
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 1

Phoenix: Towards Ultra-Low Overhead,
Recoverable, and Persistently Secure NVM

Mazen Alwadi, Student Member, IEEE Kazi Abu Zubair, Student Member, IEEE David Mohaisen, Senior
Member, IEEE Amro Awad, Member, IEEE

Abstract—Emerging Non-Volatile Memories (NVMs) bring a unique challenge to the security community, namely persistent security.
As NVM-based memories are expected to restore their data after recovery, the security metadata must be recovered as well. However,
persisting all affected security metadata on each memory write would significantly degrade performance and exacerbate the write
endurance problem. On the other hand, relying on an encryption counters recovery scheme would take hours to rebuild the integrity
tree, and will not be sufficient to rebuild the Tree-of-Counters (ToC). Due to intermediate nodes dependencies it is not possible to
recover this type of trees using the encryption counters. To ensure recoverability, all updates to the security metadata must be
persisted, which can be tens of additional writes on each write. In this paper, we propose Phoenix, a practical novel scheme which
relies on elegantly reproducing the cache content before a crash, however with minimal overheads. Our evaluation results show that
Phoenix reduces persisting security metadata overhead writes to 3.8% less than a write-back encrypted system without recovery, thus
improving the NVM lifetime by 8x. Overall Phoenix performance is better than the baseline.

Index Terms—Secure architectures, persistent memory, non-volatile memories, crash consistency, secure recovery.

F

1 INTRODUCTION

N ON-Volatile Memories (NVMs) are emerging as promising
contenders to the DRAM, and promise to provide terabytes

of persistent data capacity accessible using regular load and store
operations [16], [17]. Secure NVM systems commonly aim to
protect confidentiality, integrity, and availability of the memory.
While data persistency is an attractive feature that enables per-
sistent applications, e.g., filesystems and checkpointing, it also
facilitates data remanence attacks [3], [8], [26], [27]. To protect
the NVM data at rest, encryption becomes a necessity. Encryption
targets the confidentiality among the security requirements. How-
ever, encrypting the data introduces the overhead of encryption
metadata, which needs to be persisted to ensure secure and
functional recovery [2], [6], [18], [26]. In state-of-the-art secure
processor systems [3], [5], [10], [22], [27], the counter-mode
encryption is used due to its security and performance advantages.

Counter-mode encryption is used in state of the art secure
processor architectures [5], [6], [22], [23], [26], where each cache-
line is associated with an encryption counter that is used along
with a processor key to generate a One-Time-Pad to encrypt the
cacheline once written to the memory. The confidentiality of such
counters is considered unnecessary, however, their integrity must
be protected; as encryption counter reuse can facilitate known-
plaintext attacks. Merkle Tree is generally used to verify the
encryption counters integrity. Merkle Tree is a tree of hashes over
hashes where the leaves are the encryption counters, and finally
the last resulting single hash is called the root of the tree, which is

• M. Alwadi and D. Mohaisen are with the Department of Electrical and
Computer Engineering, University of Central Florida, Orlando, FL 32826.
K. Zubair and A. Awad are with the Department of Electrical and Com-
puter Engineering at North Carolina State University, Raleigh, NC 27695.
D. Mohaisen (mohaisen@ucf.edu) and A. Awad (ajawad@ncsu.edu) are
the corresponding authors.

• A preliminary version of this work appeared at 46th ACM International
Symposium on Computer Architecture (ISCA 2019).

always kept in the processor chip. Each counter update changes the
root value, and hence any tampering will be detected due to root
mismatch. Integrity trees have been also deployed in commercial
products for secure processors, e.g., Intel’s SGX.

In this paper, we aim to provide persistent security, recover-
ability, NVM friendly, and ensure ultra-low recovery time with
minimal performance overhead. Recoverability is perhaps the
most promising system feature that NVMs provide. Thus, recov-
erability should be considered when adding security features (en-
cryption and integrity verification). Moreover, NVM’s near-zero
idle power consumption makes it very promising for data centers,
cloud systems and HPC systems. In such systems, availability is
a strict requirement. Our results show that recovering a practical
NVM size (8TB) with current secure processor implementations
would take 7.8 hours. On the other hand, high-availability systems
have stringent requirements of 99.999% (five nines rule), i.e., the
system can sustain a total of 7.8 hours down time only once each
89 years. For instance, for each minute of the system being down
in Amazon’s cloud system, it is estimated to cost 70 thousand
dollars per minute [13]. Simply, one can imagine an in-memory
database system, where transactions are taking place, and a crash
happens right after committing a transaction. In such a case, the
whole Merkle Tree must be recovered to ensure the memory
integrity, which will prevent any new transactions from taking
place until the recovery process is done.

Crash consistency problem is mainly caused by the inconsis-
tency of security metadata with the memory data. In current secure
processor architecture implementations, most of the security meta-
data updates occur in volatile caches inside the processor chip,
without strictly persisting them in memory. Thus, once a crash
occurs and caches lose their content, the data might be written to
memory while its updated encryption counter and MT updates has
not been reflected in memory yet. Therefore, during recovery, the
system will have an inconsistency between the memory data and
its corresponding security metadata. While strictly persisting the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 2

security metadata updates would eliminate the problem, however,
at the cost of tens of writes for each data write. Given the limited
write-endurance and very slow NVM writes, strictly persisting
the security metadata is considered impractical. Meanwhile, since
counter and MT caches can hold thousands of security metadata
cache blocks [3], [18], solutions relying on providing enough
power to flush the caches content are not practical as well. In
fact, state-of-the art processors have a limited support to flush few
entries that are guaranteed to be persisted by the system in case of
a crash. For instance, in recent Intel’s processors, a small buffer
co-located with the memory controller is called Write Pending
Queue (WPQ) [6]. The WPQ is considered a part of the persistent
domain, whenever a write reaches the WPQ it is guaranteed to
be written to the NVM. The power to flush the WPQ entries to
the NVM is provided by the Asynchronous DRAM Self-Refresh
(ADR) [1]. Thus, given the limited number of WPQ entries, high
costs of uninterruptible power supplies, the demand for battery-
free solutions, area, and environmental constraints, it is important
to look for new solutions to enable fast recoverable and crash
consistent systems [2], [4], [18], [26].

The state-of-the-art scheme, Osiris [26], addresses the crash
consistency problem by leveraging the ECC as a sanity check to
recover the encryption counter most recent value. However, Osiris
would take hours to iterate over the encryption counters and fix
them, then it would take more hours to rebuild the whole integrity
tree. Moreover, ToC can not be rebuilt using the encryption
counters due to intermediate nodes dependencies.

