
AMAL: High-Fidelity, Behavior-based
Automated Malware Analysis and Classification

Aziz Mohaisen
Verisign Labs, VA, USA

Omar Alrawi∗
Qatar Foundation, Doha, Qatar

ABSTRACT
This paper introduces AMAL, an operational automated and behavior-
based malware analysis and labeling (classification and clustering)
system that addresses many concerns and shortcomings of the lit-
erature. AMAL consists of two sub-systems, AutoMal and MaLa-
bel. AutoMal provides tools to collect low granularity behavioral
artifacts that characterize malware usage of the file system, mem-
ory, network, and registry, and does that by running malware sam-
ples in virtualized environments. On the other hand, MaLabel uses
those artifacts to create representative features, use them for build-
ing classifiers trained by manually-vetted training samples, and use
those classifiers to classify malware samples into families similar in
behavior. AutoMal also enables unsupervised learning, by imple-
menting multiple clustering algorithms for samples grouping. An
evaluation of both AutoMal and MaLabel based on medium (4,000
samples) and large-scale datasets (115,000 samples) show AMAL’s
effectiveness in accurately characterizing, classifying, and group-
ing malware samples. MaLabel achieves a precision of 99.5% and
recall of 99.6% for certain families’ classification, and more than
98% of precision and recall for unsupervised clustering. Several
benchmarks, costs estimates and measurements highlight and sup-
port the merits and features of AMAL.

Keywords
Malware, Classification, Automatic Analysis.

1. INTRODUCTION
Malware classification and clustering are an age old problem

that many industrial and academic efforts have tackled in the past.
There are two common and broad techniques used for malware de-
tection, that are also utilized for classification: signature based [53,
63, 34] and behavior based [45, 52, 68, 47, 59] techniques. Signa-
ture based techniques use a common sequence of bytes that appear
in the binary code of a malware family to detect and identify mal-
ware samples. On the one hand, while signature-based techniques
are very fast since they do not require the effort to run the sample to
identify it (the whole decision is based on a static scan), their draw-
backs is that they are not always accurate, they can be thwarted
using obfuscation, and they require a prior knowledge, including a
set of known signatures associated with the tested families.

For example, antivirus companies use static signatures to detect
a known malware, which completely miss in the case of a zero-day
malware that has not been seen before [12]. Also malware has be-
come more sophisticated by using polymorphic obfuscation, pack-
ing, and code rearranging to thwart antivirus signatures [55]. An-
tivirus companies also use heuristic signatures to detect and classify
∗This work was done while the author was with VeriSign.

known malicious behavior. However, the problem with heuristics
is that the signature groups families of malware together and gives
them generic labels which are not useful for most security and in-
telligence applications. Even worse, labels given by antivirus com-
panies to the same malware sample also vary by vendor. There are
many inconsistencies and disagreement among the antivirus ven-
dors for different malware families [7].

The behavior-based approach to classification uses artifacts the
malware creates during execution. While this approach to analysis
and classification is more expensive since it requires running the
malware sample in order to obtain artifacts and features for behav-
ior characterization, they tend to have higher accuracy in character-
izing malware samples due to the availability of several heuristics
to map behavior patterns into families. Also, behavior character-
ization is agnostic to the underlying code and can easily bypass
code obfuscation and polymorphism, relying on somewhat easier-
to-interpret features. Thus, this technique does not require the ex-
pertise required for signature-based techniques—those techniques
require reverse-engineering skills to create signatures [38, 56].

Indeed, several academic studies in the past made use of behav-
ioral analysis for classification and labeling of malware samples.
The first work to do so is by Baily et al. [7], in which it is shown
that high-level features of the number of processes, files, registry
records, and network events, can be used for characterizing and
classifying (multi-class clustering) malware samples. However, the
work falls short in many aspects. First, the technique makes use of
only high-level features, and misses explicit low-level and implicit
features (the authors leave that part for future work). Second, their
work also relies on a small number of samples for validation of the
technique, and the only source for creating ground truth for those
samples was the side channel of antivirus labeling. Third, their
technique is limited to one clustering algorithm (hierarchical clus-
tering with the Jaccard index for similarity), and it is unclear how
other algorithms perform for the same task. Last, their technique
is intended only for clustering, and does not consider two-family
classification problems, so it is unclear how meaningful the fea-
tures used in their technique to this problem are. Indeed, binary
classification has an appealing unique business opportunity to it,
and it was not considered before by any related work.

More recently, Bayer et al. [8] in another seminal work consid-
ered improving on the results in [7] in two ways. First, the authors
contributed the use of locality-sensitive hashing (LSH), a proba-
bilistic dimensionality reduction method, for memory-efficient clus-
tering. Second, instead of using high-level behavior characteristics,
the authors proposed to use low OS-level features based on API-
hooking for characterizing malware samples. While the technique
is demonstrated to be effective, it has several shortcomings and lim-
itations. First of all, malware samples scan for installed drivers and

uninstall or bypass the driver used for kernel logging. More impor-
tant, rootkits (like TDSS/TDL and ZeroAccess–both families are
studied in our evaluation), a popular set of families of malware, are
usually installed in the kernel and the kernel logger can be blind to
all of their activities [58]. Also, this work has been tested on only
one hierarchical clustering algorithm, does not handle two-families
classification, and relies on a set of small AV-labeled samples as a
ground truth (despite their inconsistencies as highlighted in [8] and
their inaccuracies as more recently shown in [42]).

Rieck et al [52], uses the same API-hooking technique in [8] to
collect artifacts and use them for extracting features to characterize
malware samples. However, in addition to the limitations common
with the work in [8], their technique suffers from a low accuracy
rates, perhaps due to their choice of features. While they match the
highest accuracy we achieve, our lowest accuracy of classification
of a malware family is 20% higher than the lowest accuracy in their
system. Their method is only limited to SVM classification, while
we provide insight into several other learning algorithms and how
they succeed or fail in classifying samples.
On the experimental comparison with the prior literature: The
work in [52, 8, 7] motivated us and are compared to us in method
and end results as shown above. It is worth noting that [7] does
not provide any insight into accuracy, unlike [8], although differ-
ent from our work in the aspects stated in earlier. An empirical
comparison was considered with [8] beyond timing measurements,
and we believe it is impossible to do with their feature-level dataset
because we need to generate the same set of features used in our
system from their binaries. Assuming obtaining binaries is possi-
ble, there is no guarantee to obtain the same behavior profiles by
running those binaries, given that the samples are five years old,
and infrastructure used by malware are likely down in disinfection
efforts. Using their system for analyzing our malware samples to
generate comparable features was not possible (the system does not
allow for the large number of samples we have). Finally, a great
part of our evaluation requires highly accurate labels, which are
naturally obtained in our system, however this will not be available
for the comparison benchmark bringing our comparison to sole re-
liance on biased AV labels. Finally, our solution is a complete oper-
ation system since 2009, unlike [7, 8], two clustering systems with
less insight into operational aspects discussed in our work.

To this end, in this paper we introduce AMAL, the first opera-
tional and large-scale behavior-based solution for malware analysis
and classification (both binary classification and clustering) that ad-
dresses the shortcomings of the previous solutions—to the best of
our knowledge, all literature works that report on analyzing more
than 75k malware samples use only static analysis techniques. To
achieve its end goal, AMAL consists of two sub-systems, AutoMal
and MaLabel. AutoMal builds on the prior literature in charac-
terizing malware samples by their memory, file system, registry,
and network behavior artifacts. Furthermore, MaLabel tries to ad-
dress the shortcomings and limitations of the prior work in practical
ways. For example, unlike [8], MaLabel uses low-granularity be-
havior artifacts that are even capable of characterizing differences
between variants of the same malware family. On the other hand,
and given the wide-range of functionalities of MaLabel, which in-
cludes binary classification and clustering, it incorporate several
techniques with several parameters and automatically chooses among
the best of them to produce the best results. To do that, and unlike
the prior literature, MaLabel relies on analyst-vetted and highly-
accurate labels to train classifiers and assist in labeling clusters
grouped in unsupervised learning. Finally, the malware analysis
and artifacts collection part of AMAL (AutoMal) has been in pro-
duction since early 2009, and it enabled us to collect tens of mil-

lions, analyze several hundreds of thousands, and to manually label
several tens of thousands of malware samples—thus collecting in-
house intelligence that goes beyond any related work in the litera-
ture. Unlike labeling (for training and validation) in the literature
which is subject to errors, our labeling is done by analysts who are
domain experts and human errors in their labeling are negligible.
In this study, we evaluate MaLabel on variety of datasets obtained
from AutoMal and show the effectiveness of AMAL in analyzing,
characterizing, classifying, and labeling malware samples.
Why are both binary classification and clustering interesting
(and important)? Binary and supervised classification is expen-
sive, since it requires training a model with solid ground-truth, and
using representative artifacts of the families (classes) of interest,
both of which are nontrivially obtained. However, the cost of binary
classification in our operational settings is justified. The classifica-
tion problem is interesting to us because the volume of Malware
we receive on daily basis is larger than the capacity of our analysts.
Classification enables us to train a model on a small set of known
malware and extrapolate our model to find new samples in large
volumes of malware we receive on daily basis. For the majority of
our customers, who consist of large financial institutes, the threat
of banking Trojans and specifically new and unidentified variants
of known families is of interest to them. We use this classification
system to identify malware variants of the same family based on
their behavior to inform our customers about new malware threats
pertaining to their interest. Another benefit of this approach is that
we are able to ignore or give low priority to known insignificant
malware families. For example, by identifying FakeAV, a family
that tricks the victim into purchasing a fake antivirus product by
alerting them to fake infections on their system, we can use our
classifier to filter out all FakeAV samples from our malware feed to
focus on undiscovered threats that are relevant and interesting.

