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Abstract 
 

Connectivity and trust in social networks have been exploited to propose applications on top of 

these networks, including routing, Sybil defenses, and anonymous communication systems. In 

these networks, and for such applications, connectivity ensures good performance of 

applications while trust is assumed to always hold, so as collaboration and good behavior are 

always guaranteed. In this paper, we study the impact of differential behavior of users on 

performance in typical social network-enabled routing applications. We classify users into 

either collaborative or rational (probabilistically collaborative) and study the impact of this 

classification and the associated behavior of users on the performance of such applications, 

including random walk-based routing, shortest path based routing, breadth-first-search based 

routing, and Dijkstra routing. By experimenting with real-world social network traces, we 

make several interesting observations. First, we show that some of the existing social graphs 

have high routing costs, demonstrating poor structure that prevents their use in such 

applications. Second, we study the factors that make probabilistically collaborative nodes 

important for the performance of the routing protocol within the entire network and 

demonstrate that the importance of these nodes stems from their topological features rather 

than their percentage of all the nodes within the network. 
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1. Introduction 

Social networks have gained exponential popularity that made online social networks sites 

some of the most important and significant traffic sources on the web. By their traffic volume, 

nine of the twenty most popular sites on the web are social networking sites [2]. Furthermore, 

the most popular social network, Facebook [3], serves 1.3 billion unique users, with more than 

1 billion unique visitors per month as of the end of 2015. This popularity of social networks 

has motivated a wide spectrum of new technologies. Algorithms, protocols, and systems have 

been widely proposed on top of social networks, including applications to random-walk based 

routing [4]-[8], shortest-path based routing [9]-[11], social gossip [12]-[14], Sybil defenses 

[15]-[17], anonymous communication systems [18], [19], and information sharing [20], [21], 

among other technologies. Open-source software package of routing on top of social networks 

is available in [22], and is based on an ealier work that appeared in [23]. In its simplest form, a 

routing algorithm implemented on top of social networks aims to deliver a message between 

two nodes in the social graph, as highlighted in [24]. A survey of routing schemes is given in 

[25]. Applications of such routing algorithms include social experiments (outreach 

measurements, social influence, etc.), as well as other meaningful applications (such as 

communication during disasters) [5], [26]. In all of those applications, social ties are used to 

faciliate connectivity in a virtual network and to connect physically separated end-points. 

While these systems serve different purposes and follow different operational models, all of 

these schemes strike a balance among their algorithmic properties, connectivity, trust, and 

collaboration within the underlying social networks, all of which are utilized for bootstrapping 

such systems. 

Collaboration is an essential feature of social networks. However, assumptions underlying 

collaboration are usually made to support end-results: all nodes are assumed to be 

collaborative in a categorical manner which is an unrealistic assumption about the behavior of 

typical participants in social systems. Using the forwarding application highlighted in [24], 

collaboration (or the lack of it thereof) indicates whether a user would like to engage in 

relaying messages on behalf of a source to a destination. To address this issue, we explore 

characterizing collaboration in social network based applications. We study the impact of 

classifying users into collaborative and rational (sometimes non-collaborative) users on such 

applications. Information routing applications built on top of social networks are the foci of 

this work, although we can extending findings easily to other applications, including social 

network-based Sybil defenses, and anonymous communication systems, among others.  

To this end, the main contributions of this work are as follows. 

 We propose a classification of users in social network-based systems to better 

understand how these systems are affected by social collaboration. Our classification 

divides users into two groups: collaborative and non-collaborative (rational). We 

explore the intuition of this classification from the social system viewpoint. 

 We study the impact of our classification on routing in social systems. Thus, we 

consider several routing algorithms; random walks, shortest path, and breadth-first 

search (BFS) algorithms, and highlight how collaboration affects these algorithms. 

 We suggest recommendations to incentivize collaboration in social systems, 

especially where collaboration of a few nodes greatly affects an entire social system. 

By experimenting with real-world social network traces, our study unveils interesting results.   
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First, regardless of the level of collaboration of nodes, some social networks provide a poor 

performance. We find that route length in those social networks, on average, is large. 