In this paper, we aim to bridge the gap between recoverability
and high-performance for secure NVM systems. As such, we
propose Phoenix, a novel memory controller design that achieves
both recoverability and high-performance of secure NVM systems.
Phoenix is based on our observation that to successfully recover
the system we only need to recover the dirty cached blocks.
Phoenix reconstructs the exact content of the security metadata
cache after a crash by tracking the security metadata cache
updates. In fact, we can reconstruct the exact lost cache state
after recovery by recalculating the potentially lost values and
then verify the integrity of the reconstructed cache. By relying
on value recovery of the tree leaves only a small subset of updates
to the cache needs to be persisted in memory. Meanwhile, we
still can verify that the recovered cache content reflects exactly
the same cache state before the crash. Our optimization, realized
in Phoenix+, relaxes persisting encryption counters on eviction,
to only persist encryption counters on the N-th write, reducing
Phoenix’s overhead significantly.

To evaluate Phoenix, we use Gem5 [7], a full-system cycle-
level simulator, and run representative workloads from the SPEC
CPU2006 benchmark suite to observe a reduction of write over-
head: Phoenix+ is shown to have less writes than write-back
scheme, i.e., improves lifetime by ∼8x. Moreover, Phoenix+ has
an average execution time that is even less than write-back scheme.

In summary, the contributions of our work are the following:
• We propose Anubis, a novel memory controller design that

enables low-overhead and low recovery time for integrity-
protected systems.

• We propose Phoenix, a novel memory controller design that
recovers the security metadata cache content with minimal
performance overheads and minimal writes.

• We propose Phoenix+, an optimization of Phoenix that
improves the system performance and eliminates the extra
writes required to recover the Tree of Counters.

AES
Encryption

mode
XOR XOR

Data Block Plaintext to
Cache

Ciphertext
to NVM

OTPEncryption
Key

Initialization
Vector (IV)

Page
ID

Page
Offset

Major
Counter

Minor
Counter Padding

Ciphertext
from NVMIV structure

Fig. 1. Counter-Mode Encryption in state-of-the-art secure memories
[3], [26].

• Enable crash consistency for secure memory systems and
allow recoverability with less than a second.

The rest of the paper is organized as follows. In Section 2, we
discuss the background and motivation. In Section 3, we discuss
the design of Phoenix. In Section 5, we discuss our evaluation
methodology followed by our evaluation. We review the related
work in Section 6. Finally, we conclude our work in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we review background and related concepts, and
motivate for our work. In particular, we start by defining the threat
model, followed by all relevant concepts.

2.1 Threat Model
Similar to the state of the art [3], [11], [18], [20], [24], [26],
our threat model considers the processor chip to be the secure
boundary, and to contain the root of the integrity tree and the en-
cryption key, where everything outside the processor is untrusted.
We assume an attacker capable of performing passive and active
attacks, including bus snooping and replaying memory packets,
can scan the memory contents, and may tamper with memory
contents. We also assume the attacker can perform attacks while
the system is either on or off. Access pattern leakage attacks,
electromagnetic (EM) inference attacks, and differential power
analysis attacks are beyond the scope of this work.

2.2 Counter Mode Encryption
One of the major security vulnerabilities of NVM systems is
the data remanence problem. Therefore, NVM is usually paired
with encryption to protect data confidentiality. The state-of-the-
art secure processors (e.g., Intel Xeon Processor E-family) use
counter-mode encryption, shown in Figure 1, since it provides
strong defenses against a range of attacks (e.g., snooping, known
plain-text, and dictionary-based). Moreover, the counter-mode
has a smaller encryption/decryption overhead compared to other
schemes due to overlapped latency of data fetching and one-time-
pad generation [3], [5], [27]. For each write to a data block,
its’ associated counter will be incremented by one. The updated
counter is used to generate an initialization vector and then
coupled with a processor key serve as inputs for the encryption
engine to generate a One-Time-Pad (OTP). After being XOR’ed
with this OTP, the data block is considered to be encrypted and
can be saved in the memory. Similarly, a read request uses the
same encryption pad to generate plain-text for the processor but
without updating any counter value.

The size and organization of counters vary in different state-of-
the-art schemes. The counters used in Bonsai-Merkle-Tree (BMT)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 3

Fig. 2. Merkle Tree

are organized as per cacheline 7-bit minor counter, and 64-bit per
page major counter, each encryption counter (64 Bytes) block can
accommodate 64 minor counters and one major counter. Thus,
each page will have one encryption counter block. On the other
hand, counters used in ToC are monolithic counters, where each
of 56-bit long associated with a data block and one 64B counter
cacheline can accommodate counters for eight 64B memory
blocks. Encryption counter overflow can be costly, and causes long
system stalls which is generally unacceptable [20]. Therefore, the
monolithic counter should be large enough to prevent overflowing,
which means more storage overhead. For encryption/decryption,
the monolithic counter will be padded with a block address to
generate the initialization vector [20]. To encrypt/decrypt the data,
secure processors use AES counter-mode encryption. Figure 1
shows how counter code encryption works.

Several other state-of-the-art schemes use the split counter
scheme [2], [3], [6], [18], [21], [23], [26], in which each data
block is associated with one per-page major counter and one per-
block minor counter. The major counter is shared by all the blocks
within that page. Encryption/Decryption requires knowing both
major and minor counter values to generate the OTP. Since each
minor counter only accounts for seven bits, and the major counter
for 64 bits, a small storage overhead occurs. However, when a
minor counter overflows, the major counter is incremented by 1
and the whole page has to be encrypted using the new major
counter [2], [3], [6], [18], [21], [23], [26].

2.3 Integrity Verification
Since the trusted boundaries are limited to the processor chip,
whenever a block is fetched from the memory, the blocks’ in-
tegrity needs to be verified. In state-of-the-art research and secure
processor designs [2], [6], [20], [26], the Merkle Tree—one of the
approaches used for ensuring integrity, is widely studied and used
for memory integrity verification. Depending on the tree structure,
Merkle trees can be non-parallelizable (e.g., Bonsai Merkle Tree)
or Parallelizable (e.g., SGX style counter tree) [2].

Basically, Bonsai-Merkle Tree (BMT) is an N-ary hash tree
where the leaves correspond to encryption counters for data blocks
[20] and every N leaves will have a hash value calculated based
on the values of the counters. Similarly, all the intermediate nodes
up to the root are constructed using the hash value based on its
children. The root is always kept secure; that is, it never leaves the
chip. Moreover, any tampering with a counter leads to the failure
of reconstructing the root. Figure 2 shows an 8-ary Merkle Tree,
in which the yellow blocks represent the encryption counters, the
green and red nodes represent intermediate levels of the MT, the
green nodes are the hashes of the encryption counters, and the
red nodes are the hashes of the red ones. The process of hashing

A00 A01 A02 A03 A04 A05 A06 A07

B00 B01 B02 B03 B04 B05 B06 B07

Hash

MAC11

C00 C01 C02 C03 C04 C05 C06 C07

Hash

MAC00 C08 C09 C10 C11 C12 C13 C14 C15

Hash

MAC01

Secure Region

56 bit encryption counter 56 bit MAC left over 8 bits

Intermediate
Nodes

Fig. 3. SGX style Parallelizable Merkle Tree [11]

continues until the root is created, which is shown as the blue
node.