Clustering is also interesting to us as it always remains a chal-
lenging and open-ended problem. Clustering allows us to group
malware samples of similar behavior together. For that we manu-
ally inspect the samples in each cluster, and augment the labels we
have of identified malware over each cluster to identify the majority
in that cluster. Furthermore, we use memory signatures, like YARA
rules, to tag a specific signature of a family based on its memory
artifacts and then use that information to label clusters. Finally in
the rare cases of giving a cluster a name when all other methods
are exhausted we would use majority voting of labels returned by
a large number of antivirus scanners. The automatic labeling prob-
lem remains partly unsolved, as it is the case in the literature [7],
and we leave improving on that for future work.

To this end, our contribution is as follows:

• We introduce AMAL, a fully automated system for analysis,
classification, and clustering of malware samples. AMAL
consists of two subsystems, AutoMal and MaLabel. Au-
toMal is a feature-rich and low granularity, behavior-based
artifact collecting system that runs malware samples in vir-
tualized environments and characterizes them by reporting
memory, file system, registry, and network behavior. On the
other hand, MaLabel uses artifacts generated by AutoMal to
create features and then use them in classifying and cluster-
ing malware samples into families with similar characteris-
tics. Both systems have been in production and helped an-
alyze and identify hundreds of thousands of malware sam-
ples. AutoMal by design follows several guidelines in [54]
for safety, and MaLabel follows several guidelines for data
and and algorithms transparency, correctness, and realism.

• Based on an in-house product of AMAL, we use both medium

and large-scale datasets to show AMAL’s effectiveness by
demonstrating more than 99% of precision and recall in clas-
sification and more than 98% of precision and recall in clus-
tering malware. Our validation makes use of several algo-
rithms and settings and demonstrate the practicality of our
system at scale, even when using off-the-shelf algorithms.

We emphasize that our work does not only systemize a litera-
ture knowledge—and demonstrate the power of off-the-shelf al-
gorithms in malware classification at scale, but also augment this
knowledge by several methodical and novel contributions. First,
while a comparative study of various algorithms under various set-
tings should be done in any applied machine learning to the security
problem at hand, this was unfortunately not done in the prior lit-
erature. Our system addresses many timely problems highlighted
in [54]. Our novel contribution is not only the reliance on multi-
ple algorithms but highly accurate evaluation, multiple fine-grained
features for multiple families characterization, the build of a sys-
tem that extracts those features, and demonstrating its efficiency at
scale. Our system for classification always matches accuracy of
state-of-the-art [52], and improves it in many settings. Our cluster-
ing study shows the relevance and efficiency of off-the-shelf tech-
niques; in [8] a scalable system takes 138 minutes with LSH opti-
mization to cluster 75k samples, the largest literature dataset. We
cluster 115k samples in under 1 hour without optimization (table 9)
at the expense of additional memory.

The organization of the rest of this paper is as follows. In sec-
tion 2, we review the related literature. In section 3 we describe our
system in details, including AutoMal, the automatic malware anal-
ysis sub-system and MaLabel, the automated malware classifica-
tion sub-system. In section 4, we evaluate our system. In section 5
we outline some of the future work and concluding remarks.

2. RELATED WORK: A SYNOPSIS
There has been plenty of work in the recent literature on the

use of machine learning algorithms for classifying malware sam-
ples [62, 7, 53, 45, 63, 52, 34, 51, 50, 14]. These works are classi-
fied into two categories: signature based and behavior based tech-
niques. Our work belongs to the second category of these works,
where we used several behavior characteristics as features to clas-
sify the Zeus malware sample. Related to our work is the literature
in [53, 45, 52, 68]. In [45], the authors use behavior graphs match-
ing to identify and classify families of malware samples, at high
cost of graph operations and generation. In [52, 53], the authors
follow a similar line of thoughts for extracting features, and use
SVM for classifying samples, but fall short in relying on a single
algorithm and using AV-generated labels (despite their pitfalls). In
the following, we dive into some of those related work, and refer
to the reader to our complete work in [4] for a complete exposition
and comparison of those works.
Dynamic analysis for malware classification: To the best of our
knowledge, the closest work in the literature to this work is by Bai-
ley et al in [7]. Similar to our work, the authors’ goal is to use
behavior characteristics to cluster malware samples. However, our
work is different in three aspects. First, although we share simi-
larity with their high level grouping of features, our system makes
use of low granularity set of features, which expose richer behav-
ior than theirs. Second, we try several clustering and classifica-
tion algorithms, and demonstrate the performance-accuracy trade-
off of using these algorithms, whereas their work is limited to the
hierarchical clustering with one distance measure. Finally, we use
highly-accurate analyst-vetted labels for evaluation, where they use
heuristics over AV-returned labels.

“Memory artifacts as features” research: Our system utilizes
memory features for characterizing samples. Related to our use
of memory features, Willems et al. introduced CWXDetector [66]
which detects illegitimate code by analyzing memory sections that
cause memory faults—artificially triggered by marking those sec-
tion non-executable. The work can be integrated into our system,
although at cost: the mechanism is intrusive to other running pro-
cesses in the memory. Our current system, on the other hand, does
not require any memory modifications. Kolbitsch et al. [35] intro-
duce Inspector, which is used for automatically reverse engineering
and highlighting codes responsible for “interesting” behaviors by
malware. Related to that, Sharif et al. proposed to understand code-
level behavior by reverse-engineering code emulators [55]. Those
are examples among other works in the literature. However, all of
those works do not generate malware artifacts other than memory-
related signatures, which by themselves have limited insight into
characterizing generic malware samples.
“Network artifacts as features” research: Related to our use of
network features is the line of research on traffic analysis for mal-
ware and botnet detection, reported in [32, 22, 24, 26, 25] and for
the particular families of malware that use fast flux, which is re-
ported in [28, 43]. Related to our use of the DNS features for mal-
ware analysis are the works in [5, 6, 13]. None of those studies are
concerned by behavior-based analysis and classification of malware
beyond the use of remotely collected network features for inferring
malicious activities and intent. Thus, although they share similarity
with our work in purpose, they are different from our work in the
utilized techniques.
Malware evasion research: Broadly related to our work are sys-
tems for overcoming malware evasion techniques. Improving on
malware detection, analysis and classification have been investi-
gated as well in several works in the literature. In [37], K-Tracer
is introduced for extracting kernel malware behavior and mitigat-
ing the circumvention of loggers deployed in the kernel by rootkits.
In [46], MacBoost is used for prioritizing malware samples by de-
termining benign (or less severe) from malicious piece of codes.
A system to prevent drive-by-malware based on behavior, named
BLADE, is introduced in [40]. Finally, a nicely written survey on
such systems and tools is in [19].
Scalability and improvement research (static analysis): There
are many efforts in attempting to scale machine learning-based tech-
niques for malware classification and analysis. However, unfortu-
nately, those attempts all fall under the static analysis direction. For
example, Jang et al [33] proposed BitShred for dimensionally re-
duction of static analysis-based features for fast and accurate clus-
tering. A non-cryptographic hash is proposed in [65] for efficient
representation of malware artifacts. Genome analysis techniques
are suggested (but not well studied) in [16] for analyzing malware.
Cluster ensembles over static features are used in [67] for highly
accurate maleware clustering. In the same direction, several static
filters and tools are proposed in the literature to speed up the de-
tection of similar malware samples [31, 9, 23, 60, 39, 44, 61, 41,
17, 27, 36, 48, 49]. While many of the techniques claim to be
scalable or novel, most of those works are applied on relatively
small datasets that cannot bring insight into their scalability fea-
tures. Furthermore, they rely on features driven from the static na-
ture of binaries and suffer form the aforementioned limitations of
static analysis techniques. Bayer et al. [8] also attempted to scale
malware clustering using LSH, but they use low-level system calls
that are easy to evade, and give less insight into various algorithms
and their scalability features.
Machine learning for malware analysis and automation: Fi-
nally, the use of machine learning techniques to automate classi-

fication of behavior of codes and traffic are heavily studied in the
literature. The reader can refer to recent surveys in [57] and [54].

3. SYSTEM DESIGN
The ultimate goal of AMAL is to automatically analyze malware

samples and classify them into malware families based on their be-
havior. To that end, AMAL consists of two components, AutoMal
and MaLabel. AutoMal is a behavior-based automated malware
analysis system that uses memory and file system forensics, net-
work activity logging, and registry monitoring to profile malware
samples. AutoMal also summarizes such behavior into artifacts
that are easy to interpret and use to characterize and represent indi-
vidual malware samples at lower level of abstraction.

On the other hand, MaLabel uses the artifacts generated by Au-
toMal to extract unified representation, in the form of feature vec-
tors, and builds a set of classifiers and clustering mechanisms to
group different samples based on their common and distinctive be-
havior characteristics. For binary classification, AutoMal builds
classifiers trained from highly-accurate, manually-inspected, analyst-
vetted and labeled malware samples. MaLabel then uses the clas-
sifier to accurately classify unlabeled samples into similar groups,
and to tell whether a given malware sample is of interest or not. Fi-
nally, MaLabel also provides the capability of clustering malware
samples based on their behavior into multiple-classes, using hierar-
chical clustering with several settings to label such clusters. To per-
form highly accurate labeling, MaLabel uses high-fidelity expert-
vetted training labels among other methods. With those overall
system design goals and objectives, we now proceed to describe
the system flow of both AutoMal and MaLabel.

3.1 System Flow
Given the different purposes of the two sub-systems used in achiev-

ing our end goal, we build them as separate systems on separate
operational platforms. In the following, we elaborate on the flow
and functionalities of both sub-systems.

