core as in
the heuristic X-A-C (the same figure results from using X-A-A, since
G3 consists of only 2 components).

An example that illustrates the operation of this heuris-
tic and extends the previously used graph is shown in
Figure 5. In this example, and without losing generality,
recall that only G3 dissolves into multiple components,
and requires addition of edges to prevent such dis-
solution, as shown in Figure 1(c), according to the
heuristic X-A-C. Also, without losing generality, let
G1

3 = (V 1
3, E

1
3) where V3

1 = {v4, v5, v6, v7} be
the minor core and let G2

3 = (V 2
3, E

2
3)where V32 =

{v0, v1, v2, v3} be the major core. In this heuristic, every
node in G2

3 is chosen and associated with a node in the

major core G2
3, where the latter node need not to be

unique. Accordingly, the wiring of these pairs of edges
would result into the graph shown in Figure 5.
Heuristic X-A-A: In this heuristic, we aim to further
enmesh nodes in different cores together by adding edges
across cores, not only between nodes in the major and
the minor cores. To this end, we wire all nodes in a
minor core to other cores in the graph, including both
minor and major cores. The number of auxiliary edges
is bounded by the order of the number of nodes in each
k-core. However, to avoid undesirable complexity in the
operation of the heuristic, we first sort all components
in a given graph Gk, for any valid k, with respect to
their size (i.e., the number of nodes each component
has). Then, we wire nodes in the smaller component with
nodes in the bigger component only. The same graph in
Figure 5 can be used to illustrate the operation of this
heuristic. However, assuming an additional component in
G3, namely G0

3 = k5 graph (a complete graph defined
over 5 nodes), then we would start with all node in G2

3,
connect them with nodes in G1

3 and G0
3, then connect

all nodes in G1
3 with nodes that are randomly selected

from the component G0
3. The graph of this example is

omitted for the lack of space.

v0

v1

v2

v3

v10

v8

v9

v4

v5

v6

v7

Fig. 6. An illustration of how the k−core decomposition of the graph
is used to improve graph connectivity. A single node from the minor
core is connected by one additional edge to a node in the major core
as in the heuristic X-1-C.

Heuristic X-A-A+: As we have seen in the previous
proposed heuristics, additional edges are added to the
graph in order to prevent its dissolution as k increases.
These added edges can be viewed as a cost associated
with the operation of these heuristics, and it is desirable
to reduce this cost. Indeed, one desirable modification
to the previous heuristic is graph rewiring. At each time
an edge is added between two nodes in two different
components, an edge is removed from either component
(for that, we remove edges from the minor component,
or the component with the smaller size when the number
of minor components is greater than one). Desirably,
we remove edges that constitute triangles within that
component, and stop the process of rewiring the graph
when we exhaust all triangles in that component. This
approach is similar to the concurrent work in [25],
although the strategy used for rewiring edges is different.
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Notice that this heuristic would preserve the number
of edges in the original graph, and would rewire nodes
instead of adding edges. As we see in the experiments,
this heuristic provides the highest improvement in the
mixing time among all heuristics provided in this paper,
which suggests that adapting this strategy to other earlier
heuristics would improve them as well.

B. Practical considerations

Two issues have a great influence on the operation of
the proposed heuristics in this paper that could possibly
limit their practicality. In the following, we raise these
issues as questions and subsequently answer them. First,
what is the rationale of using such edges, particularly
when the number of edges is large? Second, what is
the guarantee that edges are not going to be created
between good nodes and Sybil nodes, thus improving
the mixing time not only for the honest region of the
graph, the region that includes honest nodes only, but
also the dishonest region of the graph as well?

We address the first issue by pointing out two practical
considerations. First, such edges can be made as a part of
the natural evolution of the underlying social graph; by
incorporating them into a link recommendation system
where that is possible. Ultimately, not all links will be
added to the graph, but some of them that would be
created and such links would be of great importance to
the connectivity of the graph. Second, since the operation
of Sybil defenses on top of social networks does not
require a real existence of links between nodes, but rather
the flow of the walk on these links—which makes these
edges virtual, we claim that such edges can be created
virtually, but not in reality. This is, when a random walk
is originated from a node on the graph, the random walk
would be deviated at that point from the one done on the
original graph by assigning transition probability to the
walk towards nodes connected via the virtual edges.

