
1

Analyzing and Detecting In-browser
Cryptojacking

Muhammad Saad and David Mohaisen Senior Member, IEEE.

Abstract—Cryptojacking is the permissionless use of a target device to covertly mine cryptocurrencies. With cryptojacking, attackers
use malicious JavaScript codes to force web browsers into solving proof-of-work puzzles, thus making money by exploiting the
resources of the website visitors. We systematically analyze the static, dynamic, and economic aspects of in-browser cryptojacking to
understand and counter such attacks. For static analysis, we perform currency-based and code-based categorization of cryptojacking
samples to 1) measure their distribution across websites, 2) highlight their platform affinities, and 3) study their code complexities. We
apply machine learning techniques to distinguish cryptojacking scripts from benign and malicious JavaScript samples with 100%
accuracy. For dynamic analysis, we analyze the effect of cryptojacking on critical system resources, such as CPU and battery usage.
We also perform web browser fingerprinting to analyze the information exchange between the victim node and the dropzone
cryptojacking server. We also build an analytical model to empirically evaluate the feasibility of cryptojacking as an alternative to online
advertisement. Our results show a sizeable negative profit and loss gap, indicating that the model is economically infeasible. Finally,
leveraging insights from our analyses, we build countermeasures for in-browser cryptojacking that improve the existing remedies.

Index Terms—Cryptojacking; Coinhive; Illegal Mining

F

1 INTRODUCTION

Blockchain-based cryptocurrencies have emerged as an in-
novation in distributed systems, enabling a transparent and
distributed storage of transactions. Various proof mecha-
nisms, such as the Proof-of-Work (PoW), prevent abuse
and improve cryptocurrency trustworthiness. In Bitcoin, for
example, individual miners mine new coins through exten-
sive hash operations, which are then verified by distributed
nodes in a peer-to-peer (P2P) network [2], [3]. However,
PoW led to abuse: an adversary may employ various tech-
niques to abuse public resources for mining purposes and
to perform extensive hash calculations at no or low cost.

Cryptojacking is the use of resources of a target host to
compute hashes and make a profit out of mining without the
consent of the target’s owner. Conventional cryptojacking
involved the installation of a software binary on a target host
that secretly solved PoW and communicated the results to a
remote server [4]. Such conventional cryptojacking required
user permission to download the software and a persistent
Internet connection to communicate the PoW result to the
adversary or a dropzone server controlled by him. However,
conventional cryptojacking has several limitations. First, not
all devices have a persistent Internet connection to send
PoW results. If not sent immediately after being solved,
PoWs become easily outdated. Secondly, antivirus compa-
nies can easily identify binaries used for cryptojacking and
detect them [5]. Finally, this attack requires an infection vec-
tor, whereby users would enable the attack by mistakenly
installing the cryptojacking binaries.

A recent form of in-browser cryptojacking that does not
suffer from those issues has emerged. In-browser crypto-

M. Saad, and D. Mohaisen are with PayPal and the University of Central
Florida. M.Saad is the corresponding author. E-mail: muhsaad@paypal.com.
An earlier version of this work has appeared in APWG Symposium on
Electronic Crime Research [1]

20
18

-1
1-

25

20
19

-0
6-

23

20
20

-0
1-

19

20
20

-0
8-

16

20
21

-0
3-

14

20
21

-1
0-

10

20
22

-0
5-

08

20
22

-1
2-

04

20
23

-0
7-

02

Date (yy-mm-dd)

0

20

40

60

80

100

G
oo

gl
e

Se
ar

ch

Cryptojacking
Coinhive
Monero

Figure 1. Google search trends for Cryptojacking, Monero, and Coinhive
from 2018 to 2023. The results have been normalized in this plot’s range
of [0-100]. The trends show that Cryptojacking and Coinhive are still
actively searched terms on Google.

jacking does not require installing binaries or authorization
from users to operate. In-browser cryptojacking instances
use JavaScript code to compute PoW in the web browser
and transmit the PoW to a remote server [6]. Since the
cryptojacking activity is shielded in the browser’s process, it
is often not detected by antivirus scanners. Moreover, min-
ing during browsing ensures uninterrupted transmission of
PoW over a persistent Internet connection.

Initially. cryptojacking was intended for good use as
an alternative revenue source to online advertisement [7].
Cryptojacking was made easy by online services such as
Coinhive [8], which provided JavaScript templates for cryp-
tojacking. Coinhive provided scripts to mine Monero cryp-
tocurrency and the mining rewards were distributed pro-
portionally to the hashes contributed by the miners. cryp-
tojacking has been a major concern to users, as evidenced
by the search engine trends showcasing growing interest
in the subject. Figure 1, shows the Google search trend for

2

“Cryptojacking”, “Monero”, and “Coinhive” from 2018 to
2023. It can be observed that all three terms were actively
searched until early 2019. Later, there was a decrease in
the search for Coinhive, while Monero and Cryptojacking
remained popular search terms.

In-browser cryptojacking serves as an attack avenue for
hackers who inject malicious JavaScript scripts into popular
websites without the knowledge of website owners and
mine cryptocurrency for themselves. According to Syman-
tec’s Security Threat Report (ISTR), cryptojacking attacks on
websites rose by 8500% during 2017 [9], [10]. In February
2018, a major cryptojacking attack hit more than 4000 web-
sites worldwide, including the websites of the US Federal
Judiciary and the UK National Health Service (NHS) [11].
Also, in February 2018, Tesla became the victim of a cryp-
tojacking attack in which attackers hijacked Tesla cloud and
deployed their cryptojacking code [12]. After such unusual
incidents, the UK’s National Cyber Security Centre (NCSC)
indicated cryptojacking as a “significant threat” in its latest
cyber security report [13], [14].

The use of cryptojacking as a replacement for adver-
tisement also has witnessed a great debate. For example,
some popular websites, such as “The Pirate Bay”, started
using cryptojacking as a revenue substitute to online adver-
tisement [15]. “The Pirate Bay” website later disclosed to
its users that it would use the CPU cycles of the visitors
in exchange for ad-free web browsing, garnering users’
approval. As some other websites started using crypto-
jacking as a revenue generation mechanism, a debate was
sparked on the ethics of using cryptojacking [16] and the
absence of user consent. Furthermore, it was observed that
the continuous CPU-intensive mining, especially on battery-
powered devices, resulted in the quick drainage of those
devices, adding a new variable to the debate of whether
cryptojacking is a good alternative to online advertising.

Motivated by these events, we conduct an in-depth
study on in-browser cryptojacking and its effects on web-
site visitors and their devices. We start by analyzing and
characterizing more than 5,700 websites with cryptojacking
scripts. We then explore static and dynamic analysis tools
to understand the behavioral traits of in-browser crypto-
jacking scripts toward their detection. Using various fea-
tures extracted through this analysis, we build a classifier
for detecting cryptojacking scripts among benign scripts,
as well as other malicious types of JavaScript codes. We
also measure the impact of in-browser cryptojacking on
user devices in terms of CPU usage and battery drainage.
Finally, in examining the feasibility of cryptojacking as an
alternative to online advertisement, we conduct an in-depth
end-to-end analysis that considers the implications of such
an alternative on both users and websites.

Contributions and Roadmap. In summary, our work ex-
plores in-browser cryptojacking by performing static, dy-
namic, and economic analysis. Our findings are summarized
below as key contributions.

1) We collect a dataset of over 5,700 cryptojacking web-
sites and analyze their distribution across the top-level
domains (§3).

2) In static analysis, we analyze the code features of cryp-
tojacking scripts to study the distribution of cryptocur-

rencies used by websites (§4) and develop models for
cryptojacking detection. We apply supervised learning
techniques for cryptojacking detection and our models
achieve a high detection accuracy (§4.3).

3) In dynamic analysis, we analyze how cryptojacking
affects the user devices especially their CPU usage and
battery drainage (§5). Our dynamic analysis shows that
cryptojacking is highly resource intensive and crypto-
jacking scripts use WebSockets as their communication
channel. We later use the WebSocket payload to pro-
pose cryptojacking countermeasures (§7).

4) We examine the economic arguments for cryptojacking
as an alternative to online advertisement and build a
model to estimate the cost of cryptojacking to the users
and the gain to websites conducting cryptojacking (§6).
We show the economic model is impractical for benign
use, and unprofitable for malicious use.

Atop of the contributions in [1], this paper extends our
analysis by: 1) a more systematic and in-depth background
about various aspects of cryptojacking, including its preva-
lence, popularity, and association with blockchain-based
cryptocurrencies, 2) adapting a supervised learning ap-
proach in which we used logistic regression, linear discrimi-
nant analysis, k-nearest neighbors, support vector machine,
and random forest to improve the detection accuracy of
cryptojacking codes (at the website level), and 3) analyzing
the memory footprints of in-browser cryptojacking.

To show that cryptojacking is still relevant, we identify
620 out of the 5703 websites that are still online and revise
our results in §3 and §4. Our new dataset and recent re-
ports [17] show that cryptojacking is still a problem.

The rest of the paper includes a background in §2, the
related work in §8, and conclusion in §9, respectively.

2 BACKGROUND

2.1 Blockchain-based Cryptocurrencies
In 2009, the first blockchain-based digital currency “Bitcoin”
was introduced by Satoshi Nakamoto [18] that involved the
exchange of transactions without using a central authority.
In Bitcoin, the role of the trusted central authority was re-
placed by a transparent and tamper-proof public blockchain
that acted as a public ledger to maintain the records of
transactions. The consensus in the decentralized peer-to-
peer Bitcoin network was augmented by a cryptographi-
cally secure algorithm known as the proof-of-work (PoW).
Bitcoin remained the only cryptocurrency for two years after
which several more digital currencies joined the market.
Some other notable cryptocurrencies that use the public
blockchain include Ethereum, Litecoin, Ripple, Monero, and
Dash.

2.2 Mining in Cryptocurrencies
The key operations in every cryptocurrency involve the
exchange of transactions among peers, the mining of trans-
actions in blocks, and the publishing of blocks containing
those transactions. Computing a valid block results in the
generation of new coins in the system.

However, computing a valid block is a non-trivial pro-
cess in which miners must solve mathematical challenges

3

and provide a PoW for their solutions. In Bitcoin, PoW
involves finding a nonce that, when hashed with the data
in the block, produces a hash value less than the target
threshold the system sets. The target is a function of network
difficulty and is denoted by a 256-bit unsigned integer
encoded in a 32-bit “compact” form and stored in the block
header. In solving the challenge, miners spend effort and,
in return, get rewarded with new coins for each valid PoW.
As more miners join the network, the hash power of the
network and the probability of computing a block increase.
The network’s difficulty is adjusted every two weeks to keep
the average block computation time within the fixed range.