3.1.1 AutoMal: Behavior-based Malware Analyzer
AutoMal is an operational system used by many customers, in-

cluding large financial institutions, AV vendors, and internal users
(called analysts). AutoMal is intended for a variety of users and
malware types, thus it supports processing prioritization, multiple
operating system and format selection, runtime variables and en-
vironment adjustment, among other options. The main features of
AutoMal are as follows:

• Sample priority queue: Allows samples to have processing
priority based on submission source.

• Run time variable: Allows submitter to set run time for the
sample in the virtual machine (VM) environment.

• Environment adjustment: Allows submitter to adjust operat-
ing system via script interface before running a sample.

• Multiply formats: Allows submission of formats like, EXE,
DLL, PDF, DOC, XSL, PPT, HTML, and URL.

• VMware-based: Uses VMware as virtual environment.

• OS selection: Allows submitter to select operating system
for the VM, supports Windows XP, 7, and Vista with various
Service Packs (SP). Adding a new OS to AutoMal systems
requires very little effort.

AV Vendor
Samples

Customer
Samples

Customer
Samples

AV Vendor
Samples

AV Vendor
Samples

Internal
Samples

Internal
Samples

Samples
Priority
Queue

Samples
Priority
Queue

AUTOMALAUTOMAL

Controller

VM_1 VM_n

Behavior
Artifacts

Database

Figure 1: AutoMal flow diagram show multiple sources of mal-
ware samples, a controller used for assigning samples from the
priority queue to virtual machines, and a back-end storage sys-
tem used by the controller to log in behavior artifacts.

• Lower Privilege: Allows submitter to lower the OS privilege
before running a sample. By default, samples run as a privi-
leged user in Windows XP.

• Reboot option: Allows submitter to reboot the system after
a sample is executed to expose other activities of malicious
code that might be dormant.

AutoMal is a malware analysis system that comprises of several
components, allowing it to scale horizontally for parallel process-
ing of multiple samples at a time. An architectural design and flow
of AutoMal is shown in Figure 1. AutoMal has 4 components,
which are the sample submitter, controller, workers (known as vir-
tual machines, or VMs), and back-end indexing and storage com-
ponent (database). Each component is described in the following:
Samples submitter. The submitter is responsible for feeding sam-
ples to AutoMal. The samples are selected based on their priority
in the processing queue. Given that AutoMal has multiple sources
of sample input including, customer submissions, internal submis-
sions, and AV vendor samples, prioritization is used. Each of the
samples are ranked with different priority with customer submis-
sions having the highest priority followed by the internal submis-
sions and finally the AV vendor feeds. When the system is ideal,
AutoMal’s controller fetches samples for processing from the pro-
cess queue, which has the highest priority.
Controller. The controller is the main component of AutoMal
and it is responsible for orchestrating the main process of the sys-
tem. The controller fetches highest priority samples from the queue
with the smallest submission time (earliest submitted) and pro-
cesses them. The processing begins by the sample being copied
into an available VM, applying custom settings to the VM, if there
are any, and running the sample. The configuration for each VM
is applied via a python agent installed on each VM allowing the
submitter to modify the VM environment as they see fit. For ex-
ample if an analyst identifies that a malware sample is not running
because it checks a specific registry key for environment artifact to
detect the virtual environment, the analyst can submit a script with
the sample that will adjust the registry key so the malware sample
fails to detect the virtual environment and proceed to infect the sys-
tem. The agent also detects the type of file being submitted and
runs it correctly. For example, if a DLL file is submitted, the agent
will install the DLL as a Windows Service and start the service to
identify the behavior of the sample. If a URL is submitted, the
agent would launch Internet Explorer browser and visit the URL.

rule silent_banker : banker
{
meta:

description = "Just an example"
thread_level = 3
in_the_wild = true

strings:
$a = {7B 50 79 11 41 11 11 7B 25}
$b = {9E 5E C1 3C D2 94 D1 38 AA 7B}
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

condition:
$a or $b or $c

}

Figure 2: An example of a YARA signature

After the sample is run for the allotted time, the controller pauses
the VM and begins artifact collection. The controller runs several
tools to collect the following artifacts:

• File system: files created, modified, and deleted, file content,
and file meta data.
• Registry: registry created, modified, and deleted, registry

content, and registry meta data.
• Network: DNS resolution, outgoing and incoming content

and meta data.
• Volatile Memory: This artifact is only stored for one week to

run YARA signatures [2] (details are below) on the memory
to identify malware of interest.

The file system, registry, and network artifacts and their seman-
tics are extracted from the VMware Disk (VMDK) [64] and the
packet capture (PCAP) file. The artifacts and their semantics are
then parsed and stored in the back-end database in the correspond-
ing tables for each artifact. The PCAP files are also stored in the
database for record keeping. The VMware machine also saves a
copy of the virtual memory to disk when paused. The controller
then runs our own YARA signatures on the virtual memory file to
match any families that our analysts have identified, and tags them
accordingly. The virtual memory files are stored for 1 week on the
AutoMal then discarded due to the size of each memory dump. For
example, if the malware sample is run in a VM that has 512 MB of
RAM then the stored virtual memory file would be 512 MB for that
sample plus the aforementioned artifacts. Storing virtual memory
files indefinitely does not scale hence we discard them after 1 week.
YARA signatures: YARA signatures are static signatures used to
identify and classify malware samples based on a sequence of known
bytes in a specific malware family. Our analysts have developed
several YARA signatures based on their research and reverse engi-
neering of malware families. Developing these signatures is time
consuming because they require reverse engineering several mal-
ware samples of a family and then identifying a specific byte se-
quence that is common among all of them. A YARA signature is
composed of 3 sections, meta section, string section, and condition
section. The meta section describes the signature and contains au-
thor information. The string section defines the strings of interest
and (or) a sequence of bytes. Finally, the condition section is a
logical statement used to combine the different definitions in the
string section to find a target family. Figure 2 shows an example of
a typical YARA rule.

In our system we did not utilize memory signatures as a fea-
ture for classification or clustering because not every sample in our
system has those artifacts available. We only store the memory arti-
facts for one week, hence we only have a window of one week that

Database
Of

Artifacts

Database
Of

Artifacts

Feature
Extractor

Feature
Extractor

Testing Selector

Labeling

Training Selector

Algorithm
Selector

Algorithm
Selector

Feature
Selector

Parameter
Selector

LabelsLabels

Figure 3: MaLabel’s flow. Artifacts collected using AutoMal
are fed into MaLabel and used to extract features. Labels are
assigned using experts, as well as AV census, while features
selection is done for each algorithm to achieve highest perfor-
mance. Resulting labels from the learning algorithm are used
to train future runs of the algorithm on newly fed testing data.

covers a small set of malware processed in AutoMal. If we identify
a feature of importance in memory we can modify our system to
log those features for future samples and we can add it to our fea-
ture set. We currently utilize memory files and YARA signatures
to classify samples based on our analysts experience for malware
families. We augment this information with our behavior-based
classification and clustering for automatic labeling.
Workers. The workers’ VMs are functionally independent of the
controller, which allows the system to add and remove VMs with-
out affecting the overall operation of the system. The VMs consist
of VMDK images that have different versions of OSes with differ-
ent patch levels. The current system supports Windows XP, Vista,
and 7 with various service packs (SP). The VMs also have software
such as Microsoft Office, Adobe Reader, and a python agent used
to copy and configure the VM by the controller. The software in-
stalled on the VMs vary based on OS version. For most samples
reported in this paper in section 4, we used VMs with Windows XP
SP2 and with several software packages and programs installed, in-
cluding Microsoft Office 2007, Adobe Acrobat 9.3, Java 6-21, Fire-
Fox 3.6, Internet Explorer 6, Python 2.5, 2.6, and VMware Tools.
For hardware configuration for the VMs see Table 2 (all software
packages are trademarks of their corresponding producers). This
choice of OS was necessitated by the fact that infections are re-
ported by customers on that OS. However, in case where samples
are known to be associated with a different OS version, the proper
OS is chosen with similar software packages.
Backend storage – database. The collected artifacts are parsed
into a MySQL database [1] by the controller. The database contains
several tables like files, registry, binaries, PCAP (packet captures),
network, HTTP, DNS, and memory_signature table. Each of the
table contains meta data about the collected artifacts with exception
to PCAP and binaries table. The binaries table stores files meta
data and content where the files table stores meta information about
files created, modified, and deleted per sample run. The files table
contains parsed meta data from the binaries table. The PCAP table
is large in size, and stores the complete raw network capture of
the sample during execution which would include any extra files
downloaded by the sample. The HTTP, DNS, and network tables
store parsed meta data from the PCAP table for quick lookups.

3.1.2 MaLabel: Automated Labeling
MaLabel is a classification and clustering system that takes be-

havior profiles containing artifacts generated by AutoMal, extracts
representative features from them, and builds classifiers and clus-
tering algorithms for behavior-based group and labeling of malware
samples. Based on the class of algorithm to be used in MaLabel,

Table 1: List of features. Unless otherwise specified, all of the
features are counts associated with the named sample.

Class Features
File system Created, modified, deleted, file size distribution,

unique extensions, count of files under selected
and common paths.

Registry Created keys, modified keys, deleted keys,
count of keys with certain type.

Network
IP and port Unique destination IP, counts over certain ports.

Connections TCP, UDP, RAW.
Request type POST, GET, HEAD.

Response type Response codes (200s through 500s).
Size Request and response distribution.

DNS MX, NS, A records, PTR, SOA, CNAME.

whether it is binary classification or clustering, the training (if ap-
plicable) and testing data into MaLabel is determined by the user
(a flow of the process for classification is shown in Figure 3). If
the data is to be classified, MaLabel trains a model using a ver-
ified and labeled data subset and uses unlabeled data for classi-
fication. MaLabel allows for choosing among several classifica-
tion algorithms, including support vector machines (SVM)—with
a dozen of settings and optimization options, decision trees, linear
regression, and k-nearest-neighbor, among others. MaLabel leaves
the final decision of which algorithm to choose to the user based
on the classification accuracy and cost (both run-time and memory
consumption). MaLabel also has the ability to tune algorithms by
using feature and parameter selection (more details are in section
4). Once the user selects the proper algorithm, MaLabel learns the
best set of parameters for that algorithm based on the training set,
and uses the trained model to output labels of classes for the unla-
beled data. Those labels serve as an ultimate results of MaLabel,
although they can be used to re-train the classifier for future runs.