Since hashes in the BMT are calculated over the bottom level
hashes, the tree updates must be done sequentially. ToC integrity
trees, on the other hand, can perform a parallel update of the tree,
as the MAC values are not calculated over the below level MAC
value. Figure 3 illustrates the organization of ToC integrity tree
where each node is comprised of eight counters. The MAC values
are calculated over these eight counters and one counter from the
parent node as in Figure 3.

2.3.1 Read and Verify
To better understand the verification steps in ToC integrity trees,
Figure 3 demonstrates a scenario of verifying counter C00. Note
that C00 falls within a block (64 bytes) that contains counters C00
- C07 in addition to a MAC value. However, verifying C00 also
requires reading B00 in the upper level, and then calculating the
MAC value over C00 - C07 and B00, then compare it with
MAC00. However, it is important to note that this is assuming B00
is already verified and cached in the processor chip. However, if
B00 is not present in the processor chip, it must be also verified
the same way before we can use it to verify C00. The same process
of verification is followed in BMT whenever a cacheline is read
from the memory.

Clearly, there is an inter-level dependency in the integrity tree,
and missing an updated MAC due to a crash can cause the whole
recovery process to fail.

2.3.2 Write and Update
To better understand how updates propagate through the integrity
tree, let’s take the case of updating C00 in Figure 3. For now,
let’s assume that there is no expectation of integrity tree recovery
after a crash. In its simplest form, updating (incrementing) C00
requires recalculating MAC00 after incrementing B00. Similarly,
MAC11 will be recalculated with the incremented B00 and A00
values. One important aspect to note here is that on each update,
the MAC values on the affected nodes can be calculated in parallel
using the incremented counter values. In contrast, and for BMT,
calculating the upper levels requires the MAC value as an input,
hence mandating the serialization of updates (bottom-up). Thus,
ToC trees provide parallelism in updating the tree mainly because
calculating the values of counters affected on each node can occur
in parallel, hence calculating the corresponding MAC values on
each affected node.

2.4 Recoverability in Persistent Memories
The security metadata cache caches the integrity tree and encryp-
tion counters, and can be eagerly or lazily updated. In the eager

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 4

Data

Encryption
Counters

MT nodes

ENTRY X

Security Metadata
Cache

1 Write Encrypted Data

2 Write Encrypted
Counter

3 Write MT
Node

9

4

DONE BIT 7

8
Remove

Entry

Non-Volatile
Memory (NVM)

ADR Support as in
Intel Processors

Set DONE_BIT

Reset DONE_BIT

Write Pending
Queue (WPQ)

Copy MT
nodes to WPQ

5 Copy Data to
WPQ

6
Copy Encryption
Counter to WPQ

Memory Controller in Trusted Processor Chip
WPQ Entries are periodically

flushed into NVM

Volatile Write
Queue

Fig. 4. Atomic Persistence of Integrity-Protected NVMs [2], [6].

update schemes, each write needs to update all the related nodes up
until the root. Thus, the root always reflects the most recent state
of the tree and can be used to verify the memory integrity after
recovery. In contrast, the lazy cache update scheme updates the
leaf on each write and relies on propagating the updates upwardly
only after the eviction of updated nodes. In the lazy update
scheme, the root might still be stale while the metadata cache
has the most recent values. Therefore, the lazy update scheme is
expected to be used in systems with no recovery expectation [2],
[6].

In Merkle tree schemes where the tree can be regenerated using
only the leaves (e.g., BMT), it requires a long time to rebuild the
tree. Once the tree is reconstructed, the generated root will be
compared against the one inside the processor chip which has
been eagerly updated. In contrast, the lazy update scheme has no
way to verify the integrity of the reconstructed tree since the root
is out-of-date; the root does not reflect the most recent changes to
memory before the crash. Moreover, in the ToC integrity tree, it
is impossible to regenerate the previous state of the tree from the
leaf encryption counters since every intermediate node contains
eight versions, the updated value of which could be lost during
a crash. Due to such inter-dependency of levels, and the use of
volatile metadata cache, it is very difficult to recover systems with
ToC even if an eager update scheme is maintained.

While an eager update is suitable to rebuild the Merkle tree
using only the encryption counters, it is not the case with ToC
integrity tree. In ToC integrity tree, each node contains a MAC
value calculated over the node counters and a nonce from the
parent node. This inter-dependencies makes it very complex to
retrieve the lost intermediate nodes during the recovery process.
In a lazily updated ToC integrity tree system, the root is not enough
to verify the integrity of the memory as it might be stale. Thus,
to verify the integrity of the memory the integrity tree should be
restored, while each node is used to verify the integrity of lower
and upper levels.

2.5 Counter Recovery Schemes
Prior work on general Merkle Tree [6], [26] explored how to
recover encryption counters after a crash. One of the proposed
solutions, Osiris [26], relies on encrypting Error-Correcting Code
(ECC) written with data. By limiting the number of updates to a
counter before persisting it to the memory, e.g., every 4th write, it
can recover the counter used to encrypt the data by relying on the
fact that a large number of errors will be detected by ECC when
a wrong counter is used. By trying multiple counter values, Osiris
can recover the counter used to encrypt the data. For more details
on Osiris, the reader is referred to [26]. While Osiris presents

a novel approach that reduces the overhead of persisting counters
significantly, there are many other competing approaches [18]. For
instance, as also discussed in [26], part of the encryption counter
used for encryption can be also written with the data and thus strict
the persistence of the whole encryption counter can be relaxed. For
the rest of this paper, we assume Osiris can be used, however, any
other counter recovery scheme would work.

2.6 Atomic Updates of Security Metadata
While persisting the security metadata allows the system to
recover after a crash, if a crash happens before persisting the
security metadata of a a persisted data block, the memory will
have an inconsistent security metadata which will not be able
to decrypt/verify the data. To ensure the security metadata is
consistent with the data, the update should be done atomically.
Modern processors provide enough power to flush the content of
the Write Pending Queue (WPQ) when a crash occurs, and the
power to flush the WPQ content is provided by the Asynchronous
DRAM Refresh (ADR) feature [6]. Therefore, all writes that
have reached the WPQ are considered to be persisted. Additional
bits, such as READY_BIT or DONE_BIT can be used to ensure
the content of persistent registers are inserted atomically to the
WPQ [6], [18]. Figure 4 shows how atomic updates are done, the
encrypted data, encryption counter, and the updated MT nodes are
moved to persistent registers, then the DONE_BIT is set. After
that the updates are moved atomically to the WPQ, then the data
is written to the NVM, and finally the DONE_BIT is reset and the
entry is removed from the WPQ.

