
Keylogging-Resistant Visual
Authentication Protocols

DaeHun Nyang,Member, IEEE, Aziz Mohaisen,Member, IEEE, and Jeonil Kang,Member, IEEE

Abstract—The design of secure authentication protocols is quite challenging, considering that various kinds of root kits reside in

Personal Computers (PCs) to observe user’s behavior and to make PCs untrusted devices. Involving human in authentication

protocols, while promising, is not easy because of their limited capability of computation and memorization. Therefore, relying on users

to enhance security necessarily degrades the usability. On the other hand, relaxing assumptions and rigorous security design to

improve the user experience can lead to security breaches that can harm the users’ trust. In this paper, we demonstrate how careful

visualization design can enhance not only the security but also the usability of authentication. To that end, we propose two visual

authentication protocols: one is a one-time-password protocol, and the other is a password-based authentication protocol. Through

rigorous analysis, we verify that our protocols are immune to many of the challenging authentication attacks applicable in the literature.

Furthermore, using an extensive case study on a prototype of our protocols, we highlight the potential of our approach for real-world

deployment: we were able to achieve a high level of usability while satisfying stringent security requirements.

Index Terms—Authentication, smartphone, malicious code, keylogger

Ç

1 INTRODUCTION

THREATS against electronic and financial services can be
classified into two major classes: credential stealing and

channel breaking attacks [20]. Credentials such as users’
identifiers, passwords, and keys can be stolen by an attacker
when they are poorly managed. For example, a poorly man-
aged personal computer (PC) infected with a malicious soft-
ware (malware) is an easy target for credential attackers
[46], [51]. On the other hand, channel breaking attacks—
which allow for eavesdropping on communication between
users and a financial institution—are another form of
exploitation [22]. While classical channel breaking attacks
can be prevented by the proper usage of a security channel
such as IPSec [13] and secure sockets layer (SSL) [43], recent
channel breaking attacks are more challenging. Indeed,
“keylogging” attacks—or those that utilize session hijack-
ing, phishing and pharming, and visual fraudulence—can-
not be addressed by simply enabling encryption.

Chief among this class of attacks are keyloggers [19],
[44], [46]. A keylogger is a software designed to capture
all of a user’s keyboard strokes, and then make use of
them to impersonate a user in financial transactions. For
example, whenever a user types in her password in a
bank’s sign-in box, the keylogger intercepts the pass-
word. The threat of such keyloggers is pervasive and
can be present both in personal computers and public
kiosks; there are always cases where it is necessary to

perform financial transactions using a public computer
although the biggest concern is that a user’s password is
likely to be stolen in these computers. Even worse, key-
loggers, often rootkitted, are hard to detect since they
will not show up in the task manager process list.

To mitigate the keylogger attack, virtual or onscreen key-
boards with random keyboard arrangements are widely
used in practice. Both techniques, by rearranging alphabets
randomly on the buttons, can frustrate simple keyloggers.
Unfortunately, the keylogger, which has control over the
entire PC, can easily capture every event and read the video
buffer to create a mapping between the clicks and the new
alphabet. Another mitigation technique is to use the key-
board hooking prevention technique by perturbing the key-
board interrupt vector table [42]. However, this technique is
not universal and can interfere with the operating system
and native drivers.

Considering that a keylogger sees users’ keystrokes, this
attack is quite similar to the shoulder-surfing attack. To pre-
vent the shoulder-surfing attack, many graphical password
schemes have been introduced in the literature [15], [18],
[28]. However, the common theme among many of these
schemes is their unusability: they are quite complicated for
a person to utilize them. For some users, the usability is as
important as the security, so they refuse to change their
online transaction experience for higher security. The shoul-
der-surfing attack, however, is different from keylogging in
the sense that it allows an attacker to see not only direct
input to the computer but also every behavior a user makes
such as touching some parts of screen. To adopt shoulder-
surfing resistant schemes for prevention of keylogger is
rather excess considering the usability. Notice that while
defending against the shoulder-surfing attack is out of the
scope of this work, and could be partly done using other
techniques from the literature intended for this purpose, the
promising future of smart glasses (like Google glasses)

� D. Nyang and J. Kang are with the School of Computer and Information
Engineering of Inha University, Incheon, Korea.
E-mail: dreamx@seclab.inha.ac.kr.

� A. Mohaisen is with VeriSign Labs, 12061 Bluemont Way, Reston, VA
20190. E-mail: amohaisen@gmail.com.

Manuscript received 9 Sept. 2013; revised 16 Jan. 2014; accepted 30 Jan. 2014.
Date of publication 19 Feb. 2014; date of current version 26 Sept. 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2014.2307331

2566 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

1536-1233� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

makes the attack irrelevant to our protocols if it is to be
implemented using them instead of mobile phones.

It is not enough to depend only on cryptographic techni-
ques to prevent attacks which aim to deceive users’ visual
experience while residing in a PC. Even if all necessary
information is securely delivered to a user’s computer, the
attacker residing on that user’s computer can easily observe
and alter the information and show valid-looking yet
deceiving information. Human user’s involvement in the
security protocol is sometimes necessary to prevent this
type of attacks but humans are not good at complicated cal-
culations and do not have a sufficient memory to remember
cryptographically-strong keys and signatures. Thus, usabil-
ity is an important factor in designing a human-involving
protocol [22].

Our approach to solving the problem is to introduce an
intermediate device that bridges a human user and a termi-
nal. Then, instead of the user directly invoking the regular
authentication protocol, she invokes a more sophisticated
but user-friendly protocol via the intermediate helping
device. Every interaction between the user and an interme-
diate helping device is visualized using a Quick Response
(QR) code. The goal is to keep user-experience the same as
in legacy authentication methods as much as possible, while
preventing keylogging attacks. Thus, in our protocols, a
user does not need to memorize extra information except a
traditional security token such as password or personal
identification number (PIN), and unlike the prior literature
that defends against should-surfing attacks by requiring
complex computations and extensive inputs. More specifi-
cally, our approach visualizes the security process of
authentication using a smartphone-aided augmented real-
ity. The visual involvement of users in a security protocol
boosts both the security of the protocol and is re-assuring to
the user because she feels that she plays a role in the pro-
cess. To securely implement visual security protocols, a
smartphone with a camera is used. Instead of executing the
entire security protocol on the personal computer, part of
security protocol is moved to the smartphone. This visuali-
zation of some part of security protocols enhances security
greatly and offers protection against hard-to-defend against
attacks such as malware and keylogging attack, while not
degrading the usability. However, we note that our goal is
not securing the authentication process against the shoul-
der-surfing attacker who can see or compromise simulta-
neously both devices over the shoulder, but rather to make
it hard for the adversary to launch the attack.

1.1 Scope and Contributions

In this paper, we demonstrate how visualization can
enhance not only security but also usability by proposing
two visual authentication protocols: one for password-
based authentication, and the other for one-time-password
(OTP). Through rigorous analysis, we show that our proto-
cols are immune to many of the challenging attacks applica-
ble to other protocols in the literature. Furthermore, using
an extensive case study on a prototype of our protocols, we
highlight the potential of our protocols in real-world
deployment addressing users shortcomings and limitations.
The original contributions of this paper are as follows:

� Two protocols for authentication that utilize visuali-
zation by means of augmented reality to provide
both high security and high usability. We show that
these protocols are secure under several real-world
attacks including keyloggers. Both protocols offer
advantages due to visualization both in terms of
security and usability.

� Prototype implementations in the form of Android
applications which demonstrate the usability of our
protocols in real-world deployment settings.

We note that our protocols are generic and can be
applied to many contexts of authentication. For example, a
plausible scenario of deployment could be when consider-
ing the terminal in our system as an Automated Teller
Machine (ATM), public PC, among others. Furthermore,
our design does not require an explicit channel between the
bank and the smartphone, which is desirable in some con-
texts; the smartphone can be replaced by any device with
the needed functionality of capture photos (see Section 2 for
more details). This property enables us to expand our visual
authentication protocols into the service context using smart
wearable devices, which will be mentioned in Section 4.