We show how the block computation time, T (B), is
affected by the hashing rate, Hr, the target, Target, the
probability of finding a block, Pr(B), and the average
number of hashes required to solve the target, H . To keep
T (B) in a fixed range (10 minutes), as the Hr increases, the
target value is adjusted to keep Pr(B) constant. As such,
we calculate Pr(B) = Target/2256, H = 1/Pr(B), and
T (B) = H/Hr = 1/(Pr(B)×Hr).

2.3 Cryptojacking

Generally, attackers utilize two main strategies for unautho-
rized use of a victim’s machine to mine digital currencies
through cryptojacking: installing a binary on the machine
or using an in-browser script. The first one loads the mining
code on the victim’s machine as a stand-alone binary (or
an infection of a binary). As such, it requires information
about the target machine, including its operating system and
hardware constructs. For example, a malicious cryptojack-
ing binary developed for Windows cannot be executed on
Linux. However, the second strategy is platform agnostic.
The cryptojacking JavaScript is executed upon loading the
website in the victim’s browser. In both cases, the mining
code works in the background. Below, we briefly discuss
the two cryptojacking strategies. However, the main focus
of this paper is in-browser cryptojacking, which we will
discuss in the rest of the paper.

Software-based Cryptojacking. Software-based cryptojack-
ing involves installing a compromised binary on the tar-
get host that sends PoW solutions to a dropzone server.
The most popular cryptojacking software is XMRig [19], a
cross-platform mining software supporting four different
PoW protocols. Typically, mining pools legitimately use
XMRig. However, its malware versions are also available
and target non-miners. An XMRig-based malware called
“WaterMiner” targets the online gaming community [19]).

In-Browser Cryptojacking. In-browser cryptojacking is
done by injecting a JavaScript code in a website, allowing
it to hijack the processing power of a visitor’s device to
mine a specific cryptocurrency. The precise nature of the
cryptocurrency (i.e., mining protocol, difficulty, message
exchange, etc.) is specified by the mining script embedded
within a website. Upon visiting a website with cryptojacking
code, the browser loads the web page and executes the
JavaScript snippet that contains instructions for mining and
data transfer. As a result, the visiting host starts the mining
activity by becoming part of a cryptojacking mining pool. A
key feature of in-browser cryptojacking is being platform-

independent: it can be run on any host, PC, mobile phone,
tablet, etc., as long as the web browser supports JavaScript.

2.3.1 Cryptojacking as a Replacement to Advertisement
An ongoing debate sparked in the community for whether
cryptojacking can serve as a replacement for online ad-
vertisement. Those advocating the approach have pointed
out that users providing their CPU power to a website for
mining can use the website without viewing online adver-
tisements. Towards that, some websites, including the afore-
mentioned ‘The Pirate Bay”, started using cryptojacking as
a revenue substitute for online advertisements [15] and be-
come “ads-free operation”. However, a counterargument to
this model is the excessive abuse of the cryptojacking web-
site to the visitor’s CPU resources. In-browser cryptojacking
scripts will not only run in the background without the
user’s consent. Still, they will also drain batteries in battery-
powered platforms, indirectly affecting the user experience
by locking the CPU power and not allowing him to use
other applications.

3 DATASET AND PRELIMINARY ANALYSIS

3.1 Data Collection
We assembled a data set of cryptojacking websites pub-
lished by Pixalate [20] and Netlab 360 [21]. Pixalate is a
network analytics company that provides data solutions for
digital advertising. In Nov. 2017, they collected a list of
5,000 cryptojacking websites actively stealing visitors pro-
cessing power to mine cryptocurrency. We obtained a list of
cryptojacking websites from Pixalate. Netlab 360 (Network
Security Research Lab at 360) is a data research platform
that provides many datasets. From Netlab 360, we obtained
700 cryptojacking websites, released on Feb 24, 2018.

The combined dataset’s top-level domain (TLD) dis-
tribution, including the TLD type and the corresponding
percentage, is shown in Table 1. Unsurprisingly, .com and
.net occupy the first and second spots of the top 10 TLDs
represented in the dataset, with a combined total of 40.3%
of the websites belonging to them. Country-level domains
have a significant presence, with countries such as Slovenia,
Russia, and Brazil well represented in the dataset. New-
gTLDs were also present in the top-10 gTLDs, with .site
having ≈2.0% of the sites. In Pixalate’s dataset, six websites
were found in the Alexa top 5000 websites, and 13 were
among the Alexa top 10000 websites. Among the crypto-
jacking site, 68.3% did not have a privacy policy.

In contrast, 56.8% of websites had no “terms and condi-
tions” statement, and 49.3% did not have both a privacy
policy and terms and conditions. This indicates that the
majority of those websites could not formally, through those
statements, inform their visitors of the usage of their re-
sources for mining cryptocurrencies, where cryptojacking is
used instead of online advertisement [22].

As mentioned in the §1, among 5703 websites analyzed
in January 2018, we found 620 websites were online as of
September 2023. We use those 620 websites to faithfully re-
produce the behavior of cryptojacking websites and extract
their features in one of our machine learning experiments
in §4.3. We also revise our TLD distribution analysis in Ta-
ble 1 and report our new findings in Table 2. Our results

4

Table 1
Distribution of cryptojacking

websites with respect to top-level
domains in our dataset (type:
generic, country, and new).

Rank TLD Type Sites %
1 .com g 1945 34.1
2 .net g 359 6.2
3 .si c 358 6.2
4 .online g 349 6.1
5 .ru c 242 4.2
6 .org g 191 3.3
7 .sk c 169 2.9
8 .info g 169 2.9
9 .br c 157 2.7
10 .site n 116 2.0
11 others — 1648 28.8

Total — — 5703 100

Table 2
Distribution of currently active

cryptojacking websites with respect
to top-level domains (type: generic,

country, and new).

Rank TLD Type Sites Sites%
1 .com g 331 53.4
2 .net g 55 8.9
3 .org g 27 4.4
4 .ru c 27 4.4
5 .tv g 11 1.8
6 .info g 10 1.6
7 .co c 10 1.6
8 .me c 9 1.5
9 .sk c 9 1.5
10 .de c 9 1.5
11 others — 122 20

Total — — 620 100%

show that among the active sites, .com is still the most
dominant TLD, and country-level domains are now more
prevalent in the dataset.

3.2 Methodology

We perform static and dynamic analysis of the cryptojack-
ing JavaScript code. In the static analysis, we categorize the
websites based on the currency they mine during crypto-
jacking. Additionally, we extract the cryptojacking code and
develop code-based features to examine their properties. Us-
ing those static properties, we compare them with malicious
and benign JavaScript code. We use standard code analyzers
to extract program-specific features.

In our dynamic analysis, we explore the CPU power
consumed by cryptojacking websites and its effects on user
devices. We run test websites to mimic cryptojacking web-
sites and carry out a series of experiments to validate our
hypothesis. For our experiments, we use Selenium-based
scripts to automate browsers and various end host devices,
including Windows, Linux, and Mac-operated laptops, to
monitor the effect of cryptojacking under various operating
systems and hardware architectures. For website informa-
tion, we use services provided by Alexa and SimilarWeb to
extract information regarding website ranking, the volume
of traffic, and the average time visitors spend on that web-
site [23].

4 STATIC ANALYSIS

For static analysis, we perform currency-based and code-
based analysis. In the currency-based categorization, we
show the distribution of service providers and platforms
providing cryptojacking templates for those websites. The
code-based analysis provides insight into the complexity
of the cryptojacking scripts using various code complexity
measures. Using those features, we perform two experi-
ments for cryptojacking detection. Our first experiment is
a website-agnostic approach to uniquely distinguish cryp-
tojacking JavaScript from other forms of malicious and be-
nign JavaScript codes. Our second experiment is a website-
specific approach using which we analyze 620 cryptojacking
websites that are still online and compare them with non-
cryptojacking websites.

Table 3
Detailed results of the currency-based analysis. 1 The variable name is

abbreviated. No CJ: No cryptojacking.

Platform Websites Cryptocurrency Websites
% # %

Coinhive 4652 81.57

Monero 4926 86.37

Hashing 67 1.17
deepMiner 56 0.98
Freecontent 39 0.68
Cryptoloot 38 0.67
Miner 38 0.67
Authedmine 35 0.61
JSEcoin 149 2.61 JSEcoin 149 2.61
No CJ 628 11.01 — 628 11.01
Total 5703 100.00 — 5703 100.00

4.1 Currency-based Categorization

To understand the cryptojacking ecosystem, it is critical to
find out what cryptocurrencies are typically being mined
through in-browser cryptojacking. Therefore, we inspected
the websites’ scripts to extract information about the plat-
forms and cryptocurrencies. From our dataset, we found
that there were eight platforms providing templates to mine
two types of cryptocurrencies, namely, Monero and JSEcoin.
In Table 3, we provide details about the eight platforms
and their respective cryptocurrency. We found that a large
proportion of the websites (≈81.57%) use Coinhive [8] plat-
form to mine Monero cryptocurrency [24], which is one of
the few cryptocurrencies that supports in-browser mining.
We found that ≈86.37% of the websites in our dataset are
mining Monero cryptocurrency through seven platforms.
In addition, ≈2.61% of the websites are using the JSEcoin
platform [25], which is responsible for mining the JSEcoin
cryptocurrency.

Although PoW-based cryptocurrencies have many traits
in common, they may vary in market cap, user base, ap-
plication protocols, and mining rewards. In our dataset, we
found two cryptocurrencies, namely Monero and JSEcoin,
which are used for in-browser cryptojacking. We report the
differences between the two cryptocurrencies in Table 4.
While both of them are used for cryptojacking, at the
time of writing this paper, JSEcoin was not launched in
the market and did not have any “Initial Coin Offering”
(ICO), which explains its low prevalence in our dataset.
Furthermore, unlike Monero, which is resource-intensive,
JSEcoin uses minimal CPU power and does not add a
significant processing overhead to the target device. One of
the key objectives of this paper is to characterize resource
abuse in cryptocurrency mining, where Monero is shown
to be a better example than the “browser-friendly” JSEcoin.
Therefore, due to its high prevalence in the dataset, and
the significant contribution towards the broader goal of this
study, we mainly focus our work on Monero cryptocurrency.