In our analysis, we study factors that impact the performance of routing application in 

social networks. We demonstrate that such performance does not only depend on the 

percentage of rational nodes, but rather on their topological properties. Such topological 

properties are essential and critical to the design and performance of social systems. 

In our analysis, we use both online social networks and other orthognal networks, such as 

co-authorships, which bring social aspects to the communication network. Applications of 

those networks for routing may include social peer-to-peer networks in which nodes in social 

network participate in a peer-to-peer network, as accepted in the literature [15]-[17].  

The rest of this paper is organized as follows. Section 2 introduces terminologies and 

preliminaries contained and referenced throughout the paper. Section 3 introduces the model 

for classifying users in the network based on their collaboration. Section 4 introduces our 

results for random walk-based routing on real-world social network traces. Related work is 

discussed in section 5 and section 6 concludes the paper. 

2. Preliminaries 

In this section we outline preliminaries used in the rest of this paper. In particular, we outline 

the network model, and breifly review various routing protocols. 

2.1 Network Model 

We represent the social network as an undirected and unweighted graph G = (V, E) , where 

V={v1,…,vn} is the set of vertices, representing nodes in the social graph. E={eij} (where 1  i 

 n and 1  j  n) is the set of edges connecting those vertices. |V|=n denotes the size of G and 

|E|=m denotes the number of edges in G. A=[aij]nn represents the adjacency matrix of G, where 

aij is defined as follows: 

 
1 ~

0 otherwise
i j

ij

v v
a


 


                                                         (1) 

In the rest of this paper, social network, network, and graph are used interchangeably to refer 

to both the physical network and the underlying social graph. A node is a user or a page in the 

social network and an edge is a relationship between a pair of users or pages. 

Notice that the above model of undirected graph, which is best suited for routing in social 

systems. However, extending our results to directed social graphs is possible, although 

formalizing that theoretically would be a future direction. 

2.2 Random Walk-based Routing 

Random walk theory provides a framework for routing on networks. While it is 

nondeterministic on the length of a walk (cost) to an arbitrary destination, this technique can 

be effective in settings where nodes have only local knowledge of the topology or when the 

topology changes so frequently. In its simplest form, random walk based routing uses 

transition matrix P associated with G to randomly select forwarders at each node until the 

destination is reached. Recall A defined above, then P=[pij]nn is defined as follows: 
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Let vs be the source and vd be the destination to which a packet is intended. vs uniformly at 

random selects one of her neighbors and forwards the packet towards her. At each time slot, 

the intermediate node on the path between the source and the estination checks if the 

destination is among its neighbors. If so, the intermediate node directly forwards the packet to 

the destination. Otherwise, the intermediate node performs the same random procedure by 

uniformly selecting one a neighbor and forward the walk towards it. This process is performed 

at each intermediate node until the condition vi= vd.  

2.3 Shortest Path Based Routing 

The shortest path based routing uses the shortest directed distance between two nodes. Let 

w:ER be a weight function that assigns real-valued weights to edges in G. The weight of 

path p= v1, v2, …, vl is  

1
1

( ) ( , ).
r r

r

w p w v v




                                                          (3) 

Furthermore, the shortest path between nodes vi and vj is defined as: 

min{ ( ): } path from to( , )
otherwise

p

i j i j
i j

w p v v v vv v


 


                             (4) 

where the set of nodes connecting two nodes vi and vj is denoted by

p

i j
v v . Since it may not 

be unique, a shortest path between vi and vj is any path with weight  w(p)=(vi,vj). In its 

simplest form, computing the shortest path requires a global knowledge of the topology . 

Many routing systems, including the OSPF (open shortest path first) algorithm, use 

Dijkstra's algorithm, which we also use in our paper. Unlike the BFS algorithm, Dijkstra's 

algorithm finds the shortest-path between nodes vi and vj in the case of non-negative weights 

assigned to the edges of G. As such, the shortest path between nodes vi and vj is defined as 

( , ) min{ ( ): }
p

i j i j
v v w p v v                                                    (5) 

if there is a path from vi to vj, or (vi,vj) =  otherwise [27]. 