1.2 Organization

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the system, trust, and attacker models
used in this paper. In Section 3, we present two novel
authentication protocols. In Section 4, we extended the pre-
sentation of these protocols by discussing several imple-
mentation and design issues. In Section 5, we analyze the
security of our protocols under several potential attacks. In
Section 6, we report on several experiments and user studies
to support the usability of our protocols. In Section 7, our
protocols are assessed overall in terms of usability and secu-
rity. In Section 8, we review related works from the litera-
ture. In Section 9, we draw concluding remarks and point
out several future work directions.

2 SYSTEM AND THREAT MODEL

2.1 System Model

Our system model consists of four different entities (or par-
ticipants), which are a user, a smartphone, a user’s terminal,
and a server. The user is an ordinary human, limited by
human’s shortcomings, including limited capabilities of
performing complex computations or remembering sophis-
ticated cryptographic credentials, such as cryptographically
strong keys. With a user’s terminal such as a desktop com-
puter or a laptop, the user can log in a server of a financial
institution (bank) for financial transactions. Also, the user
has a smartphone, the third system entity, which is
equipped with a camera and stores a public key certificate
of the server for digital signature verification. Finally, the
server is the last system entity, which belongs to the finan-
cial institution and performs back-end operations by inter-
acting with the user (terminal or smartphone) on behalf of
the bank.

Assuming a smartphone entity in our system is not a far-
fetched assumption, since most cell phones nowadays qual-
ify (in terms of processing and imaging capabilities) to be
the device used in our work. In our system, we assume that

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2567

there is no direct channel between the server and the smart-
phone. Also, we note that in most of the protocols proposed
in this paper, a smartphone does not use the communication
channel—unless otherwise is explicitly stated—so a smart-
phone can be replaced by any device with a camera and
some proper processing power such as a digital camera, a
portable music player with camera (iPod touch, or mobile
gadget with the aforementioned capabilities) or a smart
watch/glasses.

2.2 Trust and Attacker Models

For the trusted entities in our system, we assume the follow-
ing: First, we assume that the channel between the server
and the user’s terminal is secured with an SSL connection,
which is in fact a very realistic assumption in most elec-
tronic banking systems. Second, we assume that the server
is secured by every means and is immune to every attack by
the attacker; hence the attacker’s concern is not breaking
into the server but attacking the user. Finally, with respect
to the keylogger attack, we assume that the keylogger
always resides on the terminal. As for the attacker model,
we assume a malicious attacker with high incentives of
breaking the security of the system. The attacker is capable
of doing any of the following:

� The attacker has a full control over the terminal.
Thus,

- While residing in a user’s terminal, the attacker
can capture user’s credentials such as a pass-
word, a private key, and OTP token string.

- The attacker can deceive a user by showing a
genuine-looking page that actually transfers
money to the attacker’s account with the cap-
tured credentials that she obtained from the
compromised terminal.

- Or, just after a user successfully gets authenti-
cated with a valid credential, the attacker can
hijack the authenticated session.

� The attacker is capable of creating a fake server to
launch phishing or pharming attacks.

For the smartphone in Protocol 1, we assume that it is
always trusted and immune to compromise, which means
no malware can be installed on it. Notice that this assump-
tion is in line with other assumptions made on the
smartphone’s trustworthiness when used in similar proto-
cols to those presented in this paper [34], [35], [41]. We,
however, note that relaxing this assumption still could pro-
vide a certain level of security with Protocol 2. Protocol 2
uses two factors (password and the smartphone), and thus,
the assumption can be relaxed so that not only the terminal
but also smartphone could be compromised (one of them at
a time but “not both together”). The non-simultaneous com-
promise assumption obviously excludes the shoulder-surf-
ing attacker.

In our protocols, we also assume several cryptographic
primitives. For example, in all protocols, we assume that a
user has a pair of public/private keys used for message sign-
ing and verification. In Protocol 1, we assume that the server
has the capability of generating one time pads, used for
authentication. In Protocol 2, we assume users have

passwords used for their authentication. Notice that these
assumptions are not far-fetched as well, since most banking
services use such cryptographic credentials. For example,
with most banking services, the use of digital certificates
issued by the bank is very common. Furthermore, the use of
such cryptographic credentials and maintaining them on a
smartphone does not require any technical background at
the user side, and is suited for wide variety of users. Further
details on these credentials and their use are explained along
with the specific protocol where they are used in this paper.

2.3 Linear and Matrix Barcodes

A barcode is an optical machine-readable representation of
data, and it is widely used in our daily life since it is
attached to all types of products for identification. In a nut-
shell, barcodes are mainly two types: linear barcodes and
matrix (or two dimensional, also known as 2D) barcodes.
While linear barcodes—shown in Fig. 1a—have a limited
capacity, which depends on the coding technique used that
can range from 10 to 22 characters, 2D barcodes—shown in
Figs. 1b and 1 c—have higher capacity, which can be more
than 7,000 characters. For example, the QR code—a widely
used 2D barcode—can hold 7,089 numeric, 4,296 alphanu-
meric, or 2,953 binary characters [4], making it a very good
high-capacity candidate for storing plain and encrypted
contents alike.

Both linear and matrix barcodes are popular and have
been widely used in many industries including, but not lim-
ited to, automotive industries, manufacturing of electronic
components, and bottling industries, among many others.
Thanks to their greater capacity, matrix barcodes are even
proactively used for advertisement so that a user who has a
smartphone can easily scan them to get some detailed infor-
mation about advertised products. This model of advertise-
ment—and other venues of using these barcodes in areas
that are in touch with users—created the need for barcode’s
scanners developed specifically for smartphones. Accord-
ingly, this led to the creation of many popular commercial
and free barcode scanners that are available for smart-
phones such as iPhone and Andriod phones alike.

Fig. 1. Three different barcodes encoding the statement “Virtual reality.”
(a) is a linear barcode (code 128), and (b) and (c) are matrix barcodes
(of the QR code standard). While (b) encodes the plain text, (c) encodes
an encrypted version using the AES-256 encryption algorithm in the
cipher-block chaining (CBC) mode (note this last code requires a pass-
word for decryption).

2568 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

3 KEYLOGGING-RESISTANT VISUAL

AUTHENTICATION PROTOCOLS

In this section, we describe two protocols for user authenti-
cation with visualization. Before getting into the details of
these protocols, we review the notations for algorithms
used in our protocols as building blocks. Our system utilizes
the following algorithms:

� Encrkð�Þ. An encryption algorithm which takes a key
k and a messageM from setM and outputs a cipher-
text C in the set C.

� Decrkð�Þ. A decryption algorithm which takes a
ciphertext C in C and a key k, and outputs a plaintext
(or message)M in the setM.

� Signð�Þ. A signature generation algorithm which
takes a private key SK and a message M from the
setM, and outputs a signature s.

� Verfð�Þ. A signature verification algorithm which
takes a public key PK and a signed message ðM; sÞ,
and returns valid or invalid.

� QREncð�Þ. A QR encoding algorithm which takes a
string S in S and outputs a QR code.

� QRDecð�Þ. A QR decoding algorithm which takes a
QR code and returns a string S in S.

Any public key encryption scheme with indistinguish-
ability against adaptive chosen ciphertext attacker (IND-
CCA2) security would be good for our application. A public
key encryption scheme with IND-CCA2 adds random pad-
ding to a plaintext, which makes the ciphertext different
whenever encrypted, even though the plaintext is the same
[26]. This restriction on the type of the used public key
encryption scheme will prevent an attacker from checking
whether his guess for the random layout is right or not.
Thus, the security of the scheme is not dependent on the
number of possible layouts but the used encryption scheme.
If no such encryption is used, the adversary will be able to
figure out the layouts used because he will be able to verify
a brute-force attack by matching all possible plaintexts to
the corresponding ciphertext. On the other hand, when
such encryption is used, the 1-1 mapping of plaintext to
cipher text does not hold anymore and launching the attack
will not be possible at the first place. Also, any signature
scheme with existential-unforgeability against adaptive
chosen-message attacker (EUF-CMA) can be used to serve
the purpose of our system. For details on both notions of
security, see [16]. In particular, and for efficiency reasons,
we recommend the short signature in [6].