4.2 Code-based Analysis

We perform static analysis on the cryptojacking scripts to
analyze the performance and complexity of their code. Static
analysis reveals code-specific features for insights into the
flow of information upon code execution. For static analysis,

5

Table 4
Comparison of Moneroe and JSEcoin. JSEcoin has not been released

in the market as yet.

Currency
Market
Cap

Consensus
Algorithm

Resource
Intensive

Dataset
Prevelance

Monero 2.3B CryptoNight 3 86.37%
JSEcoin — SHA-256 7 2.61%

we gathered cryptojacking scripts from all major crypto-
jacking service providers in our dataset: Coinhive, JSEcoin,
Crypto-Loot, Hashing, deepMiner, Freecontent, Miner, and
Authedmine. We observed that all the service providers
had unique codes, specific to their own platforms. In
other words, the websites using Coinhive or JSEcoin em-
ployed their respective JavaScript templates. However, each
provider’s code template differed, which led us to believe
that each script had unique static features. With all of that
in mind, we performed static analysis on the cryptojacking
websites and compared the results with another standard
JavaScript for a baseline comparison.

We prepared our dataset for static analysis by collecting
all of the popular cryptojacking scripts from our list of
websites. We found eight unique scripts in our dataset, each
belonging to one service provider. As a control experiment,
we collected an equal number of malicious and benign
JavaScript codes to design machine learning models for
detection. We aimed to obtain features unique only to the
cryptojacking scripts and aid in their detection. We were
limited to including equal sizes of malicious and benign
JavaScript samples for the static analysis to avoid bias to-
wards a certain class. Although there are many samples of
malicious and benign JavaScript in the wild, only eight cryp-
tojacking scripts are available. Since our work is focused
on distinguishing cryptojacking scripts from malicious and
benign JavaScript, we had to balance the size of each class.
While the number of scripts might seem a limitation of our
work, we believe the promise of this work is substantial.
As more platforms use cryptojacking, more samples will be
available for a broader study.

In lieu, we used the existing data of the cryptojack-
ing websites (§3.1) and online resources from GitHub for
malicious JavaScript sample [26]. For benign JavaScript, we
used the set of non-cryptojacking websites and parsed their
HTML code to extract benign JavaScript code [27]. In sum-
mary, we had 8 samples of cryptojacking JavaScript, span-
ning all the websites. Accordingly, we selected 10 malicious
and 10 benign scripts for our machine-learning model and
extracted the following features for static analysis.

Cyclomatic Complexity. Cyclomatic complexity measures
the complexity of code using a control flow graph (CFG),
where each node represents a function and a directed edge
between two nodes indicates a caller-callee relationship. Let
E be the number of edges,N be the number of nodes, andQ
be the number of connected components in the CFG, M can
be used to denote the cyclomatic complexity of the program
and is calculated as M = E + 2Q−N .

Cyclomatic Complexity Density. Cyclomatic complex-
ity density [28] measures Cyclomatic complexity, defined
above, spread over the total code length. Let cl be the total

number of lines of code, then the cyclomatic complexity
density, denoted byMd, can be computed asMd = E+2Q−N

cl

Halstead Complexity Measures. The Halstead complexity
measures are used as metrics to characterize the algorithmic
implementation of a programming language. Those mea-
sures include the vocabulary η, the program length n, the
calculated program length nc, the volume V , the effort E,
the delivered bugs B, the time T , and the difficulty D.
Let the number of distinct operators be η1, the number of
distinct operands be η2, the total number of operators be n1,
the total number of operands be n2, the η, n, nl, V, E, and B
are defined as follows:

η = η1 + η2, n = n1 + n2 (1)
nc = (η1 log2 η1) + (η2 log2 η2), V = n× log2 η (2)
D = (η1/2)× (n2/η2), E = D × V (3)

T = (D × V)/18, B = E
2
3 /3000 (4)

Maintainability Score. The maintainability score Ms is
calculated using Halstead volume V , cyclomatic complexity
M , and the total lines of code in the JavaScript file cl. The
maintainability score index Mi is calculated between [0-
100] and is defined as Ms = 171 − 5.2 log(V) − 0.23M −
16.2 log(cl);Mi = max(0, Ms

171).
Source Lines of Code. Source lines of code (SLOC) measure
the lines of code in the program after excluding the white
spaces. SLOC is a predictive parameter to evaluate the effort
required to execute the program. It also provides insights
into program maintainability and productivity.
Results. To extract features in our code-based analysis,
we used Plato, a JavaScript static analysis and source code
complexity tool [29]. For each JavaScript code, we ran Plato
and recorded the 17 extracted features as reported in Table 5.
From Table 5, we observed that certain features, such as
M , Md, V , and T , are clearly discriminative among all the
categories.

4.3 Classification Models
We applied machine learning techniques in two experiments
for cryptojacking detection. In the first experiment, we
selected the unique cryptojacking JavaScript codes of eight
platforms shown in Table 3.1 Our primary goal was to
study the code-based features of cryptojacking scripts that
are distinctly different from other types of JavaScript codes.
Therefore, discriminative features of cryptojacking scripts
can be characterized through machine learning models for
classification and detection. With only eight cryptojacking
scripts available for the experiment, we collected a compara-
ble number of malicious and benign JavaScript code samples
from Github [26], [27] to avoid bias in model training [31].

After collecting malicious, benign, and cryptojack-
ingJavaScript codes, we extracted their code-based features
using Plato Table 5 and applied machine learning mod-
els including Logistic Regression (LR), Linear Discriminant
Analysis (LDA), k-nearest neighbors (k-NN), Support Vector
Machines (SVM), and Random Forest (RF) [32]. Logistic
Regression applies a logistic function to compute the prob-
ability of binary outcomes. Linear Discriminant Analysis is

1. All eight unique cryptojacking platforms can be found in [30]

6

Table 5
The static features of the cryptojacking, malicious, and benign samples. The mean (µ) and standard deviation (σ) of the features are also reported.

Cat. Platforms M Md B D E cl T η V η1 n1 η2 n2 params sloc physical Ms

C
ryptojacking

deepMiner 184 44.2 14.1 113.0 4,810,434 4,667 267,246 554 42,533 47 2,440 507 2,227 75 416 499 67.8
Authedmine 168 26.5 19.7 82.8 4,912,255 6,096 272,903 844 59,259 41 3,247 803 2,849 73 633 784 62.8
Hashing 138 29.1 7.2 94.6 2,185,379 2,794 124,138 342 24,393 38 1,469 315 1,415 37 412 505 68.2
Miner 133 27.7 9.3 90.5 2,537,930 3,239 140,996 403 28,032 39 1,690 364 1,549 49 479 617 64.1
Coinhive 131 27.5 9.1 94.8 2,608,021 3,226 144,890 368 274,970 37 1,697 331 1,529 48 476 594 63.7
Crypto-loot 128 39.7 11.4 88.1 3,034,935 3,788 168,607 546 34,443 45 1,962 501 1,826 62 322 389 70.3
Freecontent 117 28.3 8.1 89.4 2,180,394 2,884 121,133 350 24,373 38 1,469 312 1,415 37 412 505 62.7
JSEcoin 64 17.2 10.2 62.9 1,945,165 3,257 108,064 716 30,888 45 1,878 671 1,379 49 372 412 64.7
Mean (µ) 130.3 29.9 11.3 88.9 3,026,191 3,755.1 168,121 516.4 33,925 41.3 1,981.5 475.1 1,773.6 53.8 440.3 538.1 64.9
SD. (σ) 35.9 8.4 3.9 13.8 1,180,403 1,109.9 65,577 185.1 11,856 3.9 599.3 182.8 519.3 14.8 93.2 126.3 2.8

M
alicious

20160209 92 21.5 5.6 25.1 423,925 1,833 23,551 580 16,826 27 1,032 553 801 22 427 503 44.4
20161126 62 15.3 4.2 24.6 315,735 1,563 17,540 292 12,800 17 798 275 765 0 403 481 90.5
20170110 14 4.4 15.0 26.7 1,211,305 4,704 67,294 782 45,210 15 2,740 767 1,964 232 313 564 93.6
20170507 6 24.0 5.9 11.1 199,917 1,864 11,106 777 17,897 18 942 759 922 1 25 890 71.7
20160927 3 1.4 4.0 32.5 393,555 1,575 21,864 204 12,084 13 957 191 618 0 213 98 23.2
20170322 2 18.1 11.8 7.1 253,442 3,514 14,080 1,123 35,607 9 1,762 1,114 1,752 3 11 1,738 90.9
20170303 2 8.6 0.2 9.4 8,338 147 463 63 878 13 73 50 74 4 23 55 78.7
20160407 1 33.3 0.1 2.7 207 19 11 16 76 5 12 11 7 0 3 3 78.9
20170501 1 0.9 2.1 3.3 21,464 758 1,192 322 6,314 5 431 317 327 0 105 105 35.9
20160810 1 12.5 0.5 11.9 20,148 275 1,119 70 1,685 6 255 64 20 0 8 13 60.4
Mean (µ) 18.4 14 4.9 15.5 284,803.7 1,625.2 15,822 422.9 14,938 12.8 900.2 410.1 725 26.2 153.1 445 66.9
SD. (σ) 31.9 10.5 5 10.8 364,470.8 1,508.9 20,248 374.8 15,045 6.9 834.7 372.5 686.6 72.6 171.9 543.5 24.9

Benign

The Boat 2,135 69.3 110.8 392.0 130,285,522 31,916 7,238,084 1,364 332,361 59 17,341 1,305 14,575 852 3,084 3,349 66.7
IBM Design 2,119 68.3 110.9 397.1 132,237,213 32,018 7,346,511 1,351 332,981 59 17,393 1,292 1,4625 853 3,103 3,372 66.7
Histography 1,743 40.7 95.2 249.5 71,325,242 26,627 3,962,513 1,704 285,833 55 14,963 1,649 11,663 803 4,278 5,043 59.4
Know Lupus 1,006 28.1 92.9 170.4 47,474,425 25,120 2,637,468 2,181 278,600 54 13,424 2,127 11,696 615 3,583 4,288 65.2
tota11y 815 38.8 59.4 227.7 40,563,065 17,486 2,253,503 1,167 178,157 52 9,764 1,115 7,722 412 2,099 2,336 62.9
Masi Tupungato 784 58.2 47.1 185.0 26,199,193 14,296 1,455,510 958 141,585 43 7,875 915 6,421 238 1,347 1,470 67.2
Fillipo 703 42.9 43.1 194.3 25,139,766 12,900 1,396,653 1,045 129,377 54 7,132 991 5,768 269 1,637 1,770 61.5
Leg Work 412 75.7 34.0 241.3 24,651,056 11,100 1,369,503 589 102,143 45 5,835 544 5,265 66 544 633 65.9
Code Conf 409 27.8 41.1 197.1 24,336,420 12,500 1,352,023 939 123,437 49 7,162 890 5,338 315 1,469 1,753 64.9
Louis Browns 368 35.6 21.2 106.7 6,792,400 6,529 377,355 862 63,667 51 3,393 811 3,136 68 1,034 1,357 53.3
Mean (µ) 1,049.4 48.5 65.6 236.1 52,900,430 19,049.2 2,938,912 1,216 196,814 52.1 10,428.2 1,163.9 8,621 449.1 2,217.8 2,537.1 63.4
SD. (σ) 694 17.8 33.6 92.8 44,755,377 9,151.2 2,486,409 459.8 100,856 5.3 4,999 456.7 4,165 310.3 1,225.4 1,418.2 4.3

suitable for multivariate data in which it separates classes
using linear combinations. k-nearest neighbors is suitable
for non-linear problems, and it assigns a data point to the
majority class among k-nearest neighbors of the data point.
Support Vector Machines is useful for high-dimensional
data that separates data points of different classes by con-
structing a hyperplane. Random Forest combines different
decision trees and makes a class prediction based on a
majority vote aggregated over individual trees.