This part of practical consideration of our approach is
in a sense similar to the prior work that adds a random
teleportation probability of the random walk to improve
the mixing time [1], [8]. However, our approach will
limit the number of nodes this teleportation would be
assigned to (bounded by the number of the added edges
a node in the graph would be a part of), thus no prior
knowledge of the entire graph is done. However, the
probability assigned to each node that is not connected to
a given node have to be given in advance to that node.
These probabilities (practically, they will be identifiers
of nodes to which random walks are then propagated)
can be distributed in the initialization phase of the Sybil
defense, which can be done in a centralized manner.

To address the second issue, we use the existing
reasoning in the literature which considers pre-existing
labels of nodes in social graph to operate social network-

based Sybil defenses [3], [15], [22]. For example, some
of the prior work in the literature has assumed a prede-
termined labels of honest and Sybil nodes to improve the
operation of Sybil defenses by incorporating weights on
existing edges between some nodes in a more favorable
way than others [15]. On the other hand, some work has
indeed used a pre-determined list of labeled honest nodes
to start the operation of the Sybil defense and to rank
other nodes as either honest or Sybil [3], [22]. To address
the second issue, we claim that one can create edges, or
add the transition probability as described previously for
virtual edges, between only previously labeled honest
nodes, thus improving the mixing time of the honest
region of the graph but not the Sybil one.

In conclusion, auxiliary edges added in our heuris-
tics can be made part of the evolution of the social
graph through link recommendation. Alternatively, when
centralized initialization is viable, these edges can be
virtually created among honest nodes only if some of
the nodes are labeled, as used previously.

C. Results and Discussion

We select Physics 1 and Physics 2, two of the slow-
mixing and relatively small social graphs to explore the
potential of our heuristics in improving the mixing time
for slow-mixing social graphs. We emphasize that the
main reason to choose those social networks is their
size, which enabled us to compute the mixing time
using the definition in (1) from all nodes in each of the
graphs. The results of measuring the mixing time after
applying the heuristics in section V-A for all possible
initial distributions are in Fig. 7; Fig. 7(a) and 7(b) are
for the Physics 1 dataset whereas Fig. 7(c) and 7(d) are
for Physics 2. The total number of edges before and
after wiring graphs using the different methods explained
earlier is shown in Table II. Notice that the total number
of nodes is still the same as in Table I, and the number
of edges in X-A-A+ is preserved as in the original
graph. In the following we elaborate on how the different
heuristics affect the mixing time and the performance of
Sybil defenses on top of them.

TABLE II
DATASETS USED FOR DEMONSTRATING THE HEURISTICS TO

IMPROVE THE MIXING TIME OF SLOW MIXING SOCIAL GRAPHS.

Dataset Number of edges (total, including auxiliary)
Orig. X-1-C X-A-C X-A-A

Physics 1 13,422 13,544 16,482 25,064
Physics 2 117,619 117,687 119,082 121,169

1) Heuristics impact on the mixing time: By com-
paring the different plots in Fig. 7, it is obvious to
see that the heuristics improve the mixing time, and in
some cases greatly, for both the average and the mini-
mum time. Particular, we first observe that our simplest
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Fig. 7. Mixing time measurement of Physics 1 and 2 before/after improving its mixing characteristics.

heuristic (X-1-C), which produces minimal effect on the
graph density—only 122 edges are added to Physics 1—
significantly improves the mixing time according to
its definition as the maximal walk length for a given
total variational distance. Second, the extent to which
additional edges improve the mixing time differs and
depends on the initial mixing characteristics of the graph.
For example, X-1-C adds 68 edges to Physics 2 graph,
which exhibits almost no effect on the mixing time, as
shown in Fig. 7(d). The original graph already mixes
better than Physics 1 dataset on average, and the addition
of these edges, although improves the slowest mixing
sources, does not improve a lot on average. Finally,
by considering the number of added edges in X-A-A
in both social graphs and the measured mixing time
after adding these edges, we observe that the addition
of a lot of edges—despite improving the density of the
graph—does not improve the mixing time significantly
(sometimes yields worse mixing as in Fig. 7(c)). This
last remark tells us that auxiliary edges need to be placed
wisely in graph in order to improve the mixing time.