3.1 Authentication with Random Strings

In this section, we introduce an authentication protocol with
a one time password (OTP). The following protocol
(referred to as Protocol 1 in the remainder of this paper)
relies on a strong assumption; it makes use of a random
string for authentication. The protocol works as follows:

1. The user connects to the server and sends her ID.
2. The server checks the ID to retrieve the user’s public

key (PKID) from the database. The server then picks
a fresh random string OTP and encrypts it with the
public key to obtain EOTP ¼ EncrPKID

ðOTP Þ.

3. In the terminal, a QR code QREOTP
is displayed

prompting the user to type in the string.
4. The user decodes the QR code with EOTP ¼

QRDecðQREOTP
Þ. Because the random string is

encrypted with user’s public key (PKID), the user can
read the OTP string only through her smartphone by
OTP ¼ DecrkðEOTP Þ and type in the OTP in the ter-
minal with a physical keyboard.

5. The server checks the result and if it matches what
the server has sent earlier, the user is authenticated.
Otherwise, the user is denied.

In this protocol, OTP is any combination of alphabets or
numbers whose length is 4 or more depending on the secu-
rity level required.

3.2 An Authentication Protocol with Password and
Randomized Onscreen Keyboard

Our second protocol, which is referred to as Protocol 2 in
the rest of this paper, uses a password shared between the
server and the user, and a randomized keyboard. A high-
level event-driven code describing the protocol is shown in
Fig. 3. The protocol works as follows:

1. The user connects to the server and sends her ID.
2. The server checks the received ID to retrieve the

user’s public key (PKID) from the database. The
server prepares p, a random permutation of a key-
board arrangement, and encrypts it with the public
key to obtain EKBD ¼ EncrPKID

ðpÞ. Then, it encodes
the ciphertext with QR encoder to obtain QREKBD

¼
QREncðEkIDðpÞÞ. The server sends the result with a
blank keyboard.

3. In the user’s terminal, a QR code (QREKBD
) is dis-

played together with a blank keyboard. Because the
onscreen keyboard does not have any alphabet on it,
the user cannot input her password. Now, the user
executes her smartphone application which first
decodes the QR code by applying QRDecðQREKBD

Þ
to get the ciphertext (EKBD). The ciphertext is then
decrypted by the smartphone application with the
private key of the user to display the result (p ¼
DecrSKID

ðEKBDÞ) on the smartphone’s screen.
4. When the user sees the blank keyboard with the QR

code through an application on the smartphone that
has a private key, alphanumerics appear on the blank
keyboard and the user can click the proper button for
the password. The user types in her password on the
terminal’s screen while seeing the keyboard layout
through the smartphone. The terminal does not know
what the password is but only knows which buttons
are clicked. Identities of the buttons clicked by the
user are sent to the server by the terminal.

5. The server checks whether the password is correct
or not by confirming if the correct buttons have
been clicked.

4 DISCUSSION

Some of the technical issues in the two protocols thatwe have
introduced in the previous sections call for further discus-
sion and clarification. In this section, we elaborate on how to

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2569

handle several issues related to our protocols, such as session
hijacking, transaction verification, and securing transactions.

4.1 Password Hashing

Passwords are usually stored in a hashed form with a salt to
prevent server attacks, instead of being stored in plaintext
on the server. In Protocol 2, we can easily support this pass-
word hashing by making the server compare the password
hash computed from the stored salt value and the trans-
ferred password after decrypting it with the stored pass-
word hash value.

4.2 Message Signing

For the generality of the purpose of this protocol and the
following protocols, and to prevent the terminal from
misrepresenting the contents generated by the server,
one can establish the authenticity of the server and the
contents generated by it by adding the following verifi-
cation process. When the server sends the random per-
mutation to the user, it signs the permutation using the
server’s private key and the resulting signature is
encoded in a QR code. Before decrypting the contents,
the user establishes the authenticity of the contents veri-
fying the signature against the server’s public key. Both
steps are performed using the Sign and Verf algorithms.
Verification is performed by the smartphone to avoid
any man-in-the-middle attack by the terminal.

4.3 Prevention of Session Hijacking with Visual
Signature Validation

Even with secure authentication, an attacker controlling
entities in the system—the terminal in particular—via a
malware can hijack the authentication session when a user
tries to request some transactions such as money transfer.
Though usually money transfer action prompts a user to
input the password, the malware can easily hijack it and
alter the transfer information with the attacker’s informa-
tion. To prevent the session hijacking in Protocol 1, we can
make a QR code to include additional information on the
user’s transaction request as follows:

1. A user requests via terminal to the server money
transfer denoted as T that describes sender name/
account, recipient name/account, a timestamp, and
amount of money to transfer.

2. The server checks the ID to retrieve the user’s public
key (PKID) from the database. Then, it picks a fresh
OTP to prepare QR ¼ QREncðEOTP ; T; s ¼
SignðPrK; T ÞÞ, where PrK is a signing key of the
server. Then, it sends QR to the user to authorize the
transaction.

3. On the terminal, a QR code QR is displayed prompt-
ing the user to type in the OTP string.

4. The user decodes the QR code to get ðEOTP ¼
QRDecðQREOTP

Þ; T; sÞ with her smartphone applica-
tion. Here the application verifies the time stamp
and the signature by VerfðPubK; T; sÞ to show the
result (Valid/Invalid) on the screen with the
decrypted OTP and T . If the application fails to vali-
date the signature, it does not show neither the
decrypted OTP nor T , but displays an error message

to alert the user. When the user is confirmed with
the signature verification result and with T , she
inputs the OTP to the terminal, which is sent back to
the server.

5. The server checks the result and if it matches with
the OTP that the server has sent earlier, the user is
authenticated. Otherwise, the user is denied.

This expansion of the protocol enables a user to confirm
that her critical transaction request has not been altered,
and thus, the session hijacking attack is prevented. For this
additional security functionality, a user’s involvement is
minimized in the protocol, because a user only sees the
transaction information on the phone when it is valid, or an
alert message when invalid. We note that the expansion is
also applicable to Protocol 2, but not applicable to legacy
OTP/password authentications.

4.4 Backward Visual Channel from PC to
Smartphone

It is quite natural to think of the backward channel from PC
to smartphone when PC has a camera. The idea of using QR
code on the phone’s screen as an upload channel (from
phone to terminal) can be used, as previously done in other
schemes [31]. Instead of using cellular network for a phone
to send the confirmation, we can use this QR code-based
visual channel from phone to a terminal.

The use of the visual channel to input encrypted creden-
tials from the smartphone to the terminal has an interesting
security implication. As is the case with using e-banking on
untrusted terminals, imagine that such terminal is infected
with a virus, or has a malware, which could be a keylogger.
If the user is to use the authentication credentials directly on
the terminal, it is obvious that these credentials will be com-
promised. On the other hand, if these credentials are keyed
in on the smartphone and to be transferred using the visual
channel between the smartphone and the terminal in an
encrypted form for the server, the keylogging attacker will
be prevented from logging these credentials on the terminal.

4.5 The Smart Glasses

The application context of our visual authentication proto-
cols can be easily expanded by applying the visual authenti-
cation protocols to the smartphone and the glasses instead
of the terminal and the smartphone. That is, an encrypted
OTP for Protocol 1 or a blank keyboard for Protocol 2
appears on a smartphone instead of a terminal, and a user
sees the secret information through the glasses instead of a
smartphone to authenticate securely by entering the OTP or
by tapping the password on the blank keyboard on the
smartphone. Accordingly, the threat model must be rede-
fined, and the usability study must be conducted again. The
application-context change using the newly-arisen smart
wearable devices such as smart glasses and smart watches
together with a smartphone may lead to new security serv-
ices supported by the visualization concept. We leave this
for future work.