In this context, and only for experiments, the weights of the edges are calculated using the 

Jaccard similarity coefficient, where the weight of the edge is the similarity between its 

vertices. The main motivation of using such weights is our interest in measuring how the 

topological structure of the graph influences its behavior. Any other metric, such as the 

reputation-based weights or cost-based weights, can be used for assigning weights. 

2.4 Breadth-first Search Routing 

Breadth-first search (BFS) algorithm is an archetype for many graph algorithms such as 

Dijkstra's shortest path algorithm. We use the textbook description of BFS found in [27], and 

refer the interested reader to the textbook for completeness. 
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3. Collaboration in Social Networks 

In this section, we classify users in the social graphs into two categories and study the impact 

of this classification on the performance of routing algorithms within social networks. First, 

we classify users in the social network into collaborative users and probabilistically 

collaborative users. We then study the impact of this classification on the routing protocol.  

3.1 Users Classification 

3.1.1 Collaborative Users 

In many distributed systems, such as peer-to-peer systems with file-sharing applications, the 

performance of the system depends on altruistic behavior of users. While the system is 

governed by a generic economical principle (e.g., tit-for-tat), a few users - the high percentile 

of users in terms of resources such as bandwidth, processing, and memory - contribute the 

majority of the resources required for the operation of such networks. Altruistic users, in our 

settings as well as in the general settings of any distributed system, participate in the system 

and serve others without expecting the same treatment from other users, i.e., in many cases, 

violating the tit for tat principle. In this work, collaborative users are altruistic and follow the 

routing protocol by dedicating all resources to forward messages on behalf of others. Vc 

denotes such nodes and the level of altruism is denoted by . 

3.1.2 Probabilistically Collaborative Users 

These users, who are otherwise called rational users, act less altruistically than collaborative 

users. In particular, while the altruism (i.e., parameterized by ) of collaborative users is close 

to one, and hence the selfishness characterized by  = 0, the altruism of rational users is 

characterized by  where 0<  < 1. Typically, a rational node may participate in the routing 

protocol with probability 1- and deviate from it by dropping incoming packets or not 

collaborating with probability . Vp denotes such nodes in G and its size (as a fraction of the 

size of the network) is . Note that  +  = 1. With that in mind, we make the following 

observations, assumptions, and rules: 

 We note that each group of nodes in the graph is mutually exclusive, meaning that a 

node in the graph can only belong to one of the two categories above - hence Vp and Vc 

are exclusive subsets of V where V=Vp  Vc. 

 We assume that a node may not change its  behavior over the run time of the protocol, 

to simplify the analysis concerning the behavior of every node in the graph and how 

the behavior of a particular node would impact the overall performance. This is, 

through this assumption we try to marginalize the impact of the randomness generated 

by nodes altering their behavior. By doing so, we try to understand what underlying 

qualities of the graphs affect the operation of these routing algorithms. 

 Last, although we use the same  for all nodes in the graph, this value may be adjusted 

per node to express a more realistic characterization of behavior, as we will see later. 

We omit the details of extending this parameter to the general case, and leave that as a 

future work. 

3.1.3 Collaboration Impacts Routing 

The behavior of the different nodes in the graph is shown as a state diagram in Fig. 1. The 

routing protocol is then described as a biased random walk where the event of not 

collaborating in the routing protocol is denoted by a loop from each node to the originator of 

the route. For simplicity, in the figure, we remove collaborative nodes, which can be seen as 

nodes across the route with =0. As for the shortest-path and BFS-based routing, lack of 

collaboration results in shortest-path search failure. Accordingly, similar to above, we 
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consider the percent of shortest-path (and BFS-based search) routing trials that fail among all 

possible trials in the graph among possible source-destination pairs. 
 