2.7 Motivation
As discussed earlier, parallelizable Merkle Trees, as in SGX-
style trees, are very challenging to recover. Unlike typical Merkle
Tree, the verification of each level counters also relies on the
cryptographic hash values stored in their children nodes; the hash
values in children levels are calculated over the counters in that
child node and a counter in the upper level, i.e., each upper-level
counter is used as a version number that will be verified by the
children hash value and later verified by the hash value of its
neighboring counters along with its parent counter. The process
continues until all corresponding parent counters are verified,
however, if such parent counters exist in the cache, it means that
they are already verified and thus it is sufficient to stop once
the lowest level hit in the cache is found. Unfortunately, if any
of such intermediate nodes get lost during a crash, even if the
root is saved inside the processor, it is impossible to verify the
integrity of the leaves; they strictly rely on verifying all their
parent counters. Thus, due to this inter-level dependence in this
style of Merkle Tree, it needs special handling to enable their
recovery. Meanwhile, general Merkle Tree implementations, such
as Bonsai Merkle Tree, can be completely reconstructed if we
can recover encryption counters (the leaves) as explained in prior
work [26]; upper levels of Merkle Tree are simply the hash
values of lower-levels, and thus as long as the root hash value
matches after reconstruction, the counters are considered verified.
However, even for general Merkle Tree, the recovery time is
impractical for practical NVM capacities, e.g., 4TB or 8TB [6].
Figure 5 shows the recovery time for different NVM capacities
assuming encryption counters can be recovered using state-of-the-
art counter recovery scheme [26]. Counter recovery schemes rely
on reading data blocks to use their accompanied ECC bits as a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 5

Fig. 5. Recovery time using Osiris.

sanity-check to recover the used encryption counter [26]. Thus,
the recovery time scales linearly with the size of the memory
(number of data blocks). For instance, we can see that at 8TB
NVM capacity, almost 8 hours are needed to recover the system.
With the expected huge capacities of NVMs, any operation that
is O(n), where n is the number of data blocks (typically 64B) in
memory, can take impractical time and should be avoided.

For instance, for an 8TB memory system, strict persistence
needs to persist additional 13 writes on each regular memory
write, i.e., reducing NVM lifetime and increasing write bandwidth
by 13x. Clearly, strict persistence is impractical. Anubis brings
down the overhead of strict persistence significantly, although it
is still high. In particular, Anubis incurs 2x the write bandwidth
by persisting each update to cache in the shadow region. Thus,
Anubis reduces the lifetime of NVM systems to almost half of its
actual lifetime, although the lifetime of NVMs is already short, to
begin with. Moreover, NVM writes are slow and power hungry,
hence can significantly degrade the performance and increase
the overall power consumption. Figure 5 shows the overhead of
Anubis scheme, which can limit its deployment, and motivates
for this work. In particular, Figure 5 shows the impact of Anubis
on the number of writes. On average Anubis, incurs almost 2x
the number of writes and average performance overhead of 7.9%
compared to baseline secure NVM without recovery support.
The goal of Phoenix is to provide an NVM-friendly solution
that does not incur significant NVM writes. Thus, Phoenix is
proposed as a practical solution that realizes low-overhead secure
and recoverable NVMs.

3 ANUBIS DESIGN

3.1 Tracking Updated Security Metadata

One key observation we have is that it is sufficient to persistently
track the addresses of the blocks in the Merkle Tree and counter
caches to significantly reduce recovery time; only the blocks of
the tracked addresses have been possibly updated without being
persisted. Thus, by having the ability to identify the addresses of
the counter blocks that were in the cache at the time of the crash,
we only need to iterate through their corresponding counter blocks.
Similarly, by tracking the addresses of the Merkle Tree nodes in
the Merkle Tree cache, after fixing lost counters (using Osiris
[26]), reconstructing general Merkle Tree can be implemented by

Fig. 6. Shadow Table

starting from leaves, fixing those identified as lost, then going to
the upper level and fix those identified as lost, continuously until
reaching the top level. The order of fixing is important; repairing
upper levels relies on fixing lower levels first. In its simplest form,
shadow-tracking can be implemented by reserving the cache size
in NVM, e.g., a 128KB will be reserved in NVM for shadowing
the addresses in the 128KB counter cache. During counter cache
miss event, based on the location of the victim block in the data
array of the counter cache, the address of the new block will be
written to NVM on the offset corresponds to the location in the
cache, as explained in Figure 6. Similar approach can be used
for shadow-tracking Merkle Tree. Note that the position of the
block in the counter cache remains fixed for its lifetime in the
cache; LRU bits are typically stored and changed in the tag array.
Since the miss rate of counter cache is typically very small, the
additional writes will be minimal. As mentioned earlier, updated
nodes in both, Merkle Tree and counter caches, must be tracked.
For terminology, we refer the counter shadow-tracker as Shadow
Counter Table (SCT), where as the Merkle Tree shadow-tracker is
called Shadow Merkle-tree Table(SMT). In both cases, the storage
overhead is minimal, e.g., for a 128KB counter cache size and
8TB memory, the overhead is only 128KB/8T.

3.2 Anubis for General Integrity Tree (AGIT)

3.2.1 AGIT Read: Tracking Metadata Reads.

As discussed earlier in Section 2.4, when eager cache update
scheme is used, general Merkle Tree can be recovered by restoring
the leaves and updating the tree upwardly before finally verifying
that the resulting root matches that inside the processor. Thus, we
can directly apply the idea of shadow-tracking for both Merkle
Tree and counter cache to speed up the recovery process; only
lost nodes and counters need to be fixed. For both caches, the
shadow regions are updated on each cache miss, i.e., before
reading a metadata block from memory, and hence we call it AGIT
Read scheme. Note that such shadow regions are merely used for
recovery acceleration; once recovered, as usual, the root will be
used to verify all counters and Merkle Tree nodes as they are
getting read into the processor chip. Thus, any tampering with the
content of shadow regions or unaffected counters (were not in the
cache) will lead to root mismatch when the affected (not recovered
correctly or tampered with) is read in to the processor chip.