We apply these models on our dataset and report each
model’s precision, recall, and F1 score in Table 6. Our results
show that Linear Discriminant Analysis (LDA) and Random
Forest performed well, achieving an accuracy of 100% as
indicated by the value 1.00 for precision, recall, and F1-score.
In contrast, k-NN under-performed with 0.86, 0.75, and 1.00
values for precision, recall, and F1-score. SVM and Logistic
Regression performed better than k-NN with 0.92, 0.86, and
1.00 values for precision, recall, and F1-score. As a result, we
derive two key conclusions from our experiments. First, the
models that expect data linearity between features and the
target variable are more helpful in detecting cryptojacking
scripts. Second, the JavaScript features of the three classes are
highly discriminative, indicating unique coding patterns for
each category, which are easily distinguishable.

Although our first experiment provided meaningful in-
sights regarding cryptojacking code detection, we suspected
that it may not be generalizable due to a smaller sample size
used in training. To address this limitation, we conducted
a follow-up experiment in which we trained our model
on a larger dataset to evaluate the generalizability of our
approach in detecting cryptojacking websites from non-
cryptojacking websites using JavaScript code features.

For sample size enrichment, we used our original dataset
of 5,703 and crawled 620 domains that were still online.
We observed that those 620 domains were previously us-

ing Coinhive script for cryptojacking and had discontinued
cryptojacking after Coinhive shutdown. For each domain, we
collected the website code and extracted the same features
reported in Table 5 (i.e., cyclomatic complexity, Halstead
difficulty, and distinct operands etc.). Since each website
was previously using Coinhive script, we added the Coin-
hive script code to the downloaded website code (offline)
and then extracted the code features using Plato. We then
randomly selected 620 benign websites from Alexa’s top
1 Million domains which were not present in our cryp-
tojacking dataset. As a result, we obtained two classes
of 620 samples each, with one class containing features
of 620 cryptojacking websites while the other containing
features of benign websites. By following this procedure,
we achieved two main objectives. First, we increased our
sample size to improve model generalizability. Second, de-
spite the closure of Coinhive, we successfully reproduced the
behavior of cryptojacking websites that could be captured
and compared to the behavior of benign websites.

We divided our dataset into 75% training and 25% test-
ing subsets. The results from the second experiment show
that almost all classification models achieved an accuracy
of 100% as indicated by the value 1.00 for precision, re-
call, and F1-score in Table 7. Only Random Forest had a
low precision of 0.99 compared to other models. Our sec-
ond experiment validates that the features of cryptojacking
scripts are highly discriminative from other code types,
which can be easily detected across cryptojacking and non-
cryptojacking websites. Moreover, achieving a consistently
high detection accuracy at a larger sample size demonstrates
the generalizability of our proposed detection methodology.
Key Takeaways. From the static analysis, we derive the
following key conclusions: (1) cryptojacking websites use
various scripts, platforms, and cryptocurrencies for mining
operations, (2) cryptojacking scripts have distinct coding

7

Table 6
Classification performance (first

experiment) against the F1-score,
precision and recall.

F1 Pre Rec
LR 0.92 0.86 1.00
LDA 1.00 1.00 1.00
k-NN 0.86 0.75 1.00
SVM 0.92 0.86 1.00
RF 1.00 1.00 1.00

Table 7
Classification performance (second
experiment) against the F1-score,

precision and recall.

F1 Pre Rec
LR 1.00 1.00 1.00
LDA 1.00 1.00 1.00
k-NN 1.00 1.00 1.00
SVM 1.00 1.00 1.00
RF 1.00 0.99 1.00

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
o
m

p
o
n

e
n
t

2

Component 1

Malicious
Cryptojacking

Benign
Malicious Center

Cryptojacking Center
Benign Center

Figure 2: Clustering of the cryptojacking, malicious, and be-
nign scripts using FCM clustering algorithm.

Table 4 shows that the clustering algorithm is able to identify the
scripts with high performance: AR of ≈96.4%, FPR of 3.3%, and FNR
of 3.7%. Moreover, we visualized these clusters based on two major
principal components of their features in Fig. 2, which clearly show
natural separation between the clusters using those features.

5 DYNAMIC ANALYSIS
Static analysis is subject to circumvention through JavaScript code
obfuscation. To this end, we conduct dynamic analysis that looks
into profiling the usage of cryptojacking JavaScript code of various
host resources: CPU, and battery. We then look into the character-
istics of cryptojacking in their use of network resources.

5.1 Resource Consumption Profiling
5.1.1 Settings and Measurements Environment. We noticed that

in each cryptojacking website, a JavaScript snippet encodes a key
belonging to the code owner and a link to a server to which the
PoW is ultimately sent. Listing 1 provides a script found in websites
that use Coinhive for mining. The source (src) refers to the actual
JavaScript file that is executed after a browser loads the script tag. In
this script, we also noticed a throttling parameter, which is used as a
mean of controlling howmuch resources a cryptojacking script uses
on the host. We use such a throttling parameter, α as an additional
variable in our experiment. We experiment with α = {0.1, 0.5, 0.9}.

To understand the impact of cryptojacking on resources usage
in different platforms, we use battery-powered machines running
Microsoft Windows, Linux, and Android operating systems (OSes).
For our experiments, we selected three laptops, each with one
of those OSes. The Windows laptop used in the experiment was
Asus V502U, with Intel Core i7-6500U processor operating at 3.16
GHz. The Linux laptop was Lenovo G50, with Intel Core i5-5200U
processor (4 cores) running at 2.20 GHz, and the Android phone
was Samsung Galaxy J5, with Android version of 6.0.1.

For our cryptojacking script construction, using the various
parameters learned above, we set up an account on Coinhive to
obtain a key that links our “experiment website” to the server.
Next, we set up a test website and embedded the code in Listing 1
within the HTML tags of the website. Finally, to measure the usage
of resources while running cryptojacking websites, we set up a
Selenium-based web browser automation and run cryptojacking
websites, for various evaluations. Selenium is a portable web-testing
software that mimics actual web browsers [25, 26].

Listing 1: Coinhive code found in cryptojacking sites.

<script src="./ Welcome_files/coinhive.min.js"></script>
<script>

var miner = new coinhive.Anonymous("owner key",
{throttle: 0.1});

miner.start ();
</script>

5.1.2 CPU Usage. First, we baseline our study to highlight CPU
usage as a fingerprint across multiple websites that employ crypto-
jacking using the aforementioned configurations and measurement
environment. We study the usage of CPU with and without crypto-
jacking in place. For this experiment, we select four cryptojacking
websites. To measure the impact of cryptojacking on CPU usage,
we ran those websites in our Selenium environment, for 30 seconds,
with JavaScript enabled (thus running the cryptojacking scripts)
and disabled (baseline; not running the cryptojacking scripts). We
use this test experiment as our control.
Results. We obtained two sets of results for each website, with and
without cryptojacking. In Fig. 3, we plot four test samples obtained
from our experiment to demonstrate the behavior of websites with
and without cryptojacking. From those results, we observe that
when a website is loaded initially it consumes a significant CPU
power (shaded region), in both cases. Once the website is loaded, the
CPU consumption decays if the JavaScript is disabled, indicating no
cryptojacking. When JavaScript is enabled, the CPU consumption
is high, indicating cryptojacking. It can also be observed in Fig. 3,
that the CPU usage varied across the websites, indicating the usage
of the throttling parameter highlighted above. The same behav-
ior as with JavaScript disabled is exhibited when loading a page
with JavaScript that is either benign or of other types of malicious-
ness than cryptojacking. Through this experiment, we found that
cryptojacking consumes anywhere between 10 and 20 times the
processing power compared to when not using cryptojacking on
the same host. To further understand the impact of throttling on
CPU usage in different platforms, we conduct another measure-
ment where we used α = {0.1, 0.5, 0.9} with the different testing
machines. We found a consistent pattern, whereby the relationship
between α and the CPU usage is linear (plots are omitted).

5.1.3 Battery Usage. Clearly, high CPUusage translates to higher
power consumption, and quicker battery drainage. To further in-
vestigate how cryptojacking affects battery drainage, we carried
out several experiments using various α values for the various plat-
forms. Here we are interested in the order of battery drainage from
a baseline, rather than comparing various platforms. The batteries
of the different machines are as follows: 65 watt-hour for Windows,
41 watt-hour for Linux and ≈9.88% watt-hour for Android.
Results. For each α ∈ {0.1, 0.5, 0.9}, and using the different de-
vices, we ran the JavaScript script on a fully charged battery. We
logged the battery level every 30 seconds, as the script ran on each
device with the given α value, starting from a fully-charged battery.
Finally, we measure the baseline by running our script without the
cryptojacking code. The results are shown in Fig. 4. As expected,
with α = 0.1, corresponding to the lowest throttling and highest
CPU usage, the battery drained very quickly, to ≈10% of its capac-
ity within 80 minutes, compared to ≈85% within the same time
when not using cryptojacking. The same result is demonstrated

6

Figure 2. Malicious JavaScript code that links a website to Coinhive.

patterns that can be accurately modeled using machine
learning, and (3) our machine learning models efficiently
detect cryptojacking with a precision and recall of 1.