 
Fig. 1. Random-walk based routing on graph in mixed settings 

 

3.2 Theoretical Formulation of Routing Cost 

To characterize the routing cost (whether it is a random walk length, shortest walk length, or 

length number of rounds until a gossiping algorithm converges to the entire network), we 

provide the following theoretical analysis. First, we assume that the initial cost, when there are 

no selfish nodes deployed in the network, is w, and derive the cost in terms of that original cost. 

In the following, we consider two models for characterizing cost due to collaboration: cost 

under retransmission and cost under restarts. 

3.2.1 Costs with Retransmissions 

We consider a simpler model: a model where the selfishness of nodes is characterized as a 

self-loop, where nodes don’t drop messages at the path to destination, but collaboration is 

considered as an additional cost. For that, we compute the expected cost E[w'] due to 

transmission failures because of selfishness on the path. Recall the probability of having 

exactly k selfish nodes on a path of length w (assuming they are independent) is given as 

( ) k w kw
P k p q

k


 
  
 
 

                                                               (6) 

where p= and q=1-. Using the law of expectation, we have ([ ] )
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Notice that wi and w’ denote the length of an arbitrary path and the cost of transmission failure 

due to users’ selfishness on the path, respectively. The last equality happens because a single 

failure at the i-th step of the random walk would require only one additional step as a cost 

regardless of the location of the node on the path to the destination. Accordingly, k of such 

failures at any different locations in the path would result in k additional steps. This can be 

simply added into the sum to compute the expectation. 

3.2.2 Costs with Restarts 

Now we address the general case where a failure due to selfishness of nodes results in rejection 

and restart of the walk. Similar to the case above, we have the general form of 

 

0 0
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w w

i w i
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                                  (8) 
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However, the characterization of wi in this case is different from that explained above. In 

particular, if a random walk fails only at one node, the length of the total walk (accumulates for 

the cost due to the failure) would depend on the location of the failure. This is, if the failure 

happens at the i-th location in the path to the destination, the total number of steps, assuming 

success in the second round, would be w+i. Accordingly, we compute the expected length of 

the added steps due to the failure, by floating the location of the failure at any i where 0<i≤w. 

For that, let’s denote the expected cost due to one failure and retransmission by 1
iw , where the 

failure happens in any of the i possible locations of the failure (in this case, the number of 

failures is w but we extend the notation to i so that to cover more than one failure, in which 

case i can be up to iw). Accordingly,  
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For two failures, the location of both failures determines the cost, where the expected length is 

computed as   
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For the ultimate case of i=w, we have 
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By summing all cases above, and plugging the result into (4), we have 
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Finally, to compute the total cost, we consider the conditional probability of the following 

events. Let Ai denote the most recent event of transmission which is considered successful (no 

failure is triggered at any node on the path to the destination), and let Ai-1... A1 denote the set of 

events that resulted in failure prior to Ai. We want to compute the conditional probability P(Ai 

= 1 | Ai-1 =0, Ai-2 =0,…, A1 =0). 

Fig. 2 shows a comparison of the two models above, for varying values of  and w.  From 

those plots we notice that the overall cost is linear in , and that the restart model is orders of 

magnitude more costly than that of the retransmission model. Also notice that we do not 

enforce any of the above models, by proposing them as two different models with different 

design settings: if the retransmission model is to be used, we need to maintain states in the 

network for operating the routing algorithm; these states get updated upon confirmed and 

verified collaboration or trigger retransmission (perhaps via a different forwarding node) if 

collaboration fails. 
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Fig. 2. The cost for varying  values and initial costs. Notice that the cost of running the given routing 

algorithm, with respect to the initial cost, is linear in w and . Also notice that in relation with the cost 

under the retransmission model, the cost with the restart model is orders of magnitude larger. 

 

4. Results and Discussion 

We introduce the results of this study and elaborate on the findings. The social graphs used in 

this study are shown in Table 1, and their degree distributions are shown in Figure 3.  

 
Table 1. Social graphs used in this study. Physics 1-3 are relativity, high-energy, and high-energy 

theory co-authorship [28]. D stands for the diameter and R stands for the radius of each graph. 