Figure 7(a) illustrates the operation of AGIT Read. As shown
in the figure, once a memory request arrives at the memory
controller (Step 1©), the required encryption counter and Merkle

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 6

Fig. 7. Anubis Operations

Fig. 8. Cache block modifications

Tree nodes are retrieved from memory (as shown in Steps 2©
and 3©), in case not present in the cache. Before inserting any of
the counters or Merkle Tree blocks in the shadow cache, Anubis
prepares the address blocks (used for tracking) of the counter and
Merkle Tree blocks and insert them into the WPQ (as shown in
Step 4©) before inserting them in the cache (in Step 5©). Note that
since the tracking blocks (prepared in Step 4©) are already in WPQ
(persistent write queue), they are considered persistent, however,
they will be eventually written to the SCT/SMT region in memory
as soon as WPQ is flushed or such entries get evicted from WPQ.

3.2.2 AGIT Plus: Tracking Metadata Modifications.
In AGIT-Read, SCT and SMT are updated whenever some meta-
data are brought into the cache disregarding the fact that some
metadata would never be modified in the cache. In fact, a signif-
icant number of blocks leave the cache without any modification.
As illustrated in Figure 8, most applications evict a large number
of cache-blocks from the counter cache that are clean. Hence,
only tracking addresses of modified blocks provide the same
recoverability but with reduced overhead. Moreover, most dirty
cache-blocks are updated multiple times in the counter cache and
Merkle Tree cache. In fact, Merkle Tree cache blocks reside in
the cache and get modified more than counter cache blocks. Only
tracking once during a dirty cache block’s lifetime is sufficient
to successfully recover the system. Based on these observations,

AGIT Plus reduces extra updates to the shadow tables by acting
only whenever metadata is first modified in the Counter Cache
or Merkle Tree Cache. This reduces the overhead of AGIT read
significantly without hurting the recover-ability. AGIT-Plus (as
shown in Figure 7(b)) is similar to AGIT-Read except that it
triggers Anubis only at the first update to a counter or Merkle
Tree blocks in the cache (as in Steps 3© and 4©), i.e., setting the
dirty bit for the first time. Before completing the update to caches,
the generated shadow blocks must be inserted in WPQ.

3.2.3 AGIT Recovery Process.

Algorithm 1 AGIT Recover Algorithm
1: Read SCT and SMT
2: for SCTi in SMT do
3: Read Counter Block at address stored in SCTi
4: for SCTi in SMT do
5: Counter in Counter Blocki
6: Fix Counter using Osiris
7: end for
8: end for
9: Classify SMT entries based on their level in tree

10: MaxLevel←Total Merkle Tree Levels
11: Affected Nodes m←Total Affected Nodes at Level m
12: m←0
13: for m<= MaxLevel do
14: for Node in Affected Nodes m do
15: Read all child nodes of Node
16: Create hash of child nodes and replace Node
17: end for
18: m←m+1
19: end for
20: IF Stored root matches new root Then
21: System restored
22: ELSE
23: System unrecoverable

The recovery process of AGIT is straightforward. Once the
system is booted up upon recovery, the system starts scanning the
content of SCT to get the list of possibly lost updates in the cache.
For each address, the data blocks (correspond to the possibly lost
counters) are read and used to recover the counter using Osiris
as discussed earlier. Note that any other counter recovery scheme
would likely have to read the data block, e.g., using phases or

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 7

extending data bus. Later, once the affected counters are fixed,
AGIT scans through SMT to search for possibly lost updates
in the first level (immediate parents of counters) and recalculate
the nodes’ values based on their immediate children (counters).
Later, once the 1st level is fixed, AGIT scans SMT for possibly
lost updates to the second level and fix them by calculating
their values based on their immediate children (level 1). AGIT
proceeds with the same process by going up in the tree level by
level and eventually reach the root of the tree. Once at the root
level, the resulting root from the calculated tree will be compared
against what is in the processor chip to find out if the recovery
has been successful. If the resulting root mismatches what is in
the processor chip, then the recovery process has failed, and the
system raises a warning about that. Note that the speed up in
recovery mainly stems from the fact that we only need to fix the
lost counters and Merkle Tree nodes than naively iterate through
all the blocks as in systems without Anubis.

3.3 Anubis for SGX Integrity Tree (ASIT)

Unlike general trees, SGX-style integrity tree advocates for fast
updates by limiting dependence between tree levels to only a
counter on the upper level. Thus, on each update, affected nodes
on different levels are updated by calculating the MAC over their
counters and the updated counter at the upper level [11]. However,
this comes with extra complexity during reconstruction after a
crash. Each intermediate node depends on a counter on the upper
level, and counters of each level are verified using the MAC value
co-located with each node. Thus, by losing the MAC values on
different levels, it becomes infeasible to verify the integrity of the
tree. Meanwhile, reproducing the MAC values of the intermediate
tree is not safe until the counters of the level are verified. In SGX,
8 of the 56-bit encryption counters are stored along with a 56-
bit hash in one single cache line. Each parent node also contains
8 counters (56-bit each), and a 56-bit hash value. However, as
mentioned earlier, it is very challenging to recover the tree to its
previous state after a crash and most of the time quite impossible
if some intermediate nodes in the tree are missing. ASIT aims
to provide a book-keeping mechanism that tracks the tree during
runtime and recovers after a crash very quickly. Since encryption
blocks in SGX have a similar structure to intermediate levels, a
single metadata cache is typically used. For the shadow table,
we also merge the SCT and SMT into one larger Shadow Table
(ST) with a size similar to metadata cache. Figure 9(b)shows the
organization of the Shadow Table for ASIT scheme.

3.3.1 ASIT Metadata Tracking.
ASIT’s main idea is inspired by Anubis’s embalming capability.
In particular, ASIT aims to have an exact persistent copy of
the content of metadata cache before the crash. However, such
a shadow copy must have its integrity protected against any
possible tampering. By doing so, it is sufficient to just restore
the metadata cache by copying back the shadow cache after
verifying its integrity. In ASIT scheme (Figure 7(c)), on each
update to encryption counters (due to write requests) in the cache,
the Shadow Table (ST) is updated with the modified cachelines
in the cache. As described earlier (Section 2.4), an eager update
scheme is inappropriate for SGX-style trees; having a root value
that reflects the most recent tree is insufficient to recover the tree.
Meanwhile, strictly tracking all changes to counters and Merkle
Tree would incur significant overheads with eager update scheme;

Fig. 9. Shadow Table Blocks

each write would incur 12 writes to the shadow region. Therefore,
we opt for using lazy update scheme while strictly tracking the
changes to the metadata cache; in the lazy scheme only one block
is typically updated on each memory write, and thus it is more
practical to track such updates compared to eager update scheme.
However, the cost is the need to fully protect the integrity of the
shadow-table through a small general Merkle Tree (3-4 levels)
with its root be persistent and never leaves the processor chip. The
updates to the tree protecting the shadow table use eager cache
update scheme, i.e., the root of the shadow table tree reflects the
most recent state of the shadow table. Each Shadow Table block
contains the following elements (Figure 9(b)):

• Address: 64-bit address of the Merkle tree block/encryption
counter block modified in the combined metadata cache.