Using the same features used for classification, MaLabel uses
unsupervised clustering algorithms to group malware samples into
clusters. MaLabel features a hierarchal clustering algorithm, with
several variations and settings for clustering, cutting, and linkage
(cf. §4). Those settings are adjustable by the user. Unlike classifi-
cation, the clustering portion is unsupervised and does not require
a training set to cluster the samples into appropriate clusters. The
testing selector component will run hierarchal clustering with sev-
eral settings to present the user with preliminary cluster sizes and
number of clusters created using the different settings. Based on
the preliminary results the user can pick which setting fits the data
set provided and can proceed to labeling and verification process.

While the clustering feature in MaLabel is not intended for la-
beling malware samples, but rather for grouping different samples
that are similar in their behavior, we provide the system with the
intelligence required for malware labeling. After the clustering al-
gorithm runs, we enable one of the following options to label the
data. First, using analyst-vetted samples we augment the resulting
clusters with labels and extrapolate the labels on unlabeled samples
falling with the same clusters. Second, for those clusters that we do
not have significant analyst-vetted data, we make use of memory
signatures, where available, and further manual inspections. Fi-
nally, while we try to avoid that as much as possible for the known
inconsistencies of their labeling systems, in cases where none of
the two options above are viable we use census over labels of sev-
eral antivirus scans for clusters’ members—we use 42 independent
antivirus vendors; for further details see §4.

3.2 Features and Their Representation
While the artifacts generated by AutoMal provide a wealth of

features, in MaLabel we used only a total of 65 features for clas-
sification and clustering. The features are broken down based on
the class of artifacts used for generating them into three groups—a
listing of the features is shown in Table 1:
File system features. File system features are derived from file
system artifacts created by the malware when run in the virtual en-
viornment. We use counts for files created, deleted, and modified.
We also use counts for files created in predefined paths like %AP-
PDATA%, %TEMP%, %PROGRAMFILES%, and other common
locations. We keep a count for files created with unique extensions.
For example if a malware sample creates 4 files on the system, a
batch file (.BAT), two executable files (.EXE), and a configuration
file (.CFG), we would count 3 for the number of unique extensions.
Finally, we use the file size of created files; for that we do not use
raw file size but create the distribution of the files’ size. We divide
the file size range, corresponding to the difference between the size
of the largest and smallest files generated by a malware, into multi-
ple ranges. We typically use four ranges, one for each quartile, and
create counts for files with size falling into each range or quartile.
Registry features. The registry features are similar to the file
features since we use counts for registries created, modified, and
deleted, registry type like REG_SZ, REG_BIN, and REG_DWORD.
While our initial intention of using them was exploratory, those fea-
tures ended up very useful in identifying malware samples, espe-
cially when combined with other features (more details are in §4).
Network features. The network features make up the majority of
our 65 features. The network features have 3 groups. The first
group is raw network features, which includes count of unique IP
addresses, count of connections established for 18 different port
numbers, quartile count of request size, and type of protocol (we
limited our attention to three popular protocols, namely the TCP,
UDP, RAW). The second group is the HTTP features which in-
clude counts for POST, GET, and HEAD request; the distribution
of the size of reply packets (using the quartile distribution format
explained earlier), and counts for HTTP response codes, namely
200, 300, 400, and 500. The third category includes DNS features
like counts for A, PTR, CNAME, and MX record lookups.

For the safety of potential victims of the malware samples we
run in AutoMal, we use several safety guidelines. First, we block
a list of wormable ports, including port 25, 587, 445, 139, and 137
at the router level. We do this blocking although we believe it will
limit visibility to crucial features, although we log the outgoing
requests. We further add safety by limiting the run time of samples,
and throttling bandwidth, to avoid sizable damage.

Although we do not utilize memory features in the evaluation of
MaLabel, the current in-production AutoMal collects and archive
memory artifacts. However, this functionality was implemented
in the system after many samples used in this study were already
analyzed and their artifacts are archived. Thus, it is impossible to
create memory features for those samples without rerunning them
in the system. However, since those samples are collected over a
period of time, even if we try to rerun them we will miss some other
features that are time-dependent. For example, a command and
control server could be taken down since the last time the sample
was analyzed in AutoMal, thus rerunning the samples allows us to
get memory features but would make us loose the network artifacts.
As we are collecting memory signatures that can be used to derive
memory features for newly fed samples, it is left for future work to
systematically see how those features will influence the clustering
and classification—preliminary small-scale results are promising.
Features normalization. Following the related literature [29, 8],

Table 2: Benchmarking of hardware components used for the
different parts of our system. MaLabel 1 and MaLabel 2 are
platforms used for clustering and classification, respectively.
* Win XP is default, and others are used where needed.

Component AutoMal VM MaLabel 1 MaLabel 2
CPUs 1 1 1
RAM 256MB 120GB 192GB
Hard drive 6GB 200GB 2TB
OS Win XP* CentOS 6 CentOS 6

we map the different features’ values in the range of 0 and 1, thus
not biasing the feature selection process towards any feature except
of its true importance. Fortunately, all of the features we use in
MaLabel are normalizable.

4. EVALUATION
To evaluate the different algorithms in each application group,

we use several accuracy measures to highlight the performance of
various algorithms. Considering a class of interest, S, the true pos-
itive (tp) for classification is defined as all samples in S that are
labeled correctly, while the true negative (tn) is all samples that are
correctly rejected. The false positive (fp) is defined as all samples
that are labeled in S while they are not, whereas the false negative
(fn) is all samples that are rejected while they belong to S. For
validating the performance of the classifiers, we use the precision
defined as P = tp/(tp + fp), the recall as R = tp/(tp + fn), the
accuracy as A = (tp + tn)/(fp + fn + tp + tn), and the F-score
defined as F = 2(p× r)/(p+ r).

For clustering, we use the same definition of accuracy, preci-
sion, and recall as in [8]. In short, the precision measures the
ability of the clustering algorithm to distinguish between different
samples and associate them to different clusters, whereas the re-
call measures how well the clustering algorithm assigns samples of
the same type to the same cluster. To that end, given a reference
(ground truth) clustering setting T = {Ti} for 0 < i ≤ nt and a
set of learned clusters L = {Li} for 0 < i ≤ nl, the precision
for the j−th learned cluster is computed as Pj = max{|Lj ∩ Ti|}
for 0 < i ≤ nl while the recall for the j-th reference cluster is
computed as Rj = max{|Li ∩ Tj |} for 0 < i ≤ nl. The total
precision and recall of the algorithm are computed as 1

nt

∑nt
i=1 Pi

and 1
nl

∑nl
i=1Ri, respectively.

4.1 Hardware and Benchmarking
In Table 2, we disclose information about the hardware used in

AMAL. While the hardware equipment used in running MaLabel
are not fully utilized (cf. §4.5.2), the hardware specifications used
in AutoMal are important for its performance. For example, mem-
ory signatures and file system scans heavily depend on those speci-
fications. For that, the parameters are selected to be large enough to
run the samples and the hosting operating system, but not too large
to make the analysis part infeasible within the allotted time for each
sample. Notice that, and as explained earlier, the operating system
used in AutoMal can be adjusted in the initialization before running
samples. However, for consistency of results we use the same OS
to generate the artifacts for the different samples.

4.2 Datasets
The dataset used in this work is mainly from AutoMal, and as

explained earlier, is fed to the system by internal user and external

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

15-07-11
29-07-11
12-08-11
26-08-11
09-09-11
23-09-11
07-10-11
21-10-11
04-11-11
18-11-11
02-12-11
16-12-11
30-12-11
13-01-12
27-01-12
10-02-12
24-02-12
09-03-12
23-03-12
06-04-12
20-04-12
04-05-12
18-05-12
01-06-12
15-06-12
29-06-12
13-07-12
27-07-12

V
ol

um
e

(#
 o

f S
am

pl
es

 P
er

 W
ee

k)

Figure 4: The time samples used in this study are populated in
AutoMal—Samples accumulated over 13 months. Notice that
the used samples are sampled from larger set of samples accu-
mulated over the same period of time.

customers. Internal users are internal analysts of malicious code,
and external users of the system are customers, who could be se-
curity analysts in corporates (e.g., banks, energy companies, etc),
or other antivirus companies who are partners with us (they do not
pay fees for our service, but we mutually share samples and mal-
ware intelligence). The main dataset used in this study consists of
115, 157 malware samples. The time those samples were popu-
lated in the system is shown in Figure 4. The set of samples used
in this study is selected as a simple random sample from a larger
population of malware samples generated over that period of time.
Labeling for validation: A selected set of families to which those
samples belong (with their corresponding labels) are shown in Ta-
ble 3. The dataset particularly includes 2086 samples that are en-
tirely inspected and verified as Zeus or one of its variants by secu-
rity analysts, while other labels are either generated using the same
method (on a subset of the samples in the family) and the rest of
the label makes use of census over returned antivirus detections.
For that, we query a popular virus scanning service with 42 scan
engines, and pass the MD5 of all samples in the larger dataset to it.
We use the detection provided by the scan to create a census on the
label of individual samples: if a sample is detected and labeled by a
majority of virus scanners of a certain label, we use that label as the
ground truth (those labels are shown in Table 3). We note that the
Zeus family reported in Table 3 is manually inspected and labeled
by internal analysts, and results returned by the antivirus scanners
for the MD5s belonging to samples this family either agree with
this labeling, or assign generic labels to them, thus establishing that
one can rely on this census method for labeling and validation.
Note: In the process of conducting this study, we referred to the
recommendations in [54] for the transparency, correctness, and re-
alism of this work. For reproducibility of results, we intend to re-
lease part the dataset used in this study to the public domain.