5 DYNAMIC ANALYSIS

5.1 Resource Consumption Profiling

Settings and Measurements Environment. We noticed that
in each cryptojacking website, a JavaScript snippet encodes
a key belonging to the code owner and a link to a server
to which the PoW is sent. Figure 2 provides a script found
in websites that use Coinhive for mining. The source (src)
refers to the actual JavaScript file that is executed after a
browser loads the script. In this script, we also noticed a
throttling parameter, which controls how much resources a
cryptojacking script uses on the host. We use the throttling
parameter, α, as an additional variable in our experiment.
We experiment with α = {0.1, 0.5, 0.9}.

To understand the impact of cryptojacking on resource
usage in different platforms, we use battery-powered ma-
chines running Microsoft Windows, Linux, and Mac op-
erating systems (OSes). We selected three laptops, each
with one of those OSes. Using the above parameters, we
set up an account on Coinhive for a key that links our
“experiment website” to the server. We embedded the code
in Figure 2 in the website’s HTML tags. To measure the us-
age of resources while running cryptojacking websites, we
set up a Selenium-based web browser automation and ran
cryptojacking websites for various evaluations. Selenium is
a portable web-testing software mimicking the behavior of
the actual web browsers [33].
CPU Usage. To understand the CPU usage during cryp-
tojacking, we conducted measurements on our devices
with cryptojacking code installed on the experiment web-
site. We modulated the throttling parameter between α =
{0.1, 0.5, 0.9}. We found that cryptojacking excessively uses
the CPU cycles for mining operations. Moreover, there is
an inverse relationship between the throttling parameter (α)
value and the consumption of the CPU cycles. The lower
value of α resulted in the higher consumption of CPU cycles
across all testing machines, as shown in Figure 3.

Battery Usage. High CPU usage translates to higher power
consumption and quicker battery drainage. To investigate
how cryptojacking affects battery drainage, we conducted
several experiments using various α values for each device.
For each α ∈ {0.1, 0.5, 0.9}, we ran the JavaScript script on
a fully charged battery. We logged the battery level every
30 seconds, as the script ran on each device with the given
α value, starting from a fully charged battery. Finally, we
measured the baseline by running our script without the
cryptojacking code. The results are shown in Figure 4. As
expected, with α = 0.1, corresponding to the lowest throt-
tling and highest CPU usage, the battery drained quickly to
≈10% of its capacity within 80 minutes, compared to ≈85%
within the same time when not using cryptojacking (Fig-
ure 4(a)). The battery usage pattern was relatively consistent
across all three devices.
Memory Usage. In addition to analyzing CPU and battery
usage, we also investigated the effect of cryptojacking on
the memory usage of Windows, Linux, and Mac. We report
results in Figure 5. Our results show that cryptojacking
has no significant relationship with the use of memory
since memory usage was random for all experiments. For
Windows, with no cryptojacking, the memory usage was
≈3.5GB. For α = 0.1, 0.5, and 0.9, the memory usage was
≈3.1, 3.9, and 3.9GB, respectively. In contrast, for Mac, the
memory usage was≈8.5GB, irrespective of the throttling pa-
rameter α. The randomness in results suggests that memory
footprint is not a good indicator for cryptojacking detection.

5.2 Network Usage and Profiling

Dynamic artifacts are essential to analyze cryptojacking
scripts, especially when scripts are obfuscated. To this end,
we also explore the network-level artifacts to uncover the
operations of cryptojacking services.

We noticed that during cryptojacking website execution,
the JavaScript code establishes a WebSocket connection with
a remote server and performs a bidirectional data transfer.
The WebSocket communication can be monitored using
traffic analyzers such as Wireshark. However, a major issue
when using traffic analyzers is that browsers encrypt the
web traffic during WebSocket communication. Although
significant information, such as source, destination, payload
size, and request timings, can still be gathered, the trans-
ferred data remains encrypted, preventing further analysis.
To perform a deeper analysis of WebSocket traffic, we exam-
ined the actual data frames in the browser to understand the
communication protocol and payload content of WebSocket
connection for possible analysis of cryptojacking websites,
outlined below.

When a WebSocket request is initiated, the client sends
an auth message to the server along with the user infor-
mation, including sitekey, type, and user. The length of auth
message is 112 bytes. The sitekey parameter is used by
the server to identify the user who owns the key of the
JavaScript and adds a balance of hashes to the user’s account.
The server then authenticates the request parameters and
responds with authed message. The authed message length
is 50 Bytes and it includes a token and the total number of
hashes received from the client’s machine. The server then
sends job message to the client. The job message has a length

8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70 80

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) CPU usage on Windows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) CPU usage on Linux

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 5 10 15 20 25 30 35 40 45 50

%
 C

P
U

 U
s
a

g
e

Time (minutes x10)

No CJ
α=0.9
α=0.5
α=0.1

(c) CPU usage on Mac

Figure 3. CPU usage recorded on three devices. Note that decreasing the value of α increased the CPU consumption across all three devices.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70 80

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) Battery consumption on Windows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) Battery consumption on Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 5 10 15 20 25 30 35 40 45 50

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes x10)

No CJ
α=0.9
α=0.5
α=0.1

(c) Battery consumption on Mac

Figure 4. Battery usage recorded on three devices used in the dynamic analysis. We observe that decreasing the value of α increases the CPU
usage and battery drainage across all devices.

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 1 10 20 30 40 50 60 70 80

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) Memory usage on Windows

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 1 10 20 30 40 50 60 70

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) Memory usage on Linux

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 1 51 101 151 201 251 301 351

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(c) Memory usage on Mac

Figure 5. Memory usage recorded on three devices. Our results indicate that cryptojacking has no relationship with memory usage. A change in
α does not reflect any predictable change in memory usage on any device. Please note that the plot legends are consistent across all figures,
with Figure 5(c) providing a clear legend for reference.

of 234 Bytes with a job id, blob, and target. The target is a
function of the current difficulty in the cryptocurrency to
be mined. The client then computes hashes on the nonce and
sends a submit message back to the server, with job id, nonce,
and the resulting hash. The submit message has a payload
length of 156 Bytes. In response to the submit message, the
server sends hash accept message with an acknowledgment
and the total number of hashes received during the session.
The hash accept message is 48 Bytes long. In Table 8, we
provide details about the WebSocket connection during a
cryptojacking session.

Key Takeaways. From dynamic analysis, we derive the
following key takeaways: (1) cryptojacking is highly re-
source intensive and it can cause up to 90% CPU usage
and battery drainage across all devices, (2) the throttling
parameter in the script defines the intensity of resource
usage, and (3) cryptojacking websites use WebSockets as

their communication channel with the dropzone server.

6 ECONOMICS OF CRYPTOJACKING

In this section, we evaluate the economic feasibility of
cryptojacking by extrapolating the results in our dynamic
analysis. We look at the economic feasibility from the
perspective of a cryptojacking website’s owner, intentional
cryptojacking, malicious cryptojacking, and website visitors.
For cryptojacking, the reward of the website owner or ad-
versary depends on the number of hashes produced when a
website visitor visits the website. We formulate the analysis
as a feasibility: how much of the energy consumed by cryp-
tojacking scripts (cost) is transferred to the cryptojacking
website owner, whether malicious or benign, and how that
translates as an alternative to online advertisement.

9

Table 8
Messages exchanged between the client and the server during

WebSocket connection. Length is measured in bytes.

Message Source Sink Length Parameters
auth client server 112 sitekey, type, user
authed server client 50 token, hashes
job server client 234 job id, blob, target
submit client server 156 job id, result
hash accept server client 48 hashes

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Time (minutes)

B
a
tt

er
y

L
ev

el

↵ = 0.1 No CJ

b
b

b

s
n

c

Figure 6. Battery drain in Windows i7. bs denotes the starting point of the
battery, bn the normal 80 minutes battery drainage without cryptojacking
and bc denotes the battery drainage with maximum cryptojacking.

6.1 Analytical Model
To set a stage for our analysis, in Figure 6, we present the
results from one sample experiment conducted on Windows
i7 machine with a cryptojacking website set to minimum
throttling (α=0.1), indicating a maximum cryptojacking. In
this figure, the region between bs and bn is a baseline
unrelated to cryptojacking–due to the system’s normal op-
eration. On the other hand, the region between bn and bc is
the battery drainage due to cryptojacking. We refer to the
energy loss due to such cryptojacking as L for a given user.
To formulate the cost (to users) and benefit (to cryptojacking
website), let P be the benefit (profit) during a cryptojacking
session of ∆t minutes, and h be the hash rate of the device
in hashes/second. At the time of writing this paper, Coinhive
pays 2, 894×10−8 (XMR; currency unit) for 1 million hashes,
where 1 XMR equals 200 USD. Therefore, the profit P in
XMR in ∆t = tf − ts (tf and ts refer to the finish and start
time of a session, respectively) can be computed as:

P (XMR) = (2, 894× 10−8 × h×∆t)/106 (5)

The average hash rate of our test device was 21 hashes/sec-
ond. For ∆t = 85 minutes from Figure 6, the profit P earned
during the session was 3.19 × 10−6 XMR or $ 6.38 × 10−4

USD ($ 1.06× 10−5 USD/second). This is the upper bound
of profit that the device can make in one battery charge.

To calculate L, corresponding to battery drainage due to
cryptojacking (bn − bc), we first measure the time it takes to
recharge 1% of the battery and denote it by tr . Therefore,
the time required to recover bn−bc can be calculated as tr×
(bn−bc). LetW be the power consumed by the laptop to run
for one hour and C be the cost of electricity in USD/KWH.
Therefore, the loss L in USD for the use of the battery can
be computed using:

L(USD) = C ×W × tr × (bn − bc) (6)

For our test device, we had the following parameters: W =
65 watt-hour, C = 6.418 × 10−5 USD/(watt-hour), bn =

Table 9
Monthly Profit earned by top websites by applying cryptojacking. GR

denotes global rank, CR denotes the country rank, visits are in Billions,
average time duration of visits is in mm-ss, P-CJ is the profit earned by
cryptojacking, and P-Ads is revenue earned through ads. “—” denotes

the revenue of the companies that we could not find online.