4.6 Time-Based OTP Devices

While one may consider independent OTP device such as
RSA’s SecureID and Google’s Authenticator [1], [2], the way

2570 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

both systems work prevent various advantages of our
design if they are used in conjunction. Both of the SecurID
and Google Authenticator are variations of the same idea,
and they indeed implement the broader type of time-based
authentication using RFC “6238: TOTP: Time-Based One-
Time Password Algorithm” [37]. SecurID uses a tokenizer
(at the client side; hardware or software) which has its own
clock and a symmetric key, used as the seed for computing
the token. At the other side, the server has a database with
all legit “smart-cards” (tokenizers), a real clock, and keys.
The server uses the key and the real clock value to re-com-
pute the token generated by the user and validate the PIN
sent by the user with a 60 seconds time-window. While
SecurID is a proprietary software (closed source), Google
authenticator is an open source, and software-based. It
implements the token as the first few digits (6) of the
HMAC-SHA1 of the current clock value on the device using
the app. The same thing is done for verification as in
SecurID. SecurID tokenizer refreshes tokens every 60 sec-
onds and Google authenticator uses 30 seconds as a default.

While we use the concept of OTP, our use of tokens is
in the form of challenge/response, differing from the
time-based authentication schemes (represented by the
two schemes above). Unlike both schemes, the OTP in
our case is generated by the server, not the user, and is
not timed (although the server may reject the once after
a time-out by keep a counter of that OTP). For that rea-
son, our system brings two advantages: (1) our system
provides better mitigations to the replay attack. Every-
time the user connects to the server, she’s given a fresh
token, whereas tokens in the time-based systems are
refreshed every certain number of seconds. That window
can be used by the attacker for launching a replay attack.
(2) While mitigating the replay attack, our use of the
challenge/response instead of time-based OTP is user
friendly. It removes any stress on the users of having to
type in the token within a short period of time.

4.7 Replacing Visual Channels with Bluetooth

The visual channel in Protocol 1 (that uses OTP) is used to
transfer the encrypted OTP from PC to the smartphone, and
the user plays a role of another channel from the smart-
phone to PC by entering the decrypted OTP into PC. Here,
both channels (from PC to the smartphone and vice versa)
can be replaced with other channels such as Bluetooth, and
the whole authentication procedure can be automated. This
will significantly enhance the usability of the authentication
protocol. However, in another aspect, not all PCs are
equipped with the Bluetooth module. Also, even though PC
has the Bluetooth module, it might be an annoying job to
execute the pairing whenever the user uses a device that
she has never paired before. In that sense, Protocol 1 with
visual channel and user’s entering PIN are easier to be
deployed in the current environment.

5 SECURITY ANALYSIS

Trust in our protocols can be seen shifted from PC to smart-
phone to make authentication protocols secure against mal-
ware in a PC. However, considering that it is not easy to
protect user’s credentials when a malware resides in a PC

without sacrificing usability,1 and that a user sometimes has
to use an untrusted PC such as a public PC or a kiosk, our
approach to move trust to the smartphone that is at least
more trustworthy than public PCs is plausible. Also, in Pro-
tocol 2 that uses a password for authentication, a smart-
phone is not required to be trusted because a password is
another factor for any successful authentication.

In this section, we analyze the security of our scheme
under several attack scenarios and show how these attacks
are defended against.

5.1 Key Space and Brute-Force Attacker

In our protocols, several stages include encryption of
sensitive information such as credentials, which are of
interest to the attacker (including the user ID, password,
and nonce generated by the server). In our prototype,
and system recommendations for wide use of our proto-
cols, as well as the description provided above for the
different protocols, we consider public key cryptography.
Furthermore, we suggest a key length that provides good
security guarantees. This includes the use of RSA-2048,
which is infeasible to attack using the most efficient
brute-force attack. This applies to both encryption and
signature algorithms used in the protocols.

Notice that all public key cryptography in our protocols
(except for signing and verification) can be replaced by sym-
metric key cryptography, which is far more efficient
(despite that computation overhead in our protocols is mar-
ginal). Furthermore, such replacement of cryptographic
techniques will not affect the security guarantees of our pro-
tocols if standard algorithms and key length are used—e.g.,
AES 128/256 [23], which is infeasible to brute-force. In our
prototype, we use the latter symmetric key cryptography
for securing communication.

5.2 Keyloggers

Keyloggers are popular and widely reported in many con-
texts [19], [21], [44], [46], [51]. In our protocols, input is
expected by the user, and in every protocol one or another
type of input is required. Our protocols—while designed
with the limitations and shortcoming of users in mind, and
aim at easing the authentication process by means of visual-
ization—are aimed explicitly at defending against the key-
logger attacks. Here, we further elaborate on the potential
of using keyloggers as an attack, and the way they impact
each of the two protocols.

Protocol 1. Authentication in this protocol is solely based
on a random string generated by the server. The random
string is encrypted by the public key of the user, and veri-
fied against her private key. The main objective of using
OTP is that it is for one time use. Accordingly, if the keylog-
ger is installed on the terminal, the attacker obviously will
be able to know the OTP but will not be able to reuse it for
future authentication. Alternatively, a keylogger installed
on the smartphone will not be able to log any credentials,

1. It is very hard to detect rootkits with software when they reside in
the OS’s kernel, so nowadays dedicated hardware devices are being
considered to detect rootkits [36]. Also, looking back at research on
shoulder-surfing prevention, the shoulder-surfer resisting techniques
are necessarily accompanied by degradation of usability somehow.

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2571

since no credentials are input on the smartphone. It is worth
noting that the attacker may try to block users from being
authenticated and reuse the OTP immediately. In this case,
mitigations explained in Section 4.3 can be used to remedy
the (session hijacking) attack.

Protocol 2. In the second protocol, a blank keyboard is
posted on the terminal whereas a randomized keyboard
with the alphanumerics on it is posted on the smartphone.
Because the protocol does not require the user to do any
keyboard input on the smartphone side, the protocol is
immune against the keylogger attack. The user just checks
the keyboard layout on the phone and there is no input
from a user. Obviously, the terminal might be compro-
mised, but the keylogger will be able to only capture what
keystrokes are used on the blank keyboard. Thus, the key-
logger will not be able to know which alphanumeric charac-
ters are being clicked.

5.3 Malicious Software

The term malware is generic, and is technically used to
describe any type of code with malicious intentions includ-
ing keyloggers. It is obvious that an attacker who success-
fully compromised a smartphone that has a private key that
is a whole credential required to break the system in Proto-
col 1 will be always successful to break the systems except
Protocol 2 that requires both password and private key.

5.4 Theft of Smartphone

In case the smartphone that has a key to recover OTP in Pro-
tocol 1 and to decipher the keyboard layout in Protocol 2 is
stolen, obviously the security degrades. In Protocol 1, theft
of smartphone means that the attacker has total control over
user’s account if the attacker knows the user’s ID. Protocol 1
can be regarded as an authentication protocol requiring
only one security token (a smartphone) and focusing on
user convenience (the user does not need to memorize a
password). However, in Protocol 2, it is not easy to sign in
or to make valid transaction requests successfully because it
requires not only the smartphone but also the password.
Neither a password nor a password verifier such as a pass-
word hash is stored in the smartphone, so an attacker can-
not mount the offline guessing attack. Protocol 2 is basically
a two-factor authentication protocol that requires both a
password and a smartphone, and thus, it is not vulnerable
to theft of smartphone.

Even when a smartphone is susceptible to theft, a careful
user can mitigate the impact of that event on the authentica-
tion protocols described in this paper and trust delegated to
the smartphone. Many smartphones, like iPhone with iOS
5.0 or later, enable strong access control mechanisms that
include a limited number of trials to input a non-simple
passcode (an arbitrary alphanumeric string greater in length
than four characters). Upon failure of inputting the correct
passcode for more than the allowed number of times
(default is eight times), the smartphone deletes all user con-
tents, including applications as well. This, indeed, would
allow the adversary only a very negligible capability in
making use of credentials stored in the device for breaking
the authentication mechanism proposed in this work even
when the smartphone is stolen.

5.5 Shoulder-Surfing Attacks

As already mentioned in the introduction, shoulder-surfing
resistance is not within our scope. However, in this section,
we investigate the possibility and the effectiveness of shoul-
der-surfing attacks.