Social network Nodes Edges D R 

Physics 1 [28] 4,158 13,428 17 9 

Physics 2 [28] 11,204 117,649 13 7 

Physics 3 [28] 8,638 24,827 18 10 

Wiki-vote [29] 7,066 100,736 7 4 

Enron [28] 10,000 108,373 4 2 

DBLP [30] 10,000 20,684 8 4 

Facebook [31] 10,000 81,460 4 2 

Youtube [32] 10,000 58,362 4 2 

 
 

Some of these graphs are sampled from larger graphs using the breadth-first search [33].  As 

an indicator of the topological structure of the different graphs, we compute both the diameter 

and radius of each graph. By defining the eccentricity as the set of maximal shortest paths from 

each and every source to other destinations in the graph, the diameter is defined as the 

maximal eccentricity and the radius is defined as the minimal eccentricity. We compute 

diameters and radii to provide insight on the structure of the graphs. We observe that these 

parameters differ greatly from a graph to another, which implies different graph structures. 

Furthermore, we refer the reader to [33] where it is shown that the structure of the graph, using 

the mixing time measure, is different and varies in each of these graphs. 
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Fig. 3. Degree distribution of the graphs used in this study: (a) shows all data sets on long range of the 

degrees, (b) shows data sets with large degrees, and (c) shows data sets with small degrees. 
 

4.1 Evaluation Metric 

To evaluate the various schemes in similar settings, we use a unified evaluation metric: the 

cost of operating the different routing schemes on a given social graph. This is, the evaluation 

metric of the different routing schemes is the normalized expected number of transmissions 

per single message delivery operation between a source and a destination. The definition 

depends on the used algorithm, and is defined as 

1

1
[ ]

S

i
i

E cost cost
S



                                                                 (10) 

where S is the sample size and costi is the cost for a given pair of source and destination 

indexed by i. We define the normalized cost depending on the algorithms used as follows: 

 Random walk-based routing: Normalized by the number of nodes in G as E[cost]/n 

 Shortest path-based routing: Normalized by the diameter of the graph d; i.e., 

E[cost]/d. 

4.2 Performance in Ideal Settings 

In this Subsection, we study the performance of routing on social graphs in ideal settings, 

without considering collaboration as a constraint. 

4.2.1 Random Walk-based Routing on Social Graphs 

Considering the different graphs in Table 1, we first measure the performance of the simple 

random walk-based routing explained in section 2. We define the cost of routing over graphs 

as the normalized expected number of transmissions, which is the average number of times 

that a node in the graph transmits a packet for a single routing session from a given source to a 

given destination. To avoid the random behavior and bias in the measurements, we consider 

the case of routing a single packet from a given source (selected uniformly at random from the 

graph) to 1,000 arbitrary destinations, which are also selected uniformly at random from the 

graph. To reduce the bias in the measurements, we perform the same experiment, for the same 

source-destination pair, for 1,000 times, totaling 1,000,000 routing trials per data set. In 

addition, we take the average number of hops, which is then normalized by the network size, to 

give the expected number of transmissions. The results of these measurements are shown in 

Fig. 4. 
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Fig. 4. Random walk based routing on graph in normal fully collaborative. The various social graphs 

exhibit different structures with varying qualities of the performance. 

 

While they are close in size, we observe that the cost of routing over the different graphs is 

different, and correlated to the underlying graph structure. In principle, the performance of the 

graphs can be classified into two categories: well-performing graphs (Epinion, Youtube, 

Wiki-vote, and Facebook) and poorly performing graphs (Physics-1 to 3 and DBLP). We 

observe that the poor-performing graphs exhibit a strong community structure, as evidenced 

by their high modularity - a measure of the community structure in social networks; for more 

details on the term and its measurements in some graphs including those used in this paper see 

[34]. On the other hand, well-performing graphs have less clear community structure 

evidenced by their small modularity. Furthermore, the poor performance is associated with 

larger radius and diameter of the graph contrary to well-performing ones (shown in Table 1), 

which are associated with smaller radii and diameter values. 

 
 
Fig. 5. The CDF of the number of transmissions per node in different social graphs using BFS routing. 