Website GR CR Visits Time P-CJ P-Ads
google.com 1 1 47.09 07:23 2.41 M 7.94 B
youtube.com 2 2 26.22 20:05 3.65 M 291 M
baidu.com 3 1 19.08 08:56 1.18 M 234 M
wikipedia.org 4 6 6.55 03:51 0.17 M 160 M
reddit.com 5 4 1.69 10:38 0.12 M —
facebook.com 6 3 29.87 13:28 2.80 M 3.3 B
yahoo.com 7 7 5.21 06:19 0.22 M 250 M
google.co.in 8 1 5.33 07:46 0.29 M 1.1 B
qq.com 9 2 3.66 04:02 0.10 M —
taobao.com 10 3 1.73 06:25 0.08 M —

82% (in Figure 6), bc = 10% and tr = 0.015 hour. Thus, the
estimated loss during cryptojacking session L was ≈ $4.5×
10−3 USD, which is seven times the value of P , highlighting
a big gap cryptojacking’s operation model.

Using the same analysis, we examine if users can use
cryptojacking as a source of income. With the same device
as above, the number of hashes required to make 1 XMR
($200 USD) is 3.45×1010 hashes. Given that the same device
generates 21 hashes/second, the time required to make 1
XMR is approximately 52 years, while the energy consumed
is many orders of magnitude more costly (note that the
calculations here are quite theoretical; to mine 1 XMR, it
would take ≈321,543 battery charging cycles, each of which
would cost 0.41 cent (total of ≈ 1318).

6.2 Cryptojacking and Online Advertisement

In-browser cryptojacking is being argued as an alternative
to online advertisement. To understand the soundness of
this argument, we performed an experiment to analyze and
compare the monetary value of in-browser cryptojacking as
a replacement for online advertisements.

We select Alexa’s top 10 websites [34]. For each website,
we obtained the average number of visitors and the time
they spent on those websites during March 2018. Using that
and our model from section 6.1 to measure the potential
profit those websites could have made using cryptojacking.
We assume that visitors on these websites have an average
hash rate of 20 hashes/second. We report the results in Ta-
ble 9, highlighting that those websites would make between
$3.65 million USD (for youtube.com) and $0.10 million USD
(qq.com) per month.

Statista [35] publishes annual online advertisement rev-
enue reports. We collect the revenues generated by each
of those top-10 websites for 2017. We use those figures to
examine the potential of cryptojacking as an advertisement
alternative at scale. For that, we first obtain a monthly rev-
enue figure for each website by dividing the annual revenue
by 12. We compare those numbers to the cryptojacking alter-
native highlighted above. The results are shown in Table 9,
where it can be seen that the revenue earned by operating
cryptojacking is negligible compared to the revenue earned
through online advertisements. For example, if Google is
to switch to cryptojacking, it will make $2.41 million USD

10

Table 10
The estimated monthly earnings. Visits are in millions, the average time

of each visit is in mm-ss and the profit (P-CJ) is in USD.

Website GR CR Visits Time P-CJ
firefoxchina.cn 1,088 132 87.24 04:32 2,746.9
baytpbportal.fi 1,613 591 12.16 05:36 472.9
mejortorrent.com 1,800 37 22.83 04:50 766.4
moonbit.co.in 2,761 1,289 15.68 28:37 3,116.5
shareae.com 3,331 1,071 5.86 04:49 196.0
maalaimalar.com 4,090 112 3.38 03:26 80.6
icouchtuner.to 6,084 518 7.96 02:98 200.8
paperpk.com 6,794 2,050 3.01 03:23 70.7
scamadviser.com 6,847 668 4.20 02:08 62.2
seriesdanko.to 7,253 1,452 5.44 04:59 188.2

per month. In contrast, Google earns ≈$7.94 Billion USD
monthly from online advertisement.

To estimate the revenue by cryptojacking websites, we
conducted the same experiment on the top-10 websites in
our dataset and computed their estimated profit, shown
in Table 10. We notice that the maximum profit earned
by firefoxchina is ≈$2,747 USD. Although the ad revenue
for these websites is not available online, we still suspect
that $2,747 USD per month is far too low for a website
that has 87.24 million monthly views, each with an average
duration of 4 minutes and 32 seconds, as compared to the
potential revenues for online advertisement. Those findings
align with recent reports indicating that an adversary who
compromised 5,000 websites and injected his own crypto-
jacking scripts could only make $24 USD [36].
Key Takeaways. From our economic analysis, we find that
in-browser cryptojacking is not a feasible alternative for
online advertisement since it generates negligible revenue.
Even the most popular online website that generates over
$7.9 billion through ads can only make up to $2.41 million
through cryptojacking. It is, therefore, plausible to assume
that the cryptojacking is unlikely to replace online adver-
tisement as a revenue source for websites.

7 COUNTERMEASURES

7.1 Existing Countermeasures

At the browser level, existing countermeasures include web
extensions such as No Coin, Anti Miner, and No Min-
ing [37]. Each web extension maintains a list of uniform
resource locators (URLs) to block while browsing websites.
If a user visits a website that is blocklisted by the extension,
the user is notified about cryptojacking. However, we show
that blocklisting is ineffective since an adaptive attacker can
circumvent detection by creating new links not found in the
public list of blocklisted URLs.

We set these extensions up on Chrome and evaluated
them. All the extensions detected cryptojacking by reading
the WebSocket requests generated by the website to Coin-
hive. However, in the next phase, we removed the binding
key of our script shown in Figure 2. Without the key, the
website establishes the WebSocket connection but does not
perform cryptojacking as it cannot verify itself with the
server without the key. However, when we tested that on
the extensions, all of them wrongly signaled the presence
of active cryptojacking. Since extension-based blocklisting

wss:// *.coinhive

wss:// *.coinhive

wss:// *.coinhivewss:// *.ABC

Figure 7. Circumventing cryptojacking detection by relaying WebSocket
requests through a third-party proxy server.

does not read the data frames exchanged between web
sockets, even the presence of an outdated key or a broken
link is falsely labeled as cryptojacking.
Evading Detection. An attacker, knowing the blocklist,
can evade detection by setting his own third-party server
to relay data to and from the cryptojacking server. The
cryptojacking website can establish a WebSocket connection
to a third-party server and send data frames and keys to
the server. Since anti-cryptojacking extensions will not have
the address of a third-party server blocklisted, they will not
be able to prevent the connection and cryptojacking. In Fig-
ure 7, we show how an adaptive attacker can circumvent the
current countermeasures for cryptojacking. To practically
demonstrate that, we set up a test website using Coinhive
script and installed a local relay server. We installed four
Chrome extensions blocking the in-browser cryptojacking:
No Coin, Anti Miner, No Mining, and Mining Blocker. We
installed the Coinhive script in the experiment’s first phase
and ran the website. Each extension detected the WebSocket
request and blocked it. To mimic an adaptive attacker, we
configured our relay server to act as a proxy, receive socket
requests from the browser, and relay them to Coinhive server.
We modified the code in the Coinhive script and replaced
the Coinhive socket address with our server address. Next,
when we visited the website, it started cryptojacking on the
client machine. No extension was detected, showing that it
is possible to circumvent the blocklisting technique.
Countering Adaptive Attacker. To counter an adaptive
attacker and overcome the limitation of existing counter-
measures, a better approach is message-based cryptojacking
detection in web extensions. Instead of blocking specific
URLs, the extensions can monitor the messages exchanged
between the user and the server during the cryptojacking
sessions. If the messages follow the data exchange sequence
illustrated in Table 8, the extension can flag them as crypto-
jacking. This will prevent cryptojacking even if WebSocket
requests are relayed through a third party.

To experimentally demonstrate that, we developed a
web extension that detects the strings of data exchange
shown in Table 8 and notifies the user when the website
starts cryptojacking. To test our extension against the exist-
ing countermeasures, we deployed a proxy server relaying
the data between our test website to the dropzone server
as shown in Figure 7. We installed four Chrome exten-
sions that detect cryptojacking: No Coin, Anti Miner, No
Mining, and Mining Blocker. Since all of these extensions

11

take a blocklisting approach for detection, they failed to
detect cryptojacking in the presence of the relay server.
However, when we used our web extension, it immediately
flagged cryptojacking upon reading the data exchanged
between the browser and the relay server. Therefore, we
conclude that the blocklisting approach is insufficient to
counter cryptojacking. In contrast, better countermeasures
can be developed through web extensions that inspect the
WebSocket payloads. Lightweight browser extension will
not cause excessive resource usage as opposed to cryptojack-
ing itself. Since the extension will only read the messages
in the WebSocket connection setup, the expected resource
overhead will be negligible.

7.2 Adaptive Adversary and Countermeasures

An adaptive adversary can avoid detection by modifying
the cryptojacking script to be similar to benign JavaScript.
Additionally, the adversary can circumvent WebSocket de-
tection through encryption and dummy messages. We note
that at the code level, and as shown in our datasets, benign
JavaScript codes are clearly different from cryptojacking
codes. Therefore, if an adversary wants to avoid detection,
the adversary needs to significantly alter the cryptojacking
scripts to mix their features with the features of the benign
scripts. Given the gap in the feature space between the two
classes, as discussed in the paper, an adaptive adversary
that tries to mimic the features of another class (i.e., benign
features) may be able to do that, but not without sacrificing
functional properties of the cryptojacking code which may
not be acceptable to the adversary. Cryptojacking scripts are
designed to (1) take control of the CPU power, (2) solve PoW
challenges, and (3) maintain persistent connections with a
dropzone server to exchange data. These characteristics are
quite unique and different from other JavaScript codes that
may simply render an image on the website. Therefore, from
a developer’s standpoint, writing a cryptojacking script that
can perform all such functionalities while giving the same
code features indistinguishable from an image rendering
JavaScript can be difficult to achieve and, therefore, not
observed in the wild.

Similarly, WebSocket-based communication in crypto-
jacking differs from other WebSocket applications (i.e., on-
line chat). In this case, one method to bypass detection
(also acknowledged in your comments) is by adding an
encryption layer or dummy messages not detected by the
browser extension. Although this is a viable circumvention
approach, however, the adversary will (1) bear the encryp-
tion cost and (2) circumvent detection in the WebSocket
channel only. An intrinsic property of cryptojacking is com-
puting hashes on a nonce by the victim machine, which can
be detected even in the presence of the said circumvention
technique. Therefore, resource-based lines of defense can
be leveraged to construct more effective countermeasures
despite encryption and dummy messages.