4.3 High-fidelity Malware Classification
In this section, we focus on the binary classification problem us-

ing the Zeus malware family [20], given its unique ground truth,
where every sample in this family is classified and labeled man-
ually by analysts. We then show the evaluation of different algo-
rithms implemented in MaLabel to classify other malware families
using the same set of features used in Zeus. Unless otherwise is
specified, in all evaluations we use 10-fold cross validation—a for-
mal definition and settings are provided in Appendix B.

Table 3: Malware samples, and their corresponding labels,
used in the classification training and testing.

Size % Family Description
1,077 0.94 Ramnit File infector and a Trojan with pur-

pose of stealing financial, personal,
and system information

1,090 1.0 Bredolab Spam and malware distribution bot
1,091 1.0 ZAccess Rootkit trojan for bitcoin mining, click

fraud, and paid install.
1,205 1.1 Autorun Generic detection of autorun function-

ality in malware.
1,336 1.2 Spyeye Banking trojan for stealing personal

and financial information.
1,652 1.4 SillyFDC An autorun worm that spreads via

portable devices and capable of down-
loading other malware.

2,086 1.8 Zbot Banking trojan for stealing personal
and financial information.

2,422 2.1 TDSS Rootkit trojan for monetizing re-
sources of infected machines.

5,460 4.7 Virut Polymorphic file infector virus with
trojan capability.

7,691 6.7 Sality same as above, with rootkit, trojan,
and worm capability.

21,047 18.3 Fakealert Fake antivirus malware with purpose
to scam victims.

46,157 40.1 Subtotal
69,000 59.9 Others Small mal, < 1k samples each

115,157 100 Total

4.3.1 Classification of Analyst-vetted Samples
MaLabel implements several binary classification algorithms, and

is not restricted to a particular classifier. Examples of such algo-
rithms include the support vector machine (SVM), linear regression
(LR), classification trees, k-nearest-neighbor (KNN), and the per-
ceptron method—all are formally defined along with their param-
eters in Appendix A. We note that KNN is not a binary classifier,
so we modified it by providing it with proper (odd) k, then voting
is performed over which class a sample belongs to. To understand
how different classification algorithms perform on the set of fea-
tures and malware samples we had, we tested the classification of
the malware samples across multiple algorithms and provided sev-
eral recommendations. For the SVM, and LR, we used several pa-
rameters for regularization, loss, and kernel functions (definitions
of those settings are in Appendix A)

For this experiment, we selected the same Zeus malware dataset
as one class, as we believe that the highly-accurate labeling pro-
vides high fidelity on the results of the machine learning algo-
rithms. For the second class we generated a dataset with the same
size as Zeus from the total population that excludes ZBot in Table 3.
Using 10-fold cross validation, we trained the classifier on part of
both datasets using the whole of 65 features, and combined the re-
maining of each set for testing. We ran the algorithms shown in
Table 4 to label the testing set. For the performance of the different
algorithms, we use the accuracy, precision, recall, and F-score.

The results are shown in Table 4. First of all, while all algorithms
perform fairly well on all measures of performance by achieving a
precision and recall above 85%, we notice that SVM (with polyno-
mial kernel for a degree of 2) performs best, achieving more than
99% of precision and recall, followed by decision trees, which is
slightly lagged by SVM (with linear kernel). Interestingly, and de-
spite being simple and lightweight, the logistic regression model
achieves close to 90% on all performance measures, providing com-
petitive results. While they provide less accuracy than the best per-
forming algorithms, we believe that all of those algorithms can be

Table 4: Results of binary classification using several algo-
rithms in terms of their accuracy, precision, recall, and F-score.

Algorithm A P R F
SVM Poly. Kernal 99.22% 98.92% 99.53% 99.22%
Classification Trees 99.13% 99.19% 99.06% 99.13%
SVM Linear Kernal 97.93% 98.53% 97.30% 97.92%

SVM Dual (L2R, L2L) 95.64% 96.35% 94.86% 95.60%
Log. Regression (L2R) 89.11% 92.71% 84.90% 88.63%

K-Nearest Neighbor 88.56% 93.29% 83.11% 87.90%
Log. Regression (L1R) 86.98% 84.81% 90.09% 87.37%

Perceptron 86.15% 84.93% 87.89% 86.39%

used as a building block in MaLabel, which can ultimately make
use of all classifiers to achieve better results.

As for the cost of running the different algorithms, we notice
that the SVM with polynomial kernel is relatively slow, while the
decision trees require the most number of features to achieve high
accuracy (details are omitted). On the other hand, while the dual
SVM provides over 95% of performance on all measures, it runs
relatively quickly. For that, and to demonstrate other aspects in our
evaluation, we limit our attention to the dual SVM, where possible.
SVM is known for its generalization and resistance to noise [52].

To understand causes for the relatively high false alarms (caus-
ing part of the degradation in precision and recall) with some of the
algorithms we tried, we looked into mislabeled Zeus and non-Zeus
malware samples. We noticed that distance in the feature vector be-
tween misclassified samples is far from the majority of other sam-
ples within the class. This is however understandable, given that
a single class of malware (Zeus and non-Zeus) includes within it-
self multiple sub-classes that the high-level label would sometimes
miss. This observation is further highlighted in the clustering ap-
plication, where those mislabeled samples are grouped in the same
group, representing their own sub-class of samples.

4.3.2 Features Ranking and Selection
While the number of features used in MaLabel is relatively small

when compared to other related systems [5, 6], not all features are
equally important for distinguishing a certain malware family. Ac-
cordingly, this number can be perhaps greatly reduced while not
affecting the accuracy of the classification algorithms. The reduc-
tion in the number of samples can be a crucial factor in reducing the
cost of running the classification algorithm on large-scale datasets.

In order to understand the relative importance of each feature,
with respect to the (linear) classification algorithms, we ran the re-
cursive feature elimination (RFE) algorithm [3], which ranks all
features from the most important to the least important feature.
Given a set of weights of features, the RFE selects the set of fea-
tures to prune recursively (from the least to the most important)
until reaching the optimal number of features to achieve the best
performance. In the linear classification algorithms, weights used
for ranking features are the coefficients in the prediction model as-
sociated with each feature (variable).

Table 5 shows the performance measures for the SVM using dif-
ferent numbers of features. We notice that, while the best perfor-
mance is achieved at the largest number of features, indicating the
importance of all features together, the improvement in the per-
formance is very small, particularly for the SVM. The lowest 50
features in rank improve the accuracy, precision, and recall by less
than 2%. However, this improvement is as high as 20% with de-
cision trees (results not shown and deferred to [4] for the lack of
space). To this end, and for the algorithm of choice (SVM), we
confirm that a minimal set of features can be used to achieve a high
accuracy while maintaining efficiency.

Table 5: The accuracy measures versus the number of features
used for classification (SVM with L2R and L2L).

Features A P R F
3 65.3% 66.9% 60.5% 63.6%
6 73.2% 76.1% 67.6% 71.6%
9 89.6% 87.6% 92.3% 89.9%

15 94.1% 94.0% 94.1% 94.1%
25 94.4% 94.9% 93.9% 94.4%
35 94.6% 95.3% 93.8% 94.6%
45 94.9% 95.6% 94.0% 94.8%
65 95.6% 95.8% 95.3% 95.5%

We also followed the recent literature [29, 13, 11] to rank the
different features by their high-level category. We ran our classifier
on the file system, memory (where available), registry, and net-
work features independently. For the network features, we further
ranked the connection type, IP and port, request/response type and
size, and DNS as sub-classes of features. From this measurement,
we found that while the file system features are the most important
for classification—they collectively achieve more than 90% of pre-
cision and recall for classification—the port features are the least
important. It was not clear how would the memory feature rank for
the entire population of samples, but using them where available,
they provide competitive and comparable results to the file system
features. Finally, the rest of the features were ranked as network
request/response and size, DNS features, then registry features. All
features and their rankings are deferred to [4].

4.3.3 Choosing Classification Parameters
Our system does not only feature several algorithms, but also

uses several parameters for the same algorithm. For example, regu-
larization and loss functions are widely used to improve estimating
unknown variables in linear classification. For that, regularization
imposes penalty for complexity and reduces over-fitting, while loss
function penalizes incorrect classification. Widely used function
types of parameters for linear classification are the L1 and L2 func-
tions (more details on both types of functions are summarized in
Appendix 1 and discussed in details in [21]). In addition, since lin-
ear classification or programming problems can be stated as primal
problems, they can also converted to dual problems, which try to
solve the primal problem by providing an upper bound on the op-
timal solution for the original (primal) problem. In the following
we test how the choice of the proper set of parameters—problem
representation into primal or dual and the choice of regularization
and loss functions—affects classification by considering SVM and
LR as two examples with a select set of parameters. We use the
same dataset as above in this experiment as well.

The results of this measurement are shown in Table 6. We ob-
serve that while all algorithm perform reasonably well on all mea-

Table 6: Selection of the support vector classifier with the best
performing parameters. A, P, R, and F correspond to the accu-
racy, precision, recall, and F-score, respectively.