This is further made clear by observing how rewiring
the graph in X-A-A+ improves the mixing time, despite
maintaining the same number of edges as in the original
graph. We attribute that effect on the performance to the
inherent changes added on the graph to enmesh nodes
in it, and reduce the number of loops within community
(core) that would diverge the random walks.
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Fig. 8. The performance of SybilLimit over the original and modified
social graphs to improve the original graph’s mixing time. The case
of accepted honest nodes under varying number of attack edges.
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Fig. 9. he performance of SybilLimit over the original and modified
social graphs to improve the original graph’s mixing time. The case
of accepted sybil nodes under varying number of attack edges.

D. Heuristics impact on Sybil defenses

We implement and run SybilLimit [23] over the
augmented social graphs, according to the heuristics
described earlier, in order to improve their mixing char-
acteristics. In the following, we use describe SybilLimit,
then provide our results and findings.

1) SybilLimit: In SybilLimit, each node samples r
edges in the graph as “witnesses”, where r = r0

√
m, by

running r independent instances of random walks each
of length w = O(log n), which is the mixing time of
the social graph. Accordingly, there is an overwhelming
probability that the sampled subsets of honest nodes
in the social graph will have a non-empty intersection,
which would be used for suspect verification. Formally,
if the social graph is fast mixing—i.e., has a mixing
time of O(log n)—then probability of the last node/edge
visited in a walk of length O(log n) drawn from the
edge/node stationary distribution is at least 1 − 1

n .
Accordingly, by setting r0 properly, one can use the
birthday paradox to make sure that the intersection
between two sampled subsets of edges (by two honest
nodes) is non-empty with an overwhelming probability.
Furthermore, given that the social graph is fast mixing,
and the number of attack edges—edges that connect
Sybil with honest nodes—is limited, the probability for
random walks originated from honest region ending up
to the dishonest region is limited. Chances of dishon-
est nodes being accepted by sampling honest edges is
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limited, and bounded by the number of attack edges.
2) Results: To evaluate the performance of SybilLimit

when operated on the original and modified graph, we
use both the number of accepted honest suspects by
honest verifiers when using a fixed walk length and
varying number of attack edges, and the number of
accepted Sybil nodes introduced in total for the same
settings as earlier. We used a random walk length of 16
for the first two heuristics, and notice that a walk length
of 38 on the original graph is sufficient to accept 97% of
the honest suspects by honest verifiers [19]. Because X-
A-A+ improves the mixing time significantly more than
other heuristics, we measure the proper walk length that
makes more than 99% honest nodes accepted by honest
verifiers, and find that to be a walk length of 7 which
we use for that experiment only. Results are shown in
Fig. 8 and Fig. 9, where Fig 8 shows the number of
accepted honest nodes by honest verifiers while varying
the number of attack edges, and Fig 9 shows the number
of accepted Sybils while varying the number of attack
edges for the different heuristics on the original graph.

In this measurement we observe that (among the first
three heuristics) X-A-A accepted the most honest users
followed by X-A-C and X-1-C, which is anticipated
given their consistent order with respect to their modified
density as shown in Table II and the mixing character-
istics as in Fig. 7. However, and as anticipated given
the theoretical interplay of the mixing characteristics and
security guarantees of Sybil defenses, X-A-A also ac-
cepted significantly more Sybil nodes than others, given
its improved mixing time. Interestingly, until when the
number of attack edges is 40, X-1-C does not increase
the number of accepted Sybil nodes, while increasing the
number of accepted honest nodes by honest verifiers by
around 3.5%. Comparing the performance of Sybil de-
fense when using the three different heuristics, and that
of X-A-A+, we find that the latter heuristic outperform
them all by accepting most honest nodes and the least
of Sybils (∼ 70% less). The first finding is natural given
the great improvement of the mixing time, whereas the
second finding is due to the shorter length of the used
random walk, which limits the number accept Sybils.

VI. CONCLUSION

In this work we explored understanding and improving
the mixing characteristics of social graphs. We pointed
out that the mixing characteristics of social graphs are
related to the core structure, and used that to improve the
mixing time. Using a running example, we demonstrated
that the improved mixing time affects Sybil defenses,
such as SybilLimit, although findings can be applied
to other defenses. In the future, we will also look
at measures to identify wider range of the quality of
the mixing characteristics, as opposed to both extremes

of the maximum and average explained in this work.
Although potentially unaddressable with current math-
ematical means, we will look at how theoretically the
mixing time is improved by our heuristics. We want to
look at how an X-c-C heuristic, by adding only c edges to
the social graph, will improve its mixing characteristics.
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