The shoulder surfing is a powerful attack in the context
of password-based authentication and human identification
[22], [30], [49]. In this attack, the attacker tries to know cre-
dentials, such as passwords or PINs by stealthily looking
over the shoulder of a user inputting these credentials into
the systems.

In Protocol 1, OTP tokens that have high entropy and are
human-unfriendly making them hard to remember and
recall are one-time used. Accordingly, a shoulder surfer
would not benefit from launching an attack by trying to
observe what the user at the terminal is inputting. The
attack is not applicable to this protocol.

In Protocol 2, observing the terminal or the smartphone
keyboard layout (on the smartphone screen) alone would
not reveal the credentials of the user. Observing both at the
same time in a shoulder surfing attack, and mapping
stroked keys on the terminal to those on the smartphone
screen would reveal the credentials of the user. Being able
to successfully launch this attack is a non-trivial task, and
requires the attacker to be in very near proximity to the
user, which would raise the user’s suspicions about the
intentions of the attacker. However, because the attacker
who successfully conducts all this necessary steps will get a
password in Protocol 2, the protocol cannot be said to be
secure against the shoulder-surfing attack. We leave it for
the future work to make Protocol 2 secure against the shoul-
der-surfing attack by combining it with shoulder-surfing
resistant schemes already explored in the literature [50].

Finally, while our design is not intended in its current
form to defend against it, we note that the smart glasses
such as the Google glass will easily frustrate the shoulder
surfing attacker. In essence, this is because the keyboard lay-
out will be shown only to the user wearing the glasses.

5.6 Comparison

To sum up, we compare the two protocols and the way they
perform against several attacks. We consider the scenarios
where the attacker has control over either the terminal or
smartphone but not both of them at the same time. The com-
parison is in Table 1.

6 IMPLEMENTATION AND USER STUDY

In this section, we describe the details of the prototype
implementations, and show the results of the user study for
Protocol 2 using a numeric keyboard and using an alphanu-
meric keyboard. The numeric keyboard study was to know
the speed and the error of the PIN entry, and the alphanu-
meric keyboard study was for the password entry.

6.1 Numeric Keyboard with Blank Space

We implemented Protocol 2 to see its usability for PIN,
which is widely accepted for authenticating a person during
banking transactions.

QR code in the protocol, which includes 164 characters at
low error correction level, contains a JSON object [11] that

2572 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

consists of an encrypted keyboard layout, hashed user ID,
and current time. The keyboard layout is encrypted by
using AES-128 encryption algorithm with CBC mode and
PKCS#7 padding. Base64 [24] was used for encoding the
ciphertext and initial vector. We used ZBar android SDK 0.2
[8], an open source library for reading barcodes and QR
codes. To speed up the reading QR codes, before running

ZBar library, we let the application re-sample a capture
image to a small image of which width is 500 pixel using
nearest neighbor image scaling. After reading QR code, the
smartphone displays a numeric keyboard on screen. The
size of numeric keyboard is 4� 4 and the numeric keyboard
contains 10 numbers (0 to 9) in random positions. The rest
of the positions remain in blank. Snapshots of our imple-
mentation are shown in Fig. 2.

6.1.1 Hardware Performance

To understand how fast smartphones can read QR codes
in our implementation, we measured the time to read
QR codes by different distances from an LCD monitor
(200 times each). QR codes are shown in 96� 96mm2 on
LCD monitor, but the size of QR codes on smartphone
varies according to the distance from the monitor or per-
formance of a rear camera. Therefore, we performed the

TABLE 1
Comparison of Two Protocols and Their Resistance

to Different Attacks When the Terminal and the
Smartphone Are under Control of the Attacker

Fig. 2. Photographs of the prototype we have developed to demonstrate our authentication protocols. (a) and (b) show the moments of a QR code
scanning of a keyboard layout. (c) shows the blank keyboard shown at the terminal (on LCD screen). (d) shows the decoded randomized layout of
the keyboard obtained from the QR code after decryption as viewed on smartphone. Note that the yellow square on which the mouse cursor is hover-
ing in the terminal is shown through the smartphone to assist user’s input. (e) shows that a user is clicking the password on the blank keyboard while
seeing numbers through the smartphone.

Fig. 3. High-level description of an authentication protocol with password
and a randomized onscreen blank keyboard.

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2573

experiments on three different smartphones: Galaxy
Nexus, TAKE LTE, and Galaxy S3. Fig. 2 summarizes
specifications of those smartphones.

As shown in Fig. 4, all smartphones can read QR codes
very fast; in most cases, they can read QR codes in 300 ms.
All smartphones show their best performance when
they are located 30 cm far from the monitor. The average
reading time (with 95 percent confidential interval) is
282:00ð�8:40Þ ms on Galaxy Nexus, 203:80ð�18:20Þ ms on
TAKE LTE, and 241:60ð�21:16Þ ms on Galaxy S3 . However,
they could not read well QR codes if the distance from LCD
monitor is closer than 20 cm or further than 40 cm. A proce-
dure to read a QR code can be divided into three parts:
1) taking an image, 2) parsing the image, and 3) re-drawing
screen. In the first part, smartphones need to adjust their
camera focus in order to take a QR code image. The time
for the first part varies according to the distance from moni-
tor and smartphones’ camera performance. The second part
is a sequential procedure to transform QR code image to
keyboard layout. In a closer look, it includes tasks to re-
sample the capture image (QR code), to transform the QR
code to a JSON object, to parse the JSON object to a cipher-
text, and to decrypt the ciphertext to a keyboard layout. To
process the second part, it spent 122 ms on Galaxy Nexus,
120 ms on TAKE LTE, and 139 ms on Galaxy S3 on average.
In the third part, smartphones need to re-draw the whole
screen again in order to display the keyboard to user. Con-
sequently, the time required to display the keyboard on
screen is sufficiently short: it takes 15:72 ms on Galaxy

Nexus, 29:21 ms on TAKE LTE, and 2:92 ms on Galaxy S3
on average of 200 trials.

6.1.2 User Study Design

Protocol 2 with a numeric keyboard with blank spaces was
evaluated using repeated measures within participants
design of four-digit and eight-digit PIN. The purpose of the
study was not to compare with the speed and the error of a
control group such as a normal PIN entry method, but to
know the speed and the error of our proposal, and there-
fore, we investigated parametric statistical values such as
mean and standard deviation. This is because the keyboard
size was 16 (for better security), and thus, a control group
(the regular PIN pad has 10 keys only) could not be defined
rigorously. In our experiment, a simulated server offered a
randomized keyboard to the user at each authentication
attempt, and the participants’ mouse clicks were recorded
with the time for later analysis.

6.1.3 Participants

We recruited participants for our study from our college.
Each was given a coffee coupon. In total, 20 participants
took part in the study. Among them, four participants were
females, and 16 participants were males. They were
27.2 years old on average.

6.1.4 Procedure

In our user study for Protocol 2, we used a Galaxy Nexus
specified in Table 2. Before the test session, we briefly
explained to the participants how to authenticate with Pro-
tocol 2, and demonstrated them Protocol 2 with one of the
authors’ account. We did not give any training session, but
they started the test session immediately after the demon-
stration. In the test session, they were asked to input PINs
of their choices with two different lengths for registration:
four and eight digits. Then, an authentication session
started by prompting the participants to input their ID’s.
Just immediately after they entered ID, a QR code and a
blank keyboard popped up as shown in Fig. 2, and partici-
pants read the QR code with an App in the smartphone.
After reading the QR code, they were asked to input their
PINs by clicking buttons on the blank keyboard of the termi-
nal. When they reached the end of their PIN input, the click
records were automatically submitted to the server (i.e., a
participant was not asked to press a submission button).
Each participant repeated this 10 times for four-digit and
eight-digit PINs (in total, 20 times of authentication ses-
sions). In the study, we found that many users knew they

Fig. 4. Time to read QR codes of three different smartphones by different
distances from a smartphone to an LCD monitor. (a) shows the box plots
with 1:5� IQR whiskers and (b) shows average time for reading QR
codes in each part: to take an image, to parse an image, and to draw
screen. (size of QR codes on LCD monitor ¼ 96� 96mm2, data length
¼ 164 bytes)

TABLE 2
Specification of Smartphones Used in Experiments

The letters d and q with the CPU stand for dual and quad processors.