• MAC: 56-bit MAC value calculated over the updated counter
values (nonces in that node).

• Counter LSBs: This part consumes most of the space in each
Shadow Table entry and contains part of the LSBs of counters
in that Merkle Tree node. 8 LSBs from each counter of the
MT node is packed together into 49 bytes(49 bit each).

Whenever 49-bit LSBs of a counter overflows, the MT node is
persisted so that the LSB value stored inside SMT can successfully
recover the counter value. This ensures that the tree counters
are recoverable using the MSB of the memory version of the
counters, and the LSBs in the shadow block. Since 49-bit LSB
overflows very rarely, the overhead of persistence due to overflows
is negligible.

Protecting Shadow Table: As mentioned earlier, since, the
original root can be stale and hence no longer can be used for
verifying integrity, a small non-parallelizable Merkle tree structure
is maintained just to provide integrity protection of the Shadow
Table (ST). For 256kB Cache size, only a tree of four levels
(8-ary) needs to be maintained. However, there is no need for
persisting this tree in memory. It is sufficient to securely keep
the root of such a tree, we call it (SHADOW_TREE_ROOT), as
verification is done only during recovery and is very fast. It should
be noted that, in AGIT scheme, such secondary tree to protect
the shadow table is not necessary; if attacker omits or tampers
with entries in shadow caches, then the resulting corruption in
counters or Merkle Tree will be eventually detected due to root
mismatch. To avoid potential deadlock scenario when evictions
could occur due to insertion of blocks from the shadow region
tree, we dedicate a small percentage of the metadata cache for
the shadow region tree. Such part of the cache does not need to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 8

be shadowed. Note that, only keeping higher level nodes of the
shadow tree in the cache is sufficient for a fast update of the
SHADOW_TREE_ROOT. To protect a 256kb metadata cache, a
three-level tree (8-ary, excluding root) is required. We only keep
the highest two levels (72 nodes) which is only 1.75% of the cache,
and does not affect the performance. The atomicity of the updates
to the shadow region in memory and SHADOW_TREE_ROOT is
maintained in the same way the atomicity between data, counters
and Merkle-tree root is maintained using persistent registers and
Write Pending Queue (Section 2.6), in which the root value is only
updated once the updates are pushed to the WPQ.

3.3.2 ASIT Recovery Process.

Algorithm 2 ASIT Recover Algorithm
1: Read ST
2: Regenerate SHADOW_TREE_ROOT and verify
3: Recover Tree Nodes
4: for STi in ST do
5: Stale_Nodei ←Read node at address(STi) and place in

cache
6: Recoverd_Nodei ←Replace LSBs and MAC in

Stale_Nodei from STi
7: end for
8: Verify Integrity
9: for all Recovered_Nodei in Metadata_Cache do

10: Verify_Integrity(Recovered_Nodei)
11: IF Integrity_Not_Verified(Recovered_Nodei) THEN
12: The system is unrecoverable
13: ELSE
14: Do nothing
15: end for

The recovery process in the ASIT scheme is different than that
of the AGIT scheme in the following two ways. First, Osiris (or
any counter recovery scheme) is no longer needed and hence no
need to try different counter values to finish recovery; the LSBs
and MAC are replaced directly from the SMT block. Second,
instead of rebuilding the Merkle Tree, ASIT only recovers the
metadata cache to its pre-crash state.The following steps are
required for the recovery in the ASIT scheme. First, Anubis reads
the Shadow Table (ST) from the memory into the cache and
regenerates SHADOW_TREE_ROOT, the root of the general tree
that is responsible for the integrity of the Shadow Table. Next,
this root is compared with the securely stored version of it in
the on-chip NVM register. Later, once the ST’s integrity has been
verified, recovery starts by iterating over each Shadow Table block
that has been loaded in the cache. For each Shadow Table block,
their non-persisted memory counterpart (stale node) is also read
and the LSBs and MAC values of that non-persisted node are
replaced with the LSBs and MAC stored in the Shadow Table,
i.e., only MSBs of counters are used from the stale node. Later,
for each recovered node, we verify that MSBs were not tampered
with by verifying the MAC value with the result of applying hash
over the counters of the node and the counter in the upper node
(from the cache if it was recovered).Once the recovery is done,
every recovered tree node will have the dirty bit set to 1. This
way, the updates lazily propagate to the memory due to natural
eviction.

4 PHOENIX DESIGN

4.1 Phoenix VS Anubis

The goal of Phoenix is to enable recovery of Tree of Counters
(ToC) integrity trees (SGX-style) at a low write overhead. We
realize that any practical solution proposed for NVMs must have
low write overhead. Thus, Phoenix mainly aims for ultra-low write
overhead while still enabling recovery of ToC integrity trees. The
first observation that Phoenix builds upon is that recovery of ToC
integrity trees can be achieved by recovering the lost content of
security metadata cache. While this observation has also been
made in Anubis [2], enabling such a recovery of cache content
has been done in a way similar to write-through, by persisting
the writes made to security metadata cache into a shadow region
in the NVM, which has been proven to be very expensive when
used with NVMs [26]. However, Phoenix is based on the fact that
we can actually recover the cache content without exact/accurate
shadowing of all of its content. We make a novel observation and
contribution that we can securely recover the lost cache contents
and verify them while still relaxing the shadowing operation.

In particular, we observe that recovering ToC integrity trees
by relying on restoring the cache content before a crash has
two major requirements. First, there must be a mechanism to
verify that we recovered the most recent cache content before a
crash and its contents have not been tampered with. Second, the
root of the Merkle Tree must reflect the updates of all memory,
including the cache contents just before a crash. By ensuring
these two requirements are satisfied, the security metadata cache
can be recovered, and the rest of the memory verification is
verified through a Merkle Tree on each memory access. In other
words, simply bringing the metadata cache and Merkle Tree root
(unaffected) to the state before a crash is sufficient to ensure the
crash-consistency of security metadata.

Anubis, achieved such a cache recovery mechanism by relying
on the shadow cache, in which any updates of a lazy-update ToC
metadata cache is copied, thus resulting in doubling the writes.
To ensure the integrity of the shadow cache, Anubis applies a
small Merkle Tree over the shadow cache while keeping its root
in the processor and following an eager update scheme. After a
crash, the cache content can be restored from the shadow region,
and its integrity can be verified using the small Merkle Tree (the
eagerly updated one), which also has its root kept in an NVM
(or NVM-backed) register inside the processor chip. On the other
hand, Phoenix is mainly based on the fact that most updates to
metadata cache in the lazy-update scheme are for leaves. However,
shadowing leaves updates to the memory might be unnecessary
if we can have the following: 1 a mechanism to verify the
most-recent cache state including leaves but without necessarily
shadowing them, and 2 the ability to recover leave updates.