Algorithm A P R F
L1-reg. log. regression (/) 93.7% 93.7% 93.7% 93.7%
L2-reg. log. regression (p) 92.3% 91.4% 93.4% 92.4%
L2-reg. L2-loss SVM (d) 95.6% 95.8% 95.3% 95.5%
L2-reg. L2-loss SVM (p) 89.1% 84.5% 95.7% 89.7%
L2-reg. L1-loss SVM (d) 94.1% 95.6% 92.5% 94.0%
L1-reg. L2-loss SVM (/) 94.0% 94.0% 94.0% 94.0%

L2-reg. log. regression (d) 94.3% 94.5% 94.1% 94.3%

Table 7: Binary classification of several malware families.
Family A P R F

ZAccess 85.9% 80.7% 94.3% 87.0%
Ramnit 91.0% 87.1% 96.3% 91.5%
FakeAV 85.0% 82.5% 88.8% 85.6%
Autorun 87.9% 85.2% 91.8% 88.4%
TDSS 90.3% 89.6% 91.2% 90.4%

Bredolab 91.2% 88.0% 95.3% 91.5%
Virut 86.6% 85.9% 87.5% 86.7%

sures of performance (namely, above 90% for all measures, for
most of them), and can be used as a building block for MaLabel,
the L2-regularization L2-loss functions, when combined with the
dual optimization representation, provides the highest performance
with all accuracy measures above 95%. All algorithms do not use
kernel methods, and are very fast to run even on large datasets.

4.4 Large Scale Classification
One limitation of the prior evaluation of the classification algo-

rithm is its choice of relatively small datasets that are equal in pro-
portion for training and testing, for both the family of interest and
the mixing family. This, however might not be the case in opera-
tional contexts, where even a popular family of malware can be as
small as 1% of the total population as shown in Table 3 for several
examples. Accordingly, in the following we test how the different
classifiers are capable of predicting the label of a given family when
the testing set is mixed with a larger set of samples. For that, we
use the labeled samples as families of interest, while the rest of the
population of samples as the “other” family (they are collectively
indicated as one class). We run the experiment with the same set-
tings as before. We use 10-fold cross validation to minimize bias.
In the following we summarize the results of seven families of in-
terest. The results are shown in Table 7.

First of all, we notice that although the performance measures are
less than those reported for Zeus in section 4.3.1, we were still able
to achieve a performance nearing or above 90% on all performance
measures for some of the malware families. For the worst case,
those measures where as low as 80%. While these measures are
competitive compared to the state-of-the-art results in the literature
(e.g., the results in [52] were as low as 60% for some families), un-
derstanding the reasons behind false alarms is worth investigation.
To understand those reasons, we looked at the samples marked as
false alarms and concluded the following reasons behind the degra-
dation in the performance. First, we noticed that many of the labels
used for the evaluation that resulted into the final result are not
by analysts, but come from the census over antivirus scans—even
though a census on a large number of AV scans provides a good
accuracy, it is still imperfect. Second, we notice that the class of
interest is too small, compared to the total population of samples,
and a small error is amplified for that class—notice that this effect
is unseen in [52] where classes are more balanced in size (e.g., 1 to
9 ratios versus 1 to 99 ratio in our case). Finally, part of the results
is attributed to the relatively similar context of the different families
of malware samples, as shown in Table 3, thus in the future we will
explore enriching the features to achieve higher accuracy.

4.5 Malware Clustering
One of the limitations of the prior literature on malware samples

clustering is that it did not try different algorithms. For example,
while the hierarchical clustering has the same overall procedure for
producing clustering (details are in Appendix 1), altering the cut-
ting parameter, distance metric or linkage criteria would greatly

influence the shape of the final cluster. For our application, this
would mean different resulting clusters for different parameters.
MaLabel employes several distance metrics, like the Jaccard in-
dex, cosine similarity, hamming distance, Euclidean distance, and
correlation. On the other hand, options for linkage include aver-
age, complete (maximum), median, single (minimum), ward, and
centroid, among others. In this part, we evaluate the clustering part
of MaLabel, with different parameters and settings, and report on
some of the relevant results and findings.

4.5.1 Clustering of Manually Labeled Samples
Using the various options listed earlier, MaLabel gives the choice

to the user to pick the best clustering size based on the user’s data
and, when available, the performance measures. Multiple cut thresh-
old are calculated for each distance and method to give an overview
of how each clustering method performed. The user then makes a
judgement to choose the most relevant results to fit the data to.

To evaluate the performance of the clustering, we use the manu-
ally labeled Zeus family. We further use tags in the manual labeling
that divide the Zeus family into multiple sub-families (also called
Zeus variations), and consider that as a reference (or ground-truth)
clustering. To add variety of families to the problem, and challeng-
ing the clustering algorithms, we also picked an equal number of
samples, from the families shown in Table 3. However, this time,
we limit our selection to samples for which we already know a cor-
rect label. We ran our manually labeled malware data set against
the clustering algorithms and evaluated the performance using the
precision and recall defined earlier.

Table 8 shows the precision, recall, and cutting threshold for sev-
eral distance metrics. First of all, we notice that one can achieve
high performance using easy-to-set parameters. While one can
brute-force the cutting parameter range to achieve the highest pos-
sible accuracy [8], this option might not be always available with
partially labeled data. Second, and most important, we notice that
the achieved precision and recall outperform the classification al-
gorithms evaluated in section 4.3. This in part is attributed to the
power of the clustering algorithm in distinguishing subclasses into
distinct clusters, whereas subclasses in the binary classification that
are close to each other in the feature vector space are grouped er-
roneously with each others. To this end, one may actually use the
results of the clustering to guide the binary classification, and to
reduce its false alarms, thus improving its performance. We leave
the realization of this feature for future work.

4.5.2 Large Scale Clustering
We ran 115,157 samples of malware (the total of samples in Ta-

ble 3) through our clustering system to identify two main aspects.
First, we wanted to know how would those samples of malware
cluster among each other and how large would each cluster be given
that we have a very large sample set. Second, we wanted to identify
the time required for a large set of samples to cluster and to identify
the required hardware for such process in an operational settings.
We tested the 115,157 sample on a machine with 120 GB of RAM,
four core processor, and 200 GB hard disk—as shown in Table 2.
We were able to process 175,000 samples on the same machine in
a very reasonable time.

4.5.3 Benchmarking and Scalability
We benchmarked our 115,157 samples using several distance

calculation algorithms and hierarchal clustering methods with a cut
off threshold of 0.70. The timing results are shown in Table 9.
From this benchmarking, we observe the high variability of time it
takes for computing the distance matrix, which is the shared time

Table 8: Clustering precision and recall for several linkage and
cutting criteria and parameter values.

Linkage Cutting Precision Recall

C
or

re
la

tio
n

Average 0.40 93.4% 100%
Centroid 0.25 96.2% 100%
Complete 0.70 89.7% 100%
Median 0.25 89.6% 96.6%
Single 0.40 90.2% 100%
Ward 0.25 93.5% 98.2%

C
os

in
e

Average 0.25 84.1% 100%
Centroid 0.25 84.6% 100%
Complete 0.40 85.5% 97.1%
Median 0.25 94.4% 95.2%
Single 0.40 91.2% 100%
Ward 0.25 94.2% 96.9%

H
am

m
in

g

Average 0.25 98.9% 97.6%
Centroid 0.25 98.5% 100%
Complete 0.25 98.7% 97.5%
Median 0.25 100% 100%
Single 0.25 98.3% 98.8%
Ward 0.25 99.3% 97.6%

Ja
cc

ar
d

Average 0.25 99.9% 100%
Centroid 0.25 99.9% 100%
Complete 0.25 99.9% 100%
Median 0.40 99.9% 99.8%
Single 0.25 99.9% 100%
Ward 0.40 99.9% 100%

between all algorithms settings. For example, computing the dis-
tance matrix using the Jaccard index (which is the only distance
measure used in the literature for this purpose thus far [8]) takes
5820 seconds (about 97 minutes) whereas all other distance mea-
sures require between 27.8 minutes to 36.2 minutes. By consid-
ering other evaluation criteria, like timing of the linkage cost and
the performance measures, one can make several interesting con-
clusions. For example, given that the Hamming and Jaccard index
for distance computation perform equally well for clustering, as
shown in Table 8, one can use the Hamming distance and save up
to 70% of the total time required for clustering the same dataset.
Those results show that it is highly visible to perform large-scale
clustering, even using off-the-shelf algorithms with settings that
are overlooked in the literature. Finally, we measured the time it
takes to extract 115, 157 samples’ features from artifacts. We do
that over network to measure a distributed operation of our system.
We found the total time taken is 222 minutes (116 millisecond per
sample), which is a reasonable time that supports larger scales of
deployment.

4.6 Limitations
Like many techniques that rely on machine learning for classifi-

cation and behavior for characterization, our technique has several
shortcomings and limitations. First of all, since we run the malware
samples in a virtualized environment, some of the malware samples
may not run by detecting that fact, or even run but generate irrele-
vant behavior profile. For samples that do not run, which are mostly
due to detecting that the sample works in a virtualized analysis en-
vironment, or because some environment variables are missing, we
have two options that we implemented and turned successful in ad-
dressing the issue. First, we modify the VM environment using the
AutoMal configuration features to meet the expected environment
requirement for the sample to run resulting in evasion. Second, if
that fails, we sometimes do manual debugging and reversing, and

Table 9: Timing (seconds) for a benchmark of 115,157 sam-
ples using different distance measures: Correlation (Co), Ward
(W), Single (S), Average (A), Median (M), and Centroid (Ce).
DM is the time for computing the pair-wise distance matrix.

Method DM Co W S A M Ce
Correlation 1612 1436 1614 1396 1458 4954 5013

Cosine 1572 1429 1599 1390 1453 5323 5365
Hamming 2177 1460 1683 1412 1492 1453 1575

Jaccard 5820 1427 1686 1450 1449 1445 1604

occasionally run the sample on bare-metal (on a non-virtualized
system). An alternative to that is to use hardware virtualization, as
in Ether [18], which still supports the scalability features provided
by virtualized execution while addressing the problem.