2574 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

made wrong clicks before reaching to the last digit of a PIN,
and they cancelled the session. We classified those trials as
failure cases, of which the number can be seen in Table 3.

6.1.5 Results

Fig. 5 shows the empirical CDF of the time measurements
for only successful trials and Table 3 shows detailed statis-
tics and subjects. The mean (with 95 percent confidence
interval), minimum, maximum, and median times it took
(in seconds) were 7:647ð�0:457Þ, 2:833, 18:753, and 7:047
with four-digit PIN and 10:850ð�0:457Þ, 6:018, 26:132, and
9:924 with eight-digit PIN. In our experiment, the success
rate is 94:5 percent for both four and eight digits PIN, which
can be seen in Table 3. The study shows that Protocol 2 with
PIN is sufficiently fast to be used.

6.2 Alphanumeric Keyboard

Alphanumeric passwords are widely used to sign into vari-
ous types of servers, so we also developed a prototype of
Protocol 2 with an alphanumeric keyboard as an Android
application to see its usability. The application can run on
any smartphone with Android OS [17] (version 2.2 or later).
AES-192 encryption algorithm (in the counter mode) for
contents encryption, Base64 encoding for byte-to-character
encoding of encrypted contents, and uses ZXing [5], an
open source implementation provided by Google for read-
ing several standards of the 1D and 2D barcodes.

6.2.1 User Study Design

Protocol 2 with an alphanumeric keyboard was evaluated
using repeated measures within participants design of the
standard Qwerty keyboard, the randomized Qwerty (keys
were shown on the terminal) and Protocol 2 (keys were
shown through the smartphone). The purpose of the study
was to compare with the speed and the error of Protocol 2
with the two control groups. The first case study with the
standard Qwerty keyboard measured the response time of
typical password input (without using our protocols). The
second case study was the control group, where we use a
randomized keyboard on the terminal, which was already

used as a security mechanism (see Section 1). Accordingly,
in the second case study, participants did not need to map
the randomized keyboard to a layout on the terminal—they
rather directly use the one on the terminal. The third case
study was for Protocol 2, where participants used the smart-
phone to input their passwords. We used the same settings
as in the prior two cases. In particular, the same sets of pass-
words with the previous control groups were used in this
test. We measured the overall authentication time since the
server introduced the randomized keyboard until the user
logged in (or being rejected for password mismatch). In all
cases, the users entered their passwords using mouse clicks.
In the experiments, we used two password lengths four and
eight characters as we did in Protocol 2 with PIN, where
four-character passwords were used for investigating PIN-
like environment and eight for typical non-simple pass-
words. Users chose passwords of their own. We repeated
the study with each user 10 times to marginalize error and
random effect in the experiments. In the study, we used a
Samsung Galaxy U specified in Table 2.

6.2.2 Procedure

The procedure for this study was basically the same as that
for the study with the numeric PIN. We asked 20 partici-
pants to input alphanumeric passwords of their own choice
with different lengths (four and eight characters) on the
Qwerty keyboard shown on the terminal, on the random-
ized keyboard and finally on the blank keyboard for Proto-
col 2. Because there were 36 keys (26 alphabets and
10 numbers) in Protocol 2, we printed on the blank key-
board the assisting numbers increasing from top-left to bot-
tom-right, and on the smartphone, the randomized keys
were displayed with the assisting numbers. Thus, it enabled
participants to find easily the matched numbers once they
found a key for their passwords. Input was done by mouse
clicks. We measured the response time of each participant
and repeated the test 10 times for each user and for four-
and eight-character passwords (in total, 20 authentication
sessions). We did the measurements for all cases, including
when passwords were typed incorrectly.

In the following, we summarize the main results and
findings from the case studies.

TABLE 3
Results of the User Study for Protocol 2

tð4Þ and tð8Þ are the average time (in second) for each user (row) to input
a PIN of the given length.

Fig. 5. Empirical CDF of the time it takes for inputting PINs of two differ-
ent lengths in Protocol 2. The total numbers of successful trials are 189
(four digits) and 189 (eight digits).

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2575

6.2.3 Results - Normal QWERTY Keyboard

The average success rate was 98:0 percent with four-charac-
ter passwords and 92:5 percent for eight-character pass-
words. An empirical CDF of the time measurements is
shown in Fig. 6. We found that the mean, min, max and
median (in seconds) were 4:25, 2, 29, and 4 when using
four-character passwords and 6:74, 2, 28, and 6 when using
eight characters.

6.2.4 Results—Random Alphanumeric Keyboard
�We found that the average success rate was 100 percent
with four-character passwords and 94 percent with
eight-character passwords. We plotted the empirical
CDF of the time measurements in Fig. 7. We found that
the mean, min, max, and median (in seconds) were 9:38,
3, 42, and 8 for length 4 and 14:77, 6, 46, and 14 for
length eight passwords, respectively. We note that, on
average, the time it took to input passwords using this
method was twice as much as when using the qwerty
keyboard.

6.2.5 Results—Protocol 2 with Randomized

Alphanumeric Keyboard

We noticed that the average achieved success rate of our
authentication protocol was 99:0 percent for four-character
passwords and 96:0 percent for eight-character passwords.
We notice that our system achieved a comparable success
rate to that of both control groups supporting its high
usability. Same as before, we plotted an empirical CDF of
the time measurements in Fig. 8 (detailed statistics and sub-
jects are in Table 4). The time measured in both figures
includes the total time it took for cryptographic operations,
encoding, decoding, communication (negligible), and user
response. We notice that our system is practical compared
to the other case studies, since the mean (with 95 percent
confidential interval), minimum, maximum, and median
times it took (in seconds) were 20:57ð�0:97Þ, 10, 53, and 19
with four characters password and 29:44ð�1:18Þ, 15, 62, and
28 with eight characters. Compared to the two other case
studies, which do not provide the same security guarantees
of our protocol, we find that our protocol takes on average

Fig. 6. Empirical CDF of the time it takes for inputting passwords of two
different lengths. The total numbers of successful trials are 196 (four
characters) and 185 (eight characters). The keyboard used for input is a
qwerty keyboard, which is the typical Android phone keyboard.

Fig. 7. Empirical CDF of the time it takes for inputting passwords of two
different lengths. The total numbers of successful trials are 200 (four
characters) and 189 (eight characters). The keyboard used for input is
the a randomized Android phone keyboard (same keyboard is rendered
on the smartphone and terminal).

Fig. 8. Empirical CDF of the time it takes for inputting passwords of two
different lengths in our protocol. The total numbers of successful trials
are 198 (four characters) and 192 (eight characters).

TABLE 4
Results of the User Study

tð4Þ and tð8Þ are the average time (in seconds) for each user (row) to
input a password of the given length. The keyboard on the smartphone
is re-randomized at each time.

2576 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

twice as much time as the randomized keyboard method
and roughly four times (about fives times for passwords
with length 4) as much as the normal method (case study 1)
for both passwords lengths. In relation with the time of
other settings that do not consider any security assurances,
our system shows reasonable usability features. However,
compared to other systems that provide security guaran-
tees, such as resisting password leakage attacks [50], our
system is very highly usable and requires the same time
overhead as in such systems.

Further details on the results of these case studies, and
visualization of the response time of users are delegated to
the Appendix.

7 USABILITY, DEPLOYABILITY, AND SECURITY:
RELATED WORK PERSPECTIVE

Besides the security of an authentication protocol, both
usability and deployability are equally important and criti-
cal for the acceptance of any protocol in modern computing
settings. Bonneau et al. have developed 25 different metrics
for evaluating such aspects in an authentication scheme to
compete with the existing password-based authentication
that is well-accepted in practice [7]. Furthermore, while
those metrics are ideal, and the best authentication scheme
in the literature does not address many of them, they are
fairly generic to benchmark different designs and to com-
pare them based on their merits. For that, the authors pro-
vided an extensive comparison and study of 38 schemes
based on those metrics. Here, we benefit from this study in
understanding our protocols in the context of the related
works. We outline some of the merits based on the common
features our schemes share with other works, and some
others based on the prior user studies and security analyses
we discussed in this paper.