 

4.2.2 Shortest Path Based Routing on Social Graphs 

In this section we evaluate the BFS and Dijkstra routing algorithms. Mainly, we evaluate the 

expected number of transmissions between two randomly selected source and destination 

nodes. As indicated in the Random walk-based routing scenario, we define the cost of routing 

over graphs as the normalized expected number of transmissions, which is the average number 

of times that a node in the graph transmits a packet for a single routing session from a given 

source to a given destination. To evaluate the routing performance in the different graphs of 

Table 1, the experiment is repeated for 100,000 times for a random pair of source and 

destination in each graph. In Figs. 5 and 6, we show the CDFs of the number of transmissions 

per node in several social graphs using BFS and Dijkstra routing. These graphs illustrate the 

relation between the number of transmissions, the structure, and connectivity of the graph. 

These results coincide with our finding regarding to the random walk-based routing in social 

graphs, where the cost of routing over the different graphs is strongly related to the structure 
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and connectivity of the underlying graph and loosely affected by the applied routing 

algorithm. 

 
Fig. 6. The CDF of the number of transmissions per node when using Dijkstra routing algorithm.  
 

Based on Figs. 7 and 8, the studied social graphs can be classified in the case of shortest path 

based routing into two categories: well-performing graphs (Epinion, Youtube, Wiki-vote, and 

Facebook) and poorly performing graphs (Physics-1 to 3 and DBLP). However, we observe 

that random walk-based routing outperforms the shortest path based routing in the number of 

transmissions. This is due to the deterministic nature of the underlying shortest path based 

routing. 

 

 
Fig. 7. The normalized expected number and maximum number of transmissions per node by using BFS 

routing on top of different social graphs. 
 

 
Fig. 8. The normalized expected number and maximum number of transmissions per node by using 

shortest path routing. 

4.3 Performance with Social Collaboration 

Using the collaboration model highlighted in section 3, we measure the cost of routing using 

both random walk-based and shortest path based techniques. Results provided here 

empirically complement the theoretical measures provided in section 3.2.  

4.3.1 Collaboration in Random Walk-based Routing 

We measure the performance of the routing protocol, with the same settings as above, when 

considering probabilistically collaborative nodes in the graph. We uniformly at random 

sample subsets of the nodes Vp V as the set of probabilistically collaborative users, with the 

remaining nodes in the graph as totally collaborative (altruistic). As explained earlier, each 

probabilistic node vi follows the protocol with probability i, which is uniformly selected in 

the range of 0.1 to 1, or drop the routing request with probability (1-i) (we trim the 
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distribution from 0 to 0.1 for that the existence of very adversarial nodes may block traffic 

entirely due to the lack of multi-path). The results of the performance of the protocol on the 

different social graphs are shown in Fig. 9. By considering  as the percent of rational users, 

we consider different values of  (i.e., from 0 to 0.8 with 0.2 steps) where =0 in each graph 

represents the performance of the corresponding social graph in Fig. 10. In brief, we make the 

following observations on the different experiments. 

      While the performance of the different social graphs initially differs greatly, as evidenced 

by the first experiment, the impact of the increasing percent of rational nodes is not linear but 

rather depends on the underlying social graph. For example, social graphs with strong  

community structure have rather fairly regular behavior (Fig. 10(a) to Fig. 10(d)). However, 

we observe that even with these social graphs, relatively large  dramatically increases the 

cost of routing. As shown in Fig. 10(a), while the cost increment when moving from =0.4 to 

=0.6 is about 26%, the increment for moving from =0.6 to =0.8 is more than 100%. To 

understand this behavior, we list the rational nodes, and map them to their degrees. We 

observe that, while in the first case - where less impact is made on the performance in random 

walk-based routing due to lack of collaborative of some nodes - the degree is fairly distributed, 

in the second case - where higher impact is observed - some high degree nodes, with small  

blocks flows between communities, and thus dramatically increases the cost of routing. In 

such graphs, the cost is exponential to . 