7.3 Discussion

Cryptojacking for Revenue. Demonstrating a negative
profit/loss disparity, we refute that cryptojacking is a fea-
sible substitute for online advertising. Additionally, the

adverse reputation linked with it may deter users from
visiting websites engaged in such practices. While ethical
boundaries restrain its use, unethical exploitation could
escalate as the cryptocurrency market expands and websites
remain susceptible to JavaScript injection attacks. Despite
limitations, cryptojacking may remain enticing for adver-
saries seeking quick profits through compromising vulnera-
ble websites and targeting their visitors.
Cryptojacking Countermeasures. As shown in §7.1, the
existing countermeasures for cryptojacking can be easily
circumvented. Therefore, strong countermeasures are re-
quired to prevent websites from becoming an attack vec-
tor for cryptojacking. Web hosting platforms and ISPs can
apply static and dynamic analyses (§4 and §5) to detect
cryptojacking code and analyze its operations using web
traffic payloads. Furthermore, based on the dropzone server
location, ISPs can filter their traffic and prevent payload
communication from stopping cryptojacking. As a result,
they prevent the spread of cryptojacking as well as inform
the website owners and visitors.

8 RELATED WORK

Concurrent to this work, Rüth et al. [38] carried out a
measurement study to observe the prevalence of cryptojack-
ing among websites. They obtained blacklisted URLs from
the No Coin (§7.1) web extension and mapped them on a
large corpus of websites obtained from the Alexa Top 1M
list. In total, they found 1491 suspect websites involved in
cryptojacking. However, as shown in §7.1, the blacklisting
approach to detect and prevent cryptojacking has major
limitations and may yield insufficient results to measure
prevalence accurately. This perhaps explains the smaller size
of their dataset (1491 sites). Concurrently, Eskandari et al.
[39] also examined the prevalence of cryptojacking among
websites and used Coinhive as the most popular platform
for cryptojacking. While carried out in parallel to ours,
the studies highlight the issue of cryptojacking through
measurements but stop short of conducting any code anal-
ysis, detection, and economic analysis for cryptojacking as
alternative online ads, two directions which we pursue in
detail in this paper.

Huang et al. [40] were among the first to notice the illegal
use of CPU cycles, through malware attacks, for Bitcoin
mining. Tahir et al. [41] studied the abuse of virtual machines
in cloud services for mining digital currencies. They used
micro-architectural execution patterns and CPU signatures
to determine if a virtual machine in the cloud was being ille-
gally used for mining purposes and proposed MineGuard, a
tool to detect mining. Bartino and Nayeem [42] highlighted
worms in IoT devices that hijacked them for mining pur-
poses, pointing to the infamous Linux.Darlloz worm that
hijacked devices running Linux on Intelx86 chip architecture
for mining. Sari and Kilik [43] used Open Source Intelligence
(OSINT) to study vulnerabilities in mining pools with the
Mirai botnet as a case study.

Bijamin et al. [44] presented a new attack vector where
Internet routers were hijacked to launch man-in-the-middle
cryptojacking attacks. Another work by Bijaminet al. [45]
analyzed 204 cryptojacking campaigns launched over the
Internet and observed that most cryptojacking campaigns

12

were software-based rather than browser-based. Similarly,
Pastrana et al. [46] performed a longitudinal study of the
evolution of illicit cryptomining operations over the Inter-
net and uncovered the dynamics of various cryptomining
campaigns over the last decade. Papadopoulos et al. [47]
examined the impact of in-browser cryptojacking on victim
devices and reported that cryptojacking websites increased
the CPU temperature by≈53% and decreased the CPU
performance by up to 57%. In a similar context, Meland et
al. [48] derived an opposite conclusion to [47], stating that a
well-configured cryptojacking attack does not harm a user
device and may go unnoticed by the users.

Cryptojacking remains a subject of interest in the web
ecosystem due to evolving attack methods such as cloud-
based mining attacks [49] and in-browser cryptojacking.
Moreover, in light of recent works [50], [51], it is apparent
that existing countermeasures, such as web browser block-
ers, are inefficient in cryptojacking detection. To improve
defenses against evolving cryptojacking attacks, prominent
works by Pott et al. [52] and Feng et al. [53] apply hardware
counters or network monitoring techniques to detect crypto-
jacking. It can be inferred through these studies that accurate
cryptojacking detection cannot be achieved solely through
one analytical approach (i.e., static analysis). Instead, this
problem requires rigorous treatment through multiple ana-
lytical approaches. Our work bridges this gap by uniquely
consolidating three major dimensions of in-browser cryp-
tojacking through static, dynamic, and economic analysis.
Moreover, our dataset evaluation over the years promises a
robust solution to combat cryptojacking.

9 CONCLUSION

This study analyzes in-browser cryptojacking from various
angles: characterization, static and dynamic analyses, and
economic aspects. Static analysis of 620 websites identifies
distinctive code complexity features, allowing for perfect
detection of cryptojacking code. Dynamic analysis examines
how cryptojacking scripts use CPU, battery, and network re-
sources, shedding light on their functioning. The economic
viability of cryptojacking versus advertising is assessed,
showing it to be unfeasible. Prior countermeasures are eval-
uated, and long-term solutions are proposed, drawing on
insights from static and dynamic analyses and clustering.

REFERENCES

[1] M. Saad, A. Khormali, and A. Mohaisen, “Dine and Dash: Static,
Dynamic, and Economic Analysis of In-browser Cryptojacking,”
in eCrime, 2019.

[2] M. Saad, A. Anwar, S. Ravi, and D. Mohaisen, “Revisiting
nakamoto consensus in asynchronous networks: A comprehensive
analysis of bitcoin safety and chainquality,” in ACM CCS, 2021.
[Online]. Available: https://doi.org/10.1145/3460120.3484561

[3] M. Saad, S. Chen, and D. Mohaisen, “Root cause analyses for the
deteriorating bitcoin network synchronization,” in IEEE ICDCS,
2021. [Online]. Available: https://doi.org/10.1109/ICDCS51616.
2021.00031

[4] M. Scott, “Cryptomining malware fuels most remote code
execution attacks,” Feb 2018. [Online]. Available: https://tinyurl.
com/y9vhrq9w

[5] M. J. Zuckerman, “Microsoft blocked more than 400,000 malicious
cryptojacking attempts in one day,” Apr 2018. [Online]. Available:
https://tinyurl.com/ya6oj6wm

[6] SLM, “In-browser cryptojacking: What is it and how can you avoid
it?” Jan 2018. [Online]. Available: https://supremelevelmedia.
com/browser-cryptojacking-can-avoid/

[7] B. Kerbs, “Who and what is coinhive?” 2018.
[Online]. Available: https://krebsonsecurity.com/2018/03/
who-and-what-is-coinhive/

[8] Coinhive, “Monero JavaScript Mining,” 2018. [Online]. Available:
https://coinhive.com/documentation

[9] N. Mathur, “Cybersecurity: Cryptojacking attacks exploded by
8,500% in 2017, says report,” Apr 2018. [Online]. Available:
https://tinyurl.com/y84alobt

[10] D. Singh, “Cryptojacking attacks rose by 8,500% globally in 2017:
report,” 2018. [Online]. Available: https://tinyurl.com/y9k4ug2q

[11] J. Condliffe, “A cryptojacking attack hit thousands of websites,”
2018. [Online]. Available: https://tinyurl.com/ybjck22l

[12] A. D. Rayome, “Tesla public cloud environment hacked, attackers
accessed ’non-public’ company data,” 2018. [Online]. Available:
https://tinyurl.com/y8m79px4

[13] N. De, “UK cyber security division is-
sues warning on pc ’cryptojacking’,” Apr
2018. [Online]. Available: https://www.coindesk.com/
uk-cyber-security-division-issues-warning-on-pc-cryptojacking/

[14] NCSC, “The cyber threat to uk business 2017-2018 report,” Apr
2018. [Online]. Available: https://www.ncsc.gov.uk/cyberthreat

[15] R. Shaikh, “The pirate bay is cryptojacking its visitors’
computers to mine monero,” 2017. [Online]. Available: https:
//tinyurl.com/y9s5mhce

[16] M. Zuckerman, “The ethics of cryptojacking: Rampant malware
or ad-free internet?” 2018. [Online]. Available: https://tinyurl.
com/yd6u9h39

[17] TeamSymantec, “Threat landscape trends q2 2020.”
[Online]. Available: https://symantec-enterprise-blogs.security.
com/blogs/threat-intelligence/threat-landscape-trends-q2-2020

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[19] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto
mining attacks in information systems: An emerging threat to
cyber security,” J. Comput. Inf. Syst., vol. 60, no. 4, pp. 297–308,
2020. [Online]. Available: https://doi.org/10.1080/08874417.2018.
1477076

[20] T. Loechner, “Pixalate unveils the list of sites secretly mining
cryptocurrency,” 2017. [Online]. Available: https://tinyurl.com/
y9sbgx92

[21] X. Yang, “List of top Alexa websites with web-mining code
embedded on their homepage,” 2017. [Online]. Available:
https://tinyurl.com/ybo6u4pf

[22] S. Calzavara, A. Rabitti, and M. Bugliesi, “Semantics-based
analysis of content security policy deployment,” TWEB,
vol. 12, no. 2, pp. 10:1–10:36, 2018. [Online]. Available:
https://doi.org/10.1145/3149408

[23] SimilarWeb, “Top websites ranking,” 2018. [Online]. Available:
https://www.similarweb.com/top-websites

[24] M. Community, “Monero cryptocurrency,” 2018. [Online].
Available: https://monero.org/

[25] J. Community, “JSECoin: Digital currency - designed for the
web,” 2018. [Online]. Available: https://jsecoin.com/

[26] Wizsche, “Malicious javascript dataset,” https://github.com/
geeksonsecurity/js-malicious-dataset.git, 2017.

[27] C. B. Staff, “21 top examples of javascript,” 2017. [Online].
Available: https://tinyurl.com/y8wqarpb

[28] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on software engineering, vol. 25, no. 5,
pp. 675–689, 1999.