The metrics are shown in Table 5. The reader is referred
to [7] for further details on the definitions those metrics,

and how they apply to the various authentication mecha-
nisms in the literature. In the following, we summarize how
our protocols perform on those metrics, and thus how they
compare to other protocols in the literature. We limit our
attention to the baseline, the password-based authentica-
tion, and a few phone-based authentication protocols as
shown in Table 5. We notice that our first protocol meets the
first metric by not requiring a password, meets the fifth,
sixth, seventh, and eighth as shown in our user studies. Our
design is security-rich, and its security features are dis-
cussed earlier to support the marked merits. Finally, for
deployability, our system relies on an intensive user study
that provides an obvious merit of its use against those met-
rics. The mapping of the metrics for the second protocols
are also concluded from the prior discussion—details are
omitted for the lack of space.

For the coloring part in the comparison, we use the
same coloring system—with slightly different legend and
keys—as utilized by Bonneau in his work, and the ratio-
nale of using those colors is explained therein. Our choice
of PhoolProof and Cronto is not arbitrary: they share the
same platform and some of the design aspects with our
work, and thus it was easy to extrapolate many of the
(subjective) coloring made by Bonneau to our work. This
particularly explains much of the matching in deployabil-
ity and security colorings for our protocol. The mismatch
in “resilience to leaks from other verifiers” does not apply
to our work, since it assumes a single verifier. The first
protocol is more memorywise efficient, efficient to use,
and infrequent errors than password based on the fact
that it relies on OTP (not memorized by the user).

8 RELATED WORK

There has been a large body of work on the problem of
user authentication in general [27], [29], [38], [40], [45],
and in the context of e-banking. Of special interest are

TABLE 5
A Comparison with Other Works Based on Their Usability, Deployability, and Security,

for Other Systems and How They Compare to Our Work, See the Work in [7]

Comparisons are in relation with password-based authentication, where � stands for the case where the metric doesn’t apply, � stands for meeting
the metric, � means that the metric can be made to work in the design, green and red are indicators for better and worse than the case of the pass-
word-based authentication, respectively.

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2577

authentication protocols that use graphical passwords
like those reported in [12], [18], [47], [48] and attacks on
them reported in [10], [15], [18], [20], [25], [39]. To the
best of our knowledge, our protocols are the first of their
type to use visualization for improving security and
usability of authentication protocols as per the way
reported in this paper.

A closely related vein of research is trust establishment
for group communication using cognitive capabilities.
Examples of such works include SPATE [32], GAnGS [9],
and SafeSlinger [14]. None of these works use visualization
as reported in this work, although they provide primitives
for authentication users and establishing trust.

Another closely related work is “Seeing-is-Believing”
(SiB) [34] (extended in [35]), which uses visual channels of
2D barcodes to resist the man-in-the-middle attack in device
pairing. Though we utilize similar tools by using the 2D
barcodes for information representation, and the visual
channel for communicating this information, our protocols
are further more generic than those proposed in [34]. Our
protocols are tailored to the problem settings in hand, e-
banking, with a different trust and attack model than that
used in [34]—which results into different guarantees as
explained earlier in this paper. To prevent against phishing,
Parno et al. suggested the use of trusted devices to perform
mutual authentication and eliminate reliance on perfect
user behavior [41]. Slightly touched upon in this paper are
keyloggers as potential attacks for credentials stealing,
which are reported in [19], [21], [44], and other malwares
which are reported in [46], [51]. In this paper we have
shown that our protocols are secure even when one of the
participants in the authentication process (the terminal or
smartphone) is compromised.

9 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed and analyzed the use of user-
driven visualization to improve security and user-friend-
liness of authentication protocols. Moreover, we have
shown two realizations of protocols that not only improve
the user experience but also resist challenging attacks,
such as the keylogger and malware attacks. Our protocols
utilize simple technologies available in most out-of-the-
box smartphone devices. We developed Android applica-
tion of a prototype of our protocol and demonstrate its
feasibility and potential in real-world deployment and
operational settings for user authentication. Our work
indeed opens the door for several other directions that
we would like to investigate as a future work. First of all,
our plan is to implement our protocol on the smart
glasses such as the google glass, and conduct the user
study. Second, we plan to investigate the design of other
protocols with more stringent performance requirements
using the same tools provided in this work. In addition,
we will study methods for improving the security and
user experience by means of visualization in other con-
texts, but not limited to authentication such as visual
decryption and visual signature verification. Finally,
reporting on user studies that will benefit from a wide
deployment and acceptance of our protocols would be a
parallel future work to consider as well.

ACKNOWLEDGMENTS

This work was supported by Inha University, Republic of
Korea.

REFERENCES

[1] Google Authenticator, http://code.google.com/p/google-
authenticator/, 2014.

[2] RSA SecurID, http://www.emc.com/security/rsa-securid.htm,
2014.

[3] CRONTO, http://www.cronto.com/, 2014.
[4] Information Technology. Automatic Identification and Data Capture

Techniques, BS ISO/IEC 18004:2006, ISO/IEC, 2006.
[5] ZXing, http://code.google.com/p/zxing/, 2011.
[6] D. Boneh and X. Boyen, “Short Signatures without Random

Oracles,” Proc. Advances in Cryptology (EUROCRYPT), pp. 56-73,
2004.

[7] J. Bonneau, C. Herley, P.C. Van Oorschot, and F. Stajano, “The
Quest to Replace Passwords: A Framework for Comparative Eval-
uation of Web Authentication Schemes,” Proc. IEEE Symp. Security
and Privacy (SP), pp. 553-567, 2012.

[8] J. Brown, “ZBar Bar Code Reader, ZBar Android SDK 0.2,”
http://zbar.sourceforge.net/, Apr. 2012.

[9] C.-H.O. Chen, C.-W. Chen, C. Kuo, Y.-H. Lai, J.M. McCune, A.
Studer, A. Perrig, B.-Y. Yang, and T.-C. Wu, “GAnGS: Gather,
Authenticate’n Group Securely,” Proc. ACMMOBICOM, pp. 92-
103, 2008.

[10] S. Chiasson, P. van Oorschot, and R. Biddle, “Graphical Password
Authentication Using Cued Click Points,” Proc. 12th European
Symp. Research in Computer Security (ESORICS), 2008.

[11] D. Crockford, “The Application/JSON Media Type for Javascript
Object Notation (JSON),” RFC 4627, http://www.ietf.org/rfc/
rfc4627.txt, 2006.

[12] D. Davis, F. Monrose, and M. Reiter, “On User Choice in Graphi-
cal Password Schemes,” Proc. 13th Conf. USENIX Security Symp.,
2004.

[13] N. Doraswamy and D. Harkins, IPSec: The New Security Standard
for the Internet, Intranets, and Virtual Private Networks. Prentice
Hall, 2003.

[14] M. Farb, M. Burman, G. Chandok, and J. McCune, “A. Perrig,
“SafeSlinger: An Easy-to-Use and Secure Approach for Human
Trust Establishment,” Technical Report CMU-CyLab-11-021, Car-
negie Mellon Univ., 2011.

[15] H. Gao, X. Guo, X. Chen, L. Wang, and X. Liu, “YAGP: Yet
Another Graphical Password Strategy,” Proc. ACM Ann. Computer
Security Applications Conf. (ACSAC), pp. 121-129, 2008.

[16] S. Goldwasser, S. Micali, and R.L. Rivest, “A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks,”
SIAM J. Computing, vol. 17, pp. 281-308, 1988.

[17] Google, “Android,” http://www.android.com/, 2011.
[18] E. Hayashi, R. Dhamija, N. Christin, and A. Perrig, “Use Your Illu-

sion: Secure Authentication Usable Anywhere,” Proc. ACM Fourth
Symp. Usable Privacy and Security (SOUPS), 2008.