According to our operations, and based on our data used in this
study, only less than 10% of the malware samples we collect in our
system have this issue, contrary to recent studies showing that 80%
of malware samples deploy anti-VM techniques [15]—In this latter
particular study, the authors analyze only 883 of “cherry-picked”
samples to support their statement. The sample is very small, and
a generalization on malware populations is hard to establish based
on that. Furthermore, the overwhelming majority of the less than
10% samples in our system (more than 98%) are made to run using
at least one of the aforementioned techniques.

Another theoretical limitation of our technique is that it relies on
behavior features that a malware sample can try to evade by gen-
erating misleading artifacts to poison those features. Indeed, ad-
versarial machine learning has recently received a lot of attention
in studying strategies an adversary can use to mislead the classi-
fier [10]. However, with our current dataset, we noticed that the
features used for classification and clustering are robust to minor
changes imposed by the adversary. Furthermore, once the adver-
sary becomes aware of the features used for classification and a
way to misguide our models, it becomes an open problem to always
update the features and select distinctive properties of the malware
sample that can resist such attacks. We emphasize that this kind of
attack pertains to theory, more than to practice.

A final limitation of our work is an inherit scalability bottleneck
associated with sandboxing systems: each malware sample needs
to be executed in a VM to extract representative features. While
this could have been an issue five 10 or even 5 years ago, when vir-
tualization technologies were not a mature domain, it is nowadays
an easily solvable problem. When our project, AMAL, started four
years ago it consisted of 4 virtual machines and a single controller
that can process a malware sample every 2 minutes at average. To-
day, both vertical and horizontal scalability are possible. Vertically,
the system has virtually unlimited resources, and can process 128
malware samples simultaneously. Adding resources and scaling
the system is very simple, and cost associated with the scalability
is very small. Horizontally, optimizations in determining a subset
of features that are of interest to the analyzed malware families and
limiting the sandboxing to them (as discussed in the context of fea-
tures selection) would greatly reduce the time taken in analyzing
the malware samples and collecting artifacts from them.

5. CONCLUSION AND FUTURE WORK
In this paper we introduced AMAL, the first operational large-

scale malware analysis, classification, and clustering system. AMAL
is composed of two subsystems, AutoMal and MaLabel. AutoMal
runs malware samples in virtualized environments and collects mem-
ory, file system, registry, and network artifacts, which are used for
creating a rich set of features. Unlike the prior literature, AutoMal

combines signature-based techniques with purely behavior-based
techniques, thus generating highly-representative features.

Using the artifacts generated by AutoMal, MaLabel creates fea-
ture vectors and use them to 1) perform binary classification of mal-
ware samples into distinctive, but generic families, and 2) cluster
malware samples into different families. Those families can be at
the granularity of a subclass (variant). By evaluating AutoMal on
a large corpus of analyst-vetted malware samples, we conclude its
many features and advantages. It provides high levels of precision,
recall, and accuracy, for both clustering and classification. Fur-
thermore, it provides the operator with the key feature of choosing
among several equally performing algorithms to do the same task
(e.g., clustering) and at low cost.

Beside memory features that we did not examine systematically
as features–beyond using the YARA signatures in data filtering, we
avoided the use of implicit features, side-channel information on
the reputation of network-related features (e.g., IP reputation, and
passive and reverse DNS information, among others), and white-
and blacklists—many of which are already available for improving
AMAL. In the future, we will look at utilizing those as additional
features to our system, and study how they impact its performance.

6. REFERENCES
[1] —. MySQL. http://www.mysql.com/, May 2013.
[2] —. Yara Project: A malware identification and classification tool.

http://bit.ly/3hbs3d, May 2013.
[3] E. Alpaydin. Introduction to machine learning. MIT press, 2004.
[4] Anonymized for Review. High-fidelity, behavior-based automated

malware analysis and classification. Technical report, Anonymized
for Review, 2013.

[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster.
Building a dynamic reputation system for dns. In USENIX Security
Symposium, 2010.

[6] M. Antonakakis, R. Perdisci, W. Lee, N. V. II, and D. Dagon.
Detecting malware domains at the upper dns hierarchy. In USENIX
Security Symposium, 2011.

[7] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and
J. Nazario. Automated classification and analysis of internet
malware. In RAID, 2007.

[8] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda.
Scalable, behavior-based malware clustering. In NDSS, 2009.

[9] P. Beaucamps, I. Gnaedig, and J.-Y. Marion. Abstraction-based
malware analysis using rewriting and model checking. In Computer
Security–ESORICS 2012, pages 806–823. Springer, 2012.

[10] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against
support vector machines. In ICML, 2012.

[11] L. Bilge, D. Balzarotti, W. K. Robertson, E. Kirda, and C. Kruegel.
Disclosure: detecting botnet command and control servers through
large-scale netflow analysis. In ACSAC, 2012.

[12] L. Bilge and T. Dumitras. Before we knew it: an empirical study of
zero-day attacks in the real world. In ACM CCS, 2012.

[13] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding
malicious domains using passive dns analysis. In NDSS, 2011.

[14] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang. On the analysis of the zeus botnet
crimeware toolkit. In Privacy Security and Trust, 2010.

[15] R. R. Branco, G. N. Barbosa, and P. D. Neto. Scientific but not
academical overview of malware anti-debugging, anti-disassembly
and anti-vm technologies. Blackhat, 2012.

[16] E. Carrera and G. Erdélyi. Digital genome mapping–advanced binary
malware analysis. In Virus bulletin conference, volume 11, 2004.

[17] P. M. Comar, L. Liu, S. Saha, P.-N. Tan, and A. Nucci. Combining
supervised and unsupervised learning for zero-day malware
detection. In INFOCOM, 2013 Proceedings IEEE, pages 2022–2030.
IEEE, 2013.

[18] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. In ACM CCS, 2008.

[19] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on

http://www.mysql.com/
http://bit.ly/3hbs3d

automated dynamic malware-analysis techniques and tools. ACM
Comput. Surv., 44(2):6:1–6:42, Mar. 2008.

[20] N. Falliere and E. Chien. Zeus: King of the Bots. Symantec Security
Response (http://bit.ly/3VyFV1), November 2009.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
Liblinear: A library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

[22] C. Gorecki, F. C. Freiling, M. Kührer, and T. Holz. Trumanbox:
Improving dynamic malware analysis by emulating the internet. In
SSS, 2011.

[23] K. Griffin, S. Schneider, X. Hu, and T.-c. Chiueh. Automatic
generation of string signatures for malware detection. In Recent
Advances in Intrusion Detection, pages 101–120. Springer, 2009.

[24] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In USENIX Security Symposium, 2008.

[25] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter:
Detecting malware infection through ids-driven dialog correlation. In
USENIX Security Symposium, 2007.

[26] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet command
and control channels in network traffic. In NDSS, 2008.

[27] Z. Hanif, T. Calhoun, and J. Trost. Binarypig: Scalable static binary
analysis over hadoop. http://bit.ly/17ykNdW, 2013.

[28] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and
detecting fast-flux service networks. In NDSS, 2008.

[29] C.-Y. Hong, F. Yu, and Y. Xie. Populated ip addresses: classification
and applications. In ACM CCS, pages 329–340, 2012.

[30] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method for large-scale
linear svm. In ICML, 2008.

[31] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and
G. Vigna. A static, packer-agnostic filter to detect similar malware
samples. In Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 102–122. Springer, 2013.

[32] G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws: Picking
command and control connections from bot traffic. In USENIX
Security Symposium, 2011.

[33] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing
malware for scalable triage and semantic analysis. In Proceedings of
the 18th ACM conference on Computer and communications
security, pages 309–320. ACM, 2011.

[34] J. Kinable and O. Kostakis. Malware classification based on call
graph clustering. Journal in computer virology, 7(4):233–245, 2011.

[35] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries.
In IEEE Sec. and Privacy, 2010.

[36] J. Kwon and H. Lee. Bingraph: Discovering mutant malware using
hierarchical semantic signatures. In Malicious and Unwanted
Software (MALWARE), 2012 7th International Conference on, pages
104–111. IEEE, 2012.

[37] A. Lanzi, M. I. Sharif, and W. Lee. K-tracer: A system for extracting
kernel malware behavior. In NDSS, 2009.

[38] J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse
engineering of types in binary programs. In NDSS, 2011.

[39] B. Liang, W. You, W. Shi, and Z. Liang. Detecting stealthy malware
with inter-structure and imported signatures. In Proceedings of the
6th ACM Symposium on Information, Computer and
Communications Security, pages 217–227. ACM, 2011.

[40] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an
attack-agnostic approach for preventing drive-by malware infections.
In ACM CCS, pages 440–450, 2010.

[41] H. D. Macedo and T. Touili. Mining malware specifications through
static reachability analysis. In ESORICS, pages 517–535. Springer,
2013.

[42] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson. Towards a
methodical evaluation of antivirus scans and labels. In The 14th
International Workshop on Information Security Applications
(WISA2013). Springer, 2013.

[43] J. Nazario and T. Holz. As the net churns: Fast-flux botnet
observations. In MALWARE, pages 24–31, 2008.

[44] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel.

Forecast: skimming off the malware cream. In Proceeding of
ACSAC, pages 11–20. ACM, 2011.

[45] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel. Fast malware
classification by automated behavioral graph matching. In CSIIR
Workshop. ACM, 2010.

[46] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of
executables. In ACSAC, 2008.

[47] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of
http-based malware and signature generation using malicious
network traces. In USENIX NSDI, 2010.

[48] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette,
T. Patten, G. Zacharias, A. Lakhotia, S. Golconda, J. Bay, et al.
Malware analysis and attribution using genetic information. In
Malicious and Unwanted Software (MALWARE), 2012 7th
International Conference on, pages 39–45. IEEE, 2012.

[49] J. Pfoh, C. Schneider, and C. Eckert. Leveraging string kernels for
malware detection. In Network and System Security, pages 206–219.
Springer, 2013.