[29] B. Badge, “Es-analysis/plato,” Aug 2016. [Online]. Available:
https://github.com/es-analysis/plato

[30] NetLab360, “Netlab360 cryptojacking code dataset.” [Online].
Available: https://web.archive.org/web/20180209220357/https:
//blog.netlab.360.com/file/top web mining sites.txt

[31] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.
[Online]. Available: https://doi.org/10.1109/TKDE.2008.239

[32] J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,”
in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Paris, France, 2009, pp. 547–556. [Online].
Available: https://doi.org/10.1145/1557019.1557082

[33] S. Community, “Selenium browser automation,” 2018. [Online].
Available: https://www.seleniumhq.org/docs/

https://doi.org/10.1145/3460120.3484561
https://doi.org/10.1109/ICDCS51616.2021.00031
https://doi.org/10.1109/ICDCS51616.2021.00031
https://tinyurl.com/y9vhrq9w
https://tinyurl.com/y9vhrq9w
https://tinyurl.com/ya6oj6wm
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://coinhive.com/documentation
https://tinyurl.com/y84alobt
https://tinyurl.com/y9k4ug2q
https://tinyurl.com/ybjck22l
https://tinyurl.com/y8m79px4
https://www.coindesk.com/uk-cyber-security-division-issues-warning-on-pc-cryptojacking/
https://www.coindesk.com/uk-cyber-security-division-issues-warning-on-pc-cryptojacking/
https://www.ncsc.gov.uk/cyberthreat
https://tinyurl.com/y9s5mhce
https://tinyurl.com/y9s5mhce
https://tinyurl.com/yd6u9h39
https://tinyurl.com/yd6u9h39
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/threat-landscape-trends-q2-2020
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/threat-landscape-trends-q2-2020
https://doi.org/10.1080/08874417.2018.1477076
https://doi.org/10.1080/08874417.2018.1477076
https://tinyurl.com/y9sbgx92
https://tinyurl.com/y9sbgx92
https://tinyurl.com/ybo6u4pf
https://doi.org/10.1145/3149408
https://www.similarweb.com/top-websites
https://monero.org/
https://jsecoin.com/
https://github.com/geeksonsecurity/js-malicious-dataset.git
https://github.com/geeksonsecurity/js-malicious-dataset.git
https://tinyurl.com/y8wqarpb
https://github.com/es-analysis/plato
https://web.archive.org/web/20180209220357/https://blog.netlab.360.com/file/top_web_mining_sites.txt
https://web.archive.org/web/20180209220357/https://blog.netlab.360.com/file/top_web_mining_sites.txt
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1145/1557019.1557082
https://www.seleniumhq.org/docs/

13

[34] Alexa, “The top 500 sites on the websites listed by their
1 month Alexa traffic rank.” 2018. [Online]. Available: https:
//www.alexa.com/topsites

[35] Statista, “Google: ad revenue 2001-2017,” 2018. [Online].
Available: https://tinyurl.com/h4rwfyf

[36] A. Hern, “Huge cryptojacking campaign earns just $24 for
hackers,” Feb 2018. [Online]. Available: https://tinyurl.com/
yc5xgvad

[37] R. Keramidas, Feb 2018. [Online]. Available: https://github.com/
keraf/NoCoin

[38] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging
into browser-based crypto mining,” in ACM IMC, 2018, pp. 70–76.

[39] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A
first look at browser-based cryptojacking,” in IEEE EuroS&P
Workshops, 2018. [Online]. Available: https://doi.org/10.1109/
EuroSPW.2018.00014

[40] D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave,
C. Grier, D. McCoy, S. Savage, N. Weaver, A. C. Snoeren, and
K. Levchenko, “Botcoin: Monetizing stolen cycles,” in ISOC
NDSS, 2014. [Online]. Available: https://www.ndss-symposium.
org/ndss2014/botcoin-monetizing-stolen-cycles

[41] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. A. Gunter, F. Zaffar,
M. Caesar, and N. Borisov, “Mining on someone else’s dime:
Mitigating covert mining operations in clouds and enterprises,”
in RAID, 2017.

[42] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[43] A. Sari and S. Kilic, “Exploiting cryptocurrency miners with oisnt
techniques,” Transactions on Networks and Communications, vol. 5,
no. 6, 2017.

[44] H. L. J. Bijmans, T. M. Booij, and C. Doerr, “Just the
tip of the iceberg: Internet-scale exploitation of routers
for cryptojacking,” in ACM CCS, 2019. [Online]. Available:
https://doi.org/10.1145/3319535.3354230

[45] H. L. Bijmans, T. M. Booij, and C. Doerr, “Inadvertently
making cyber criminals rich: A comprehensive study of
cryptojacking campaigns at internet scale,” in USENIX Security,
2019. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/bijmans

[46] S. Pastrana and G. Suarez-Tangil, “A first look at the
crypto-mining malware ecosystem: A decade of unrestricted
wealth,” in ACM IMC, 2019. [Online]. Available: https:
//doi.org/10.1145/3355369.3355576

[47] P. Papadopoulos, P. Ilia, and E. P. Markatos, “Truth in
web mining: Measuring the profitability and the imposed
overheads of cryptojacking,” in ISC, 2019. [Online]. Available:
https://doi.org/10.1007/978-3-030-30215-3 14

[48] P. H. Meland, B. H. Johansen, and G. Sindre, “An experimental
analysis of cryptojacking attacks,” in Nordic Conference Secure
IT Systems, 2019. [Online]. Available: https://doi.org/10.1007/
978-3-030-35055-0 10

[49] R. Xiao, T. Li, S. Ramesh, J. Han, and J. Han, “Magtracer: Detecting
GPU cryptojacking attacks via magnetic leakage signals,” in
Proceedings of International Conference on Mobile Computing and
Networking, MobiCom Madrid, Spain, X. Costa-Pérez, J. Widmer,
D. Perino, D. Giustiniano, H. Al-Hassanieh, A. Asadi, and
L. P. Cox, Eds. ACM, 2023, pp. 68:1–68:15. [Online]. Available:
https://doi.org/10.1145/3570361.3613283

[50] P. Rajba and W. Mazurczyk, “Limitations of web cryptojacking
detection: A practical evaluation,” in International Conference
on Availability, Reliability and Security, Vienna,Austria. ACM,
2022, pp. 52:1–52:6. [Online]. Available: https://doi.org/10.1145/
3538969.3544466

[51] R. K. Sachan, R. Agarwal, and S. K. Shukla, “DNS based
in-browser cryptojacking detection,” in International Conference
on Blockchain Computing and Applications, BCCA, San Antonio,
TX, USA., M. A. Alsmirat, M. Aloqaily, Y. Jararweh, and
I. Alsmadi, Eds. IEEE, 2022, pp. 259–266. [Online]. Available:
https://doi.org/10.1109/BCCA55292.2022.9922245

[52] C. Pott, B. Gülmezoglu, and T. Eisenbarth, “Overcoming the
pitfalls of hpc-based cryptojacking detection in presence of
gpus,” in ACM Conference on Data and Application Security and
Privacy, CODASPY, Charlotte, NC, USA. ACM, 2023, pp. 177–188.
[Online]. Available: https://doi.org/10.1145/3577923.3583655

[53] Y. Feng, J. Li, and D. Sisodia, “Cj-sniffer: Measurement
and content-agnostic detection of cryptojacking traffic,” in
International Symposium on Research in Attacks, Intrusions and

Defenses, Limassol, Cyprus. ACM, 2022, pp. 482–494. [Online].
Available: https://doi.org/10.1145/3545948.3545973

Muhammad Saad obtained his Ph.D. in Com-
puter Science from the University of Central
Florida in 2021. Since then, he has been a senior
research scientist at PayPal. His research inter-
est is focused on the security of distributed sys-
tems, emphasizing blockchain, cryptocurrency,
and fraud prevention. His work has appeared in
various reputable venues, including ACM CCS,
IEEE S&P, and IEEE ICDCS, among others, and
received the best paper award at ACM DLoT
2018.

David Mohaisen obtained his Ph.D. in Com-
puter Science from the University of Minnesota
in 2012. He is currently a professor of com-
puter science at the University of Central Florida,
where he leads the Security and Analytics Lab
(SEAL), which he has been leading since 2017.
Previously, he was an Assistant Professor at
SUNY Buffalo (2015-2017) and a Senior Scien-
tist at Verisign Labs (2012-2015). His research
interests are in applied security and privacy, cov-
ering aspects of computer and networked sys-

tems, software systems, IoT and AR/VR, and machine learning. His
research has been published in top conferences and journals, with
multiple best paper awards. His work was also featured in the New
Scientist, MIT Technology Review, ACM Tech News, Science Daily, etc.
Among other services, he has been an Associate Editor of IEEE TMC,
TDSC, TCC, and TPDS. He is a senior member of ACM (2018) and
IEEE (2015), a Distinguished Speaker of the ACM, and a Distinguished
Visitor of the IEEE Computer Society.

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://tinyurl.com/h4rwfyf
https://tinyurl.com/yc5xgvad
https://tinyurl.com/yc5xgvad
https://github.com/keraf/NoCoin
https://github.com/keraf/NoCoin
https://doi.org/10.1109/EuroSPW.2018.00014
https://doi.org/10.1109/EuroSPW.2018.00014
https://www.ndss-symposium.org/ndss2014/botcoin-monetizing-stolen-cycles
https://www.ndss-symposium.org/ndss2014/botcoin-monetizing-stolen-cycles
https://doi.org/10.1145/3319535.3354230
https://www.usenix.org/conference/usenixsecurity19/presentation/bijmans
https://www.usenix.org/conference/usenixsecurity19/presentation/bijmans
https://doi.org/10.1145/3355369.3355576
https://doi.org/10.1145/3355369.3355576
https://doi.org/10.1007/978-3-030-30215-3_14
https://doi.org/10.1007/978-3-030-35055-0_10
https://doi.org/10.1007/978-3-030-35055-0_10
https://doi.org/10.1145/3570361.3613283
https://doi.org/10.1145/3538969.3544466
https://doi.org/10.1145/3538969.3544466
https://doi.org/10.1109/BCCA55292.2022.9922245
https://doi.org/10.1145/3577923.3583655
https://doi.org/10.1145/3545948.3545973

	1 Introduction
	2 Background
	2.1 Blockchain-based Cryptocurrencies
	2.2 Mining in Cryptocurrencies
	2.3 Cryptojacking
	2.3.1 Cryptojacking as a Replacement to Advertisement

	3 Dataset and Preliminary Analysis
	3.1 Data Collection
	3.2 Methodology

	4 Static Analysis
	4.1 Currency-based Categorization
	4.2 Code-based Analysis
	4.3 Classification Models

	5 Dynamic Analysis
	5.1 Resource Consumption Profiling
	5.2 Network Usage and Profiling

	6 Economics of Cryptojacking
	6.1 Analytical Model
	6.2 Cryptojacking and Online Advertisement

	7 Countermeasures
	7.1 Existing Countermeasures
	7.2 Adaptive Adversary and Countermeasures
	7.3 Discussion

	8 Related Work
	9 Conclusion
	References
	Biographies
	Muhammad Saad
	David Mohaisen