[19] C. Herley and D. Florencio, “How to Login from an Internet Caf�e
without Worrying about Keyloggers,” Proc. ACM Symp. Usable
Privacy and Security (SOUPS), 2006.

[20] A. Hiltgen, T. Kramp, and T. Weigold, “Secure Internet Banking
Authentication,” IEEE Security and Privacy, vol. 4, no. 2, pp. 21-29,
Mar./Apr. 2006.

[21] T. Holz, M. Engelberth, and F. Freiling, “Learning More about the
Underground Economy: A Case-Study of Keyloggers and
Dropzones,” Proc. 14th European Conf. Research in Computer Secu-
rity (ESORICS), pp. 1-18, 2009.

[22] N. Hopper and M. Blum, “Secure Human Identification Proto-
cols,” Proc. Advances in Cryptology (ASIACRYPT), 2001.

[23] R. Housley, “Using Advanced Encryption Standard (AES)
Counter Mode with IPSec Encapsulating Security Payload (ESP),”
RFC 3686, http://www.ietf.org/rfc/rfc3686.txt, 2004.

[24] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,”
RFC 4648, http://www.ietf.org/rfc/rfc4648.txt, 2006.

[25] C. Karlof, U. Shankar, J.D. Tygar, and D. Wagner, “Dynamic
Pharming Attacks and Locked Same-Origin Policies,” Proc.
14th ACM Conf. Computer and Comm. Security (CCS), pp. 58-71,
2007.

[26] J. Katz and Y. Lindell, Introduction to Modern Cryptography. CRC
Press, 2008.

2578 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 11, NOVEMBER 2014

[27] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hash-
ing for Message Authentication,” RFC 2104, http://www.ietf.
org/rfc/rfc2104.txt, 1997.

[28] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd, “Reducing
Shoulder-Surfing by Using Gaze-Based Password Entry,” Proc.
ACM Third Symp. Usable Privacy and Security (SOUPS), pp. 13-19,
2007.

[29] L. Lamport, “Password Authentication with Insecure
Communication,” Comm. ACM, vol. 24, no. 11, pp. 770-772,
1981.

[30] X.-Y. Li and S.-H. Teng, “Practical Human-Machine Identification
over Insecure Channels,” J. Combinatorial Optimization, vol. 3,
pp. 347–361, 1999.

[31] J. Lim, “Defeat Spyware with Anti-Screen Capture Technology
Using Visual Persistence,” Proc. ACM Third Symp. Usable Privacy
and Security (SOUPS), pp. 147-148, 2007.

[32] Y.-H. Lin, A. Studer, Y.-H. Chen, H.-C. Hsiao, E.L.-H. Kuo, J.M.
McCune, K.-H. Wang, M.N. Krohn, A. Perrig, B.-Y. Yang, H.-M.
Sun, P.-L. Lin, and J. Lee, “SPATE: Small-Group PKI-Less Authen-
ticated Trust Establishment,” IEEE Trans. Mobile Computing, vol. 9,
no. 12, pp. 1666-1681, Dec. 2010.

[33] M. Mannan and P.C. van Oorschot, “Leveraging Personal
Devices for Stronger Password Authentication from Untrusted
Computers,” J. Computer Security, vol. 19, no. 4, pp. 703-750,
2011.

[34] J.M. McCune, A. Perrig, and M.K. Reiter, “Seeing-is-Believing:
Using Camera Phones for Human-Verifiable Authentication,”
Proc. IEEE Symp. Security and Privacy, pp. 110-124, 2005.

[35] J.M. McCune, A. Perrig, and M.K. Reiter, “Seeing-is-Believing:
Using Camera Phones for Human-Verifiable Authentication,” Int’l
J. Security and Networks, vol. 4, no. 1/2, pp. 43-56, 2009.

[36] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B.B. Kang, “Vigilare:
Toward Snoop-Based Kernel Integrity Monitor,” Proc. ACM Conf.
Computer and Comm. Security (CCS ’12), pp. 28-37, 2012.

[37] D. MRaihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-Based
One-Time Password Algorithm,” RFC 6238, http://www.ietf.
org/rfc/rfc6238.txt, 2011.

[38] M. Naor and B. Pinkas, “Visual Authentication and Identi-
fication,” Proc. Advances in Cryptology (CRYPTO), 1997.

[39] M. Novoa, V. Ali, and M. Altendorf, Virtual User Authentication
System and Method, US patent App. 20,080/028,441, 2006.

[40] D. Otway and O. Rees, “Efficient and Timely Mutual
Authentication,” ACM SIGOPS Operating Systems Rev., vol. 21,
no. 1, pp. 8-10, 1987.

[41] B. Parno, C. Kuo, and A. Perrig, “Phoolproof Phishing Pre-
vention,” Proc. Financial Cryptography, pp. 1-19, 2006.

[42] R. Pemmaraju, Methods and Apparatus for Securing Keystrokes from
Being Intercepted between the Keyboard and a Browser, US patent
20070182714 A1, 2007.

[43] E. Rescorla, SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.

[44] A. Slowinska and H. Bos, “Pointless Tainting?: Evaluating the
Practicality of Pointer Tainting,” Proc. Fourth ACM European Conf.
Computer Systems (EuroSys), pp. 61-74, 2009.

[45] J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An Authentica-
tion Service for Open Networks,” Proc. USENIX Ann. Technical
Conf, pp. 191-201, 1988.

[46] B. Stone Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Bot-
net: Analysis of a Botnet Takeover,” Proc. ACM Conf. Computer and
Comm. Security (CCS), pp. 635-647, 2009.

[47] X. Suo, Y. Zhu, and G. Owen, “Graphical Passwords: A Survey,”
Proc. IEEE 21st Ann. Computer Security Applications Conf., 2005.

[48] J. Thorpe and P. van Oorschot, “Human-Seeded Attacks and
Exploiting Hot-Spots in Graphical Passwords,” Proc. USENIX
Security, 2007.

[49] G. Vizcaino, Method and Apparatus for Securing Credit Card
Transactions, US patent 5,317,636, 1994.

[50] Q. Yan, J. Han, Y. Li, J. Zhou, and R.H. Deng, “Designing Leakage-
Resilient Password Entry on Touchscreen Mobile Devices,” Proc.
Eighth ACM SIGSAC Symp. Information, Computer and Comm. Secu-
rity (ASIACCS), pp. 37-48, 2013.

[51] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-Wide Information Flow for Malware Detection
and Analysis,” Proc. ACM Conf. Computer and Comm. Security
(CCS), 2007.

DaeHun Nyang received the BEng degree in
electronic engineering from Korea Advanced
Institute of Science and Technology, and the MS
and PhD degrees in computer science from Yon-
sei University, Korea, in 1994, 1996, and 2000,
respectively. He has been a senior member of
the engineering staff at the Electronics and Tele-
communications Research Institute, Korea, from
2000 to 2003. Since 2003, he has been an asso-
ciate professor in the Computer Information Engi-
neering Department at Inha University, Korea,

where he is also the founding director of the Information Security
Research Laboratory. He is a member of the board of directors and edi-
torial board of the Korean Institute of Information Security and Cryptol-
ogy. His research interests include cryptography and network security,
privacy, usable security, biometrics and their applications to authentica-
tion and public key cryptography. He is a member of the IEEE.

Aziz Mohaisen received the MS and PhD
degrees in computer science from the University
of Minnesota, both in 2012. In 2012, he joined
Verisign Labs, where he is currently a research
scientist. Before pursuing graduate studies at
Minnesota, he was a member of the engineering
staff at the Electronics and Telecommunication
Research Institute, a large research and develop-
ment institute in South Korea. His research inter-
ests include the areas of networked systems,
systems security, data privacy, and measure-

ments. He is a member of the IEEE.

Jeonil Kang received the BS degree in computer
engineering and the MS degree in information
and telecommunication engineering both from
INHA University, Korea, in 2003 and 2006,
respectively, where he is currently working
toward the PhD degree. His research interests
include security issues of RFID, MANET, WSN,
and biometrics. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NYANG ET AL.: KEYLOGGING-RESISTANT VISUAL AUTHENTICATION PROTOCOLS 2579

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