Phoenix employs Osiris and phase-based recovery [26], to re-
lax updates to the shadow region in the cache while simultaneously
allowing to recover the exact content of the cache right before
a crash. Specifically, Phoenix selectively decides which security
metadata should be shadowed strictly and which ones can be
relaxed. Even though it relaxes the shadow region update, Phoenix
enables the reconstruction of the cache content (including relaxed
leaves) and allows the verification of the recovered content. Since
most updates to the security metadata cache are caused by leaves
updates, Phoenix is expected to significantly reduce the number
of writes while allowing fast recovery of ToC trees. The main

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 9

Encryption
Counters

Data Array Tag Array
Security Metadata Cache

2

1

3

WPQ

Increase encryption counter
and insert to WPQ in Nth

write

Cache miss

If MT intermediate
node is updated,

persist it

Start of Cache Mirror

Fig. 10. Updates Tracking

downside of Phoenix is that it requires additional work before
reconstructing the lost cache content and verifying it.

4.2 Selective Persistence
Upon a crash, the cache loses its content. Losing the cached
security metadata results in integrity verification failure; thus, the
cached security metadata needs to be persisted.

Strictly persisting the security metadata incurs tens of addi-
tional writes, and to avoid those unnecessary extra writes, we
opt for persisting only the unrecoverable nodes of the metadata.
Security metadata contains the encryption counters and the Merkle
tree nodes, while ToC integrity tree nodes are composed of 8
counters and a MAC calculated over the eight counters and the
parent of the node. Since the encryption counters can be retrieved
without strictly persisting them using Osiris [26], we are going
to follow a similar scheme by persisting the encryption counters
with every N-th write, or on eviction. On the other hand, the
intermediate ToC nodes are not recoverable; therefore, we suggest
persisting these cached nodes to successfully recover from the
crash. To achieve that, we allocate a small region in the NVM
which is the same size of the security metadata cache (about 256
kB) which we refer to as the Cache Mirror (CM). Whenever an
intermediate ToC node is written in the cache, this update will be
persisted, and its address will be copied to the CM, while updating
the encryption counters with every N-th write. Figure 10 shows
how selective persistence is done; whenever a write happens, if
the write resulted in updating an intermediate node, the updated
intermediate node is copied to the CM region. During the recovery
process, the contents of the CM are used to recover the lost cache
contents and refresh the ToC to ensure a secure recovery process.
Since the security region is defined by the boundaries of the
processor, the integrity of the CM should be guaranteed before
it can be used during the recovery. Thus, we apply a small Merkle
Tree (MT), four levels with an arity of eight, over the CM while
keeping the root of this tree in the processor. During the recovery,
the integrity of the CM region is verified by building the CM-MT
and comparing the resulting root with the processor kept root.

4.3 Phoenix Operation
Phoenix read operation is merely a read and verify operation, and
does not require any changes or special handling. In particular, the
read operation in Phoenix does not modify the security metadata
cache except for eviction, which is discussed in subsection 4.5.
On the other hand, the write operation results in an encryption

Encryption
Counters

Data Array Tag Array
Security Metadata Cache

2

1

3

4

WPQ

Fetching encryption counter
and parent until first cache hit

5 Insert block into cache

Find a victim
block

Cache miss

Copy victim to
WPQ

6Write Intermediate node
and its address to CM

Start of Cache
Mirror

Fig. 11. Eviction

counter increment to ensure a new encryption pad for the modified
block. The encryption counter increment will not affect the MAC
value in the node nor increment the parent as we are using a lazy
update scheme, but Phoenix will be triggered and the address of
the modified counter will be copied to the CM. However, when
an encryption counter block is evicted the parent node should
be fetched and both nodes should be updated. Despite using
a lazy update scheme, it is important to persist the encryption
counter at every N-th write, or on eviction to enable encryption
counter recovery. It is important to keep in mind that updates
of a ToC node and the data are to be done atomically using
the Write Pending Queue (WPQ) and a ready bit as described
earlier. While encryption counters are updated at every N-th write,
ToC intermediate nodes need to be persisted each time they are
modified; thus, the addresses of the intermediate nodes are copied
to the CM, and the intermediate nodes are persisted into the NVM.

4.4 Phoenix+ Operation

While Phoenix persists intermediate nodes on each update, and
persists encryption counters on N-th update or eviction. Phoenix+

relaxes persisting encryption counters on eviction, to only persist
encryption counters on the N-th write. By doing this, Phoenix+

reduces the number of writes and the performance overhead
significantly. Phoenix+ relies on recovering the encryption coun-
ters while working by utilizing the encryption counters recovery
scheme. Notice that, recovering the encryption counters on the run
might add performance overhead if done in a sequential manner,
but we assume N-AES engines (4 in our design) to retrieve the
latest value of the used encryption counter. Keep in mind, that
evicting an encryption counter without updating its value, does
not affect its parent, but still affect the encrypted data. Thus, the
old encryption counter value integrity can be verified the parent
value, and the latest value can be recovered.

4.5 Eviction

The lazy update scheme we use in Phoenix reduces the number
of writes while relying on eviction to propagate the nodes update.
Figure 11 shows the eviction process. In the case of a counter
encryption cache miss, the memory controller selects a victim
block to be evicted from the cache using the Least Recently Used
(LRU) replacement policy. The victim block is then inserted to the
WPQ in case it was an intermediate tree node. Note that we are not

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 10

I I I I

C00 C01 C08 C05

C04 C03 C12 C13

C10 C11 C02 C06

Cached data

IA

C00A

CM data

Counters
intermediate

nodes address
intermediate

nodes

Protected
by small

BMT

Fig. 12. Cache Mirror

persisting the encryption counter on eviction since we are relying
on Osiris to retrieve the encryption counter’s most recent value
while running. Persisting the encryption counter on eviction will
improve the performance slightly, as we can immediately use the
fetched encryption counter after verifying its integrity, although
will increase the number of writes to the NVM. Since our goal is
to successfully recover the ToC while maintaining a low number of
writes, we opt for recovering the encryption counter while running
by only persisting the encryption counter at every N-th write. To
ensure the data consistency, we assume the evicted encryption
counter, intermediate ToC node, data, and CM data are inserted
atomically to the WPQ as described in section 2.6.