 

 
Fig. 9. The normalized expected number of transmissions using random walk-based routing. 
 

     On the other hand, the behavior of the initially well-performing graphs is in part harder to 

anticipate. In general, the routing protocol performs well, even when considering larger values 

of  in these graphs, though, like the previous case of poorly performing graphs it may have 

some odd behavior when high degree, intra-communities’ nodes behave rationally, with small 

. This behavior happens to be the case in Fig. 10(e) at =0.6, in Fig. 10(f) at =0.2, 0.4, 0.6, 

in Fig. 10(g) at =0.6, and in Fig. 10(h) at =0.2, 0.4, 0.8.) 

      While the well-performing graphs are more sensitive where any node can be of importance 

to the random routing on such graphs, as evidenced by the existence of many high degree 
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nodes (see Fig. 4(b)), the performance is still reasonable and within the theoretically 

acceptable bounds [35]. 

4.3.2 Collaboration in Shortest Path-based Routing 

Considering the existence of probabilistically collaborative nodes in the graphs, we measured 

the performance of the shortest path based routing when a random sample subset of the nodes 

Vp  V are probabilistically collaborative and the remaining are collaborative. As explained 

earlier, each probabilistic node vi follows the protocol with probability i, which is uniformly 

selected in the range of 0.1 to 1, or drops the routing request with probability (1-i). As in the 

case of random walk-based routing, the results of the performance of the protocol with 

underlying shortest path based routing algorithm on the different social graphs are shown in 

Figs. 10 and 11. However, due to the deterministic nature of the shortest path based routing, 

we consider the failure rather than the cost of routing as the evaluation criterion, for different  

values. The results show that, in terms of packet delivery rate, well-performing graphs 

(Epinion, Youtube, Wiki-vote, and Facebook) are less sensitive to selfish users compared to 

poorly performing graphs (Physics-1 to 3 and DBLP), which are dramatically affected by the 

rational users. 
 

 
Fig. 10. BFS failure rate, expressed as the routing failure percent per  value (rational users) in each 

social graph. 
 

 
Fig. 11. BFS failure rate, expressed as the routing failure percent per  value (rational users) in each 

social graph. 
 

      One implication of these findings on applications is that, since the collaboration of 

high-degree nodes is more important to the overall performance of the network, investigating 

providing incentives for such nodes to be always collaborative to improve the performance is 

an interesting issue. For example, in delay tolerant networks (DTN) routing built on social 

networks [5], [36], [37]; it is assumed that all nodes are collaborative. Since it is not always the 

case, it will be interesting to deploy these observations and build incentives for collaboration, 

especially for those critical nodes, in that context. 
    We notice that the characterization of users into malicious and benign in away corresponds to 

assigning two extreme values to their behavior: 0 or 1. This is, a malicious user will always not forward 

on behalf of other users, whereas the benign user will always forward on behalf of other users. Modeling 

the behavior of users as probability also captures malicious users by adjusting the correct parameter set: 

0 and 1. Furthermore, in the context of this study, and for the purpose of the applications discussed in 
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the paper for routing, a malicious user would drop all messages (by adjusting collaboration parameters 

to 0), thus evaluating such scenario is trivial, and we do not consider it. However, one should keep in 

mind that such case is explicitly included in our modeling of user behavior. 

5. Related Work 

There has been a number of papers on the use of social networks for building communication 

and security systems, studying the performance of such designs on top of social networks, and 

analyzing the assumptions used in these designs as well. The closest to this study is the work in 

[38], where nodes are basically assumed to have some selfish behavior in each and every one 

of them, which follows some distribution (e.g., uniform, normal, or geometric). The major 

difference between our work and the work in [38] is actually twofold. First, while [38] 

considers traces of encounter-like wireless networks, we consider traces of static social 

graphs. While in the general sense both types of traces, static and encounter-based, could be of 

potential use to routing, we believe that static traces are more favorable to the assumption of 

trust which most routing protocols weigh a big value on to demonstrate effectiveness [39]. 