[50] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu,
et al. The ghost in the browser analysis of web-based malware. In
USENIX HotBots, 2007.

[51] M. Ramilli and M. Bishop. Multi-stage delivery of malware. In
MALWARE, 2010.

[52] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning
and classification of malware behavior. In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 108–125, 2008.

[53] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of
malware behavior using machine learning. Journal of Computer
Security, 19(4):639–668, 2011.

[54] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. van Steen. Prudent practices for
designing malware experiments: Status quo and outlook. In IEEE
Sec. and Privacy, 2012.

[55] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Automatic reverse
engineering of malware emulators. In IEEE Sec. and Privacy, 2009.

[56] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic
excavator for reverse engineering data structures. In NDSS, 2011.

[57] R. Sommer and V. Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In IEEE
Symposium on Security and Privacy, 2010.

[58] R. Strackx and F. Piessens. Fides: selectively hardening software
application components against kernel-level or process-level
malware. In ACM CCS, 2012.

[59] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas. Botnet
detection based on network behavior. In Botnet Detection, 2008.

[60] G. Tahan, C. Glezer, Y. Elovici, and L. Rokach. Auto-sign: an
automatic signature generator for high-speed malware filtering
devices. Journal in computer virology, 6(2):91–103, 2010.

[61] G. Tahan, L. Rokach, and Y. Shahar. Mal-id: Automatic malware
detection using common segment analysis and meta-features. The
Journal of Machine Learning Research, 98888:949–979, 2012.

[62] R. Tian, L. Batten, R. Islam, and S. Versteeg. An automated
classification system based on the strings of trojan and virus families.
In IEEE MALWARE, 2009.

[63] R. Tian, L. Batten, and S. Versteeg. Function length as a tool for
malware classification. In IEEE MALWARE, 2008.

[64] VMWare. Virtual Machine Disk Format (VMDK).
http://bit.ly/e1zJkZ, May 2013.

[65] G. Wicherski. pehash: A novel approach to fast malware clustering.
In 2nd USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2009.

[66] C. Willems, F. C. Freiling, and T. Holz. Using memory management
to detect and extract illegitimate code for malware analysis. In
ACSAC, 2012.

[67] Y. Ye, T. Li, Y. Chen, and Q. Jiang. Automatic malware
categorization using cluster ensemble. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 95–104. ACM, 2010.

[68] H. Zhao, M. Xu, N. Zheng, J. Yao, and Q. Ho. Malicious executables
classification based on behavioral factor analysis. In IC4E, 2010.

http://bit.ly/3VyFV1
http://bit.ly/17ykNdW
http://bit.ly/e1zJkZ

APPENDIX
A. MACHINE LEARNING ALGORITHMS

We outline definitions and algorithms used in MaLabel. For op-
timizations used in MaLabel, see [21] and [4].

A.1 Classification Algorithms

A.1.1 Support Vector Machines (SVM)
Given a training set of labeled pairs (xi, yi) for 0 < i ≤ `,

xi ∈ Rn, and yi ∈ {1,−1}, the (L2R primal) SVM solces:

min
w,b,ξ

1

2
wTw + C

∑̀
i=1

ξi (1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, (2)

ξi ≥ 0 (3)

where the training vectors xi are mapped into a higher dimensional
space using the function φ, and the SVM finds a linear separating
hyperplane with the maximal margin in this space. C > 0 is the
penalty parameter of the error term (set to 0.01 in our work).
Kernel functions. K(xi,xj) ≡ φ(xi)

Tφ(xj) is the kernel func-
tion. In MaLabel (§4) we use the linear and polynomial kernels, de-
fined asK(xi,xj) = xTi xj andK(xi,xj) = (γxTi xj + r)d, γ >
0, respectively. In §4 we use γ = 64 and d = 2.
Loss functions. ξ(w, x, yi) is called the loss function, where we
use the L1-loss and L2-loss, defined as

ξ(w,x, yi) = max(1− yiwTxi, 0), and (4)

ξ(w,x, yi) = max(1− yiwTxi, 0)2. (5)

Regularization. The formalization in (1) is called the L2-regularization.
The L1-regularized L2-loss SVM solves the following primal prob-
lem (where || · ||1 is the L1-norm):

min
w
||w||1 + C

∑̀
i=1

max(1− yiwTxi, 0)2 (6)

Dual SVM. The dual SVM problem [30] is defined as:

min
α
f(α) =

1

2
αT Q̄α− eTα (7)

subject to 0 ≤ αi ≤ U for 1 ≤ i ≤ `, where Q̄ = Q + D, D
is a diagonal matrix, and Qij = yiyjx

T
i xj . For L1-Loss SVM,

U = C and Dii = 0 for 1 ≤ i ≤ `, while for L2-Loss SVM,
U =∞ and Dii = 1

2C
for 1 ≤ i ≤ `.

A.1.2 Logistic Regression (LR)
Here we provide definitions for the logistic regression algorithms

used in §4. The L2-regularized primal LR solves the following
unconstrained optimization problem:

min
w

1

2
wTw + C

∑̀
i=1

log(1 + e−yiw
T xi) (8)

and the dual version of the problem (L2R LR dual) is

min
α

1

2
αTQα+

∑
i:αi>0

αi logαi +
∑

i:αi<C

(C − αi)−
∑̀
i=1

C logC

(9)

subject to 0 ≤ αi ≤ C where 1 ≤ i ≤ `.

On the other hand, the L1 regularized LR solves

min
w
||w||1 + C

∑̀
i=1

log(1 + e−yiw
T xi). (10)

A.1.3 Perceptron
The perceptron is an artificial neural network (ANN) that maps

its input x into a binary value (class label) as follows:

f(x) =

{
1 If w · x + b > 0

0 Otherwise
(11)

where w is a weights vector, and b is a bias parameter. We defer
detailed explanation of the learning and testing method to our tech-
nical report for the lack of space [4]. In §4, we use a maximum
network depth of 100, a b of 0.05, and a learning rate α of 0.1. We
do not concern ourselves by finding the optimal parameters.

A.1.4 K-Nearest-Neighbor
The KNN is a non-linear classification algorithm. In the training

phase, we provide the algorithm of two labels and a set of training
samples. In the testing phase, for each sample vector a, we give it
the label of the most frequent among the training samples nearest
to it. For the lack of space, we defer details to [4]—the same tech-
nique is well explained in [3]. For evaluation, we use an odd k (to
break potential ties), and vote the class to which a belongs.

A.1.5 Decision Trees
For the lack of space, we defer most of the details on the classifi-

cation trees used in this study to [4] for the lack of space. However,
we use the standard classification tree described in [3], and using
a single split tree (for two classes classification). For that, we uti-
lize all the set of features provided in the study (the same technique
with its optimizations is used in [13]).

A.2 Hierarchical Clustering
We use the classical hierarchical clustering algorithm in [3].We

defer the description of the algorithm to [4], and here only focus on
the mathematical description of the different settings used in §4.

A.2.1 Distance metrics
In §4, we use several distance metrics, defined as in (12)-(15)

Jaccard: d(a,b) =
a ∨ b

a ∧ b
(12)

Cosine: d(a,b) =
a · b
||a||||b|| (13)

Hamming: d(a,b) =
∑
i

|ai − bi| (14)

Correlation: d(a,b) =
1
n

∑
i aibi − µaµb

σaσb
(15)

In the definitions above, µa = 1
|a|

∑
a∈a a and µb = 1

|b|
∑
b∈b b.

A.2.2 Linkage metrics
Let A and B be clusters, and a and b be arbitrary samples (vec-

tors) in them. We define the following linkage metrics.

Average: d(A,B) =
1

||A||||B||
∑
a∈A

∑
b∈B

d(a,b) (16)

Centroid: d(A,B) = ||cA − cB ||2, cA =
1

|A|

|A|∑
i=1

aki. (17)

Complete: d(A,B) = max
a∈A,b∈B

d(a,b) (18)

Median: d(A,B) = ||c̃A − c̃B ||2, c̃A =
1

2
(c′A + c′′A) (19)

Single: d(A,B) = min
a∈A,b∈B

d(a,b) (20)

Ward: d(A,B) =
|A||B|
|A|+ |B| ||cA − cB ||2 (21)

In (17) and (19), || · ||2 is the Euclidean distance defined as
d(a, b) =

∑
∀i(ai − bi)

2. In (19), c̃B = 1
2
(c′B + c′′B) for re-

cursively linked clusters B′ and B′′ in B.

B. K-FOLD CROSS VALIDATION
We use the classical k-fold cross validation (where k = 10) for

testing our models. We divide the dataset D into D1, D2, . . . , Dk.
We spareDi for 1 ≤ i ≤ k for testing, and use the remaining k−1
folds for training. We repeat the process k times by altering the
testing and training datasets. As a sanity check, we rerun the test
several times by re-randomizing the order of samples in D.

	Introduction
	Related Work: A Synopsis
	System Design
	System Flow
	AutoMal: Behavior-based Malware Analyzer
	MaLabel: Automated Labeling

	Features and Their Representation

	Evaluation
	Hardware and Benchmarking
	Datasets
	High-fidelity Malware Classification
	Classification of Analyst-vetted Samples
	Features Ranking and Selection
	Choosing Classification Parameters

	Large Scale Classification
	Malware Clustering
	Clustering of Manually Labeled Samples
	Large Scale Clustering
	Benchmarking and Scalability

	Limitations

	Conclusion and Future Work
	References
	Machine Learning Algorithms
	Classification Algorithms
	Support Vector Machines (SVM)
	Logistic Regression (LR)
	Perceptron
	K-Nearest-Neighbor
	Decision Trees

	Hierarchical Clustering
	Distance metrics
	Linkage metrics

	k-fold Cross Validation