Second, and more important, the conclusions in this paper are at contradiction with the 

findings in [38]. In particular, whereas it is shown in [38] that selfishness does not much affect 

the behavior of the routing algorithm due to the multi-path characteristics of the underlying 

connections and links among nodes in the graph, we show strong evidence that the lack of 

collaboration by a few nodes with a particular characteristic (e.g., degree distribution) in static 

social graphs could greatly affect the effectiveness of the routing protocol built on top of the 

social network (see details in section 4). In total, while our work brings conclusions 

contradicting with the prior work in [38], it can be considered as an effort in the same direction 

to understanding collaboration in settings where social networks are used for improving 

routing in networked systems. 

      Systems built on top of social networks include Sybil defenses, such as the work in [15], 

[16], [40], [41]. Most of these defenses weigh trust in the social graph, and an algorithmic 

property that makes the operation of the defense on top of social network at reasonable cost. 

Routing and information sharing using social networks is explored in [4], [5], [6], [8], [20], 

[21]  for different settings, where it is shown that connectivity in social graphs can be of 

benefit in disconnected networks. However, in all of those works collaboration is assumed to 

be categorical, and there were no attempts in the literature to characterize collaboration and 

understand how it impacts the cost of operating such routing and sharing algorithms and 

applications on top of social networks. 

      In line with our work to understand the underlying assumptions about applications built on 

top of social networks, there has been several attempts to characterize properties of such 

networks. The properties used for building Sybil defenses are studied in [33] where it has been 

shown that widely accepted properties of social networks, such as the mixing time, do not hold 

in a wide variety of social networks (results are confirmed in [42] and [43]), and trust is 

challenged in [39] where it has been shown that the guarantees of operating such defenses on 

top of social networks can be greatly improved by incorporating differential trust. It is worth 

noting that both the context and findings in these papers and the current paper, are different. In 

particular, while we show that a small number of nodes could thwart the utility of random 

walk-based routing in social networks, the results in the former papers demonstrate that some 

social graphs are fast mixing whereas some are slower mixing, and this affects the systems 

built on top of these social graphs. 

      Similar to our work in essence is the work in [44] and [26]. In [44], Feng et al. studied 
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social incentivies for enabling cooperation in spectrum sensing in distributed cognitive radio 

networks. In [26], Wang et al. studied the performance of information propagation in delay 

tolerant networks that utilize an underlying mobile social network fabric.  In [45], [46] and 

[47], Le et al. studied how social behavior affects caching in DTN. In [48], Chung et al. 

demonestrated how social behavior can be used to improve communication and node 

discovery in mobile ad hoc networks. In [49], Wei et al. designed an efficient Sybil defense in 

general networks utilizing the trust fabric in social networks, and in [50] Liu et al 

demonestrated how to use temporal dynamics for attacking social network-based Sybil 

defenses.  

5. Conclusions and Future Work 

In this paper, by classifying nodes in social graphs into collaborative and probabilistically 

collaborative, we studied the impact of collaboration in social networks on the performance of 

information routing techniques, including random walk based routing, shortest-path based 

routings, all of which are built on top of social networks. Even without the classification part, 

we experimentally demonstrated that the cost of such protocols on top of some of real-world 

graphs is large while it is reasonable on others. We further show that some networks are very 

well-performing and meet the potential of such applications, whereas other networks are quite 

sensitive to the behavior of users: the lack of collaboration being small fraction of nodes in the 

graph would influence the cost associated with such algorithms when initiated from the 

majority of nodes in the graph. This observation is hypothesized to be related to the underlying 

structure and the characteristic of the non-collaborating node. The previous section identified 

three clusters for QoS classes and features to build up classification rules through 

unsupervised learning. In this section, the accuracy of the classification rules is evaluated 

experimentally. For classification, we chose the K-nearest neighbor (KNN) algorithm. 

Experimental results are compared with the minimum mean distance (MMD) classifier. 

Exploring theoretical models to characterize the performance of routing algorithms under 

behavior as parameters would be the work to be considered in the near future. This will benefit 

from rich literature, e.g., [51], [52].  
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