4.6 Imprecise Cache Mirror
The Cache Mirror (CM) region, shown in Figure 12, is a small
reserved region in the NVM. The CM only contains the addresses
of the dirty intermediate nodes and the addresses of the dirty
counters, while the actual dirty intermediate nodes are persisted
to their actual locations. The CM contents are used to securely
recover the system after a crash. To ensure the integrity of recov-
ery, the dirty cached intermediate nodes and the dirty encryption
counters are protected with a small general MT. This small MT
that only covers the dirty intermediate nodes and dirty encryption
counters is eagerly updated, and its root is always kept in the
processor. Notice that by relaxing the CM contents to contain
only the addresses of dirty intermediate nodes and the addresses
of dirty encryption counters, we were able to drop the number of
writes significantly. Moreover, using a small MT to cover only the
dirty intermediate nodes and dirty encryption counters, we were
able to drop the performance overhead. We note that when a lazy
update scheme is used, the root is no longer suitable as a single
point of memory content integrity verification. As a matter of fact,
the cache contents are the most updated nodes, and the nodes
are used to verify the integrity of fetched nodes. When a crash
happens, and the cached nodes are lost. However, we can recover
the leaf nodes using encryption counters recovery, although the
integrity of these nodes needs to be verified. The parents of these
nodes can be either up-to-date in the NVM, or cached nodes lost
during the crash. Thus, we make sure to persist the intermediate
nodes, and use the small MT root to ensure the integrity of cached
intermediate nodes.

4.7 Integrity Verification
The secure region is defined by the processors boundary. While
on-chip memory is considered secure, that is not the case with
NVM. Thus, whenever a data block is fetched from the NVM its

integrity needs to be verified. To verify the integrity of any block,
its parent needs to be fetched and used to calculate the MAC
value of the verified block. However, once the parent is fetched,
its integrity needs to be verified which will result in a recursive
operation until the first parent cache hit. Once one parent is found
in the cache, its integrity is considered to be verified, and is used to
calculate the MAC of the child node. If the calculated MAC value
matches the child node’s stored MAC value, the child’s integrity
is considered verified. For the CM region, since its size is very
limited (256 kB) it is more suitable to use an eagerly updated
MT and store its root in the processor. Using an eagerly updating
scheme means the root always reflects the most recent tree state.
The CM MT is four levels using an 8-ary tree; thus, it is feasible
to rebuild the tree during recovery and compare the new root with
the stored root to verify its integrity.

4.8 Recovery

The recovery process starts by loading the pre-crash cached
intermediate nodes from the NVM, using the addresses saved
in the CM region. Then, the integrity of the loaded intermediate
nodes is verified using the small MT root. When the intermediate
nodes are verified, any interrupted write operation is resumed, by
checking the DONE_BIT and completing the pending operations
to successfully complete the atomic write. Notice that the small
MT root is eagerly updated, and always kept in the processor.
Moreover, the small MT root is calculated over the dirty cached
intermediate nodes; thus, its update is infrequent, since most of
the updates are done to the leaf nodes. In turn, the overhead of
eagerly updating the small MT root is negligible. Note that we are
restoring the encryption counter during the normal operation, and
the encryption counters are not persisted nor recovered during the
recovery process since they are recovered when fetched.

Algorithm 3 Phoenix Recover Algorithm
1: Read CM
2: for Nodei in CM do
3: Nodei←Memory[Nodei]
4: if Nodei is EncryptionCounter then
5: Nodei←Osiris[Nodei]
6: end if
7: MetadataCache←Nodei
8: end for
9: CMRoot_Recovered←GenerateRoot[MetadataCache]

10: if CMRoot_Recovered = CMRoot_Stored then
11: WPQ←PersistentRegisters
12: Memory←WPQ
13: ContinueNormalOperation
14: else
15: T heSystemisUnrecoverable
16: end if

Once the CM integrity is verified, the DONE_BIT is checked
and any pending write operations that were in the persistent
registers before the crash are moved to the WPQ and executed.
After the pending write operations are executed, the CM contents
are used to restore the cached intermediate ToC nodes. While the
intermediate ToC nodes are ensured to be recovered to the most
recent state using the CM, the encryption counters are not. To
restore the encryption counter to the most recent state, we use
the CM contents to retrieve the addresses of the cached encryption

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 11

counters, then fetch the counters and use Osiris to retrieve the most
recent counter value. After the encryption counters are updated to
the most recent values, the cache is restored to its previous state
before the crash, and its integrity can be verified using the small
MT root. Notice that in case of the CM region is tampered with,
and the calculated root of the CM region does not match the stored
root in the processor, the recovery process fails, and the integrity
of the NVM is declared unverifiable.

4.9 Phoenix VS cc-NVM

Phoenix and cc-NVM [25] aim to achieve a persistently secure
and crash-consistent system. However, Phoenix and cc-NVM are
following different approaches to achieve a common goal. While
Phoenix focuses on recovering the ToC with ultra-low writes
overhead, cc-NVM enables the crash consistency for BMT and
does not support the ToC. cc-NVM enables the recovery by
tracking the security metadata updates in a dirty-address-queue
and persists the updates by the end of each epoch. cc-NVM
assumes the tree nodes are recoverable by hashing the encryption
counters, which is not the case for ToC. Moreover, cc-NVM epoch
persistency increases the write traffic to the NVM. On the other
hand, Phoenix persists the updated intermediate ToC nodes and
recovers the encryption counters. Therefore, Phoenix reduces both
the performance overhead and write traffic.

4.10 Security Discussion

In traditional persistent secure systems, the security of the data is
protected using the counter mode encryption, and the integrity
of the encryption counters is protected with MT. The root of
the MT is always kept in the processor, and memory content’s
integrity is verified by calculating the root and comparing it with
the processor stored root. This scheme works well for eagerly
updated MT, which is not the case in our scheme. Phoenix+

scheme relies on a lazy update scheme, which means whenever
a leaf counter is updated or evicted we do not update the parent of
the counter, nor update the associated MAC with the leaf counter
node, but rely on the N-th write to the same counter to propagate
the update. In Figure 3, if the counter C01 is updated twice and
then got evicted, the parent node B00 will not be updated, and
the MAC value MAC00 will both be stale. Notice that even the
counter B00 will be stale in the NVM, so the next time counter
C01 is fetched it still can be verified successfully using the stale
MAC00 and the parent B00, and then its most recent value can be
recovered using Osiris [26]. In the lazy update scheme, the root of
the ToC can be stale, and the most updated state is preserved in the
cached intermediate nodes of the ToC. In the recovery process, it
is essential to guarantee the integrity of the CM region as it reflects
the most recent state of the tree. Thus, the integrity of the CM is
protected using a small BMT and the root is eagerly updated and
kept in the secure region (processor).

5 EVALUATION

In this section, we evaluate our scheme based on the Write
Back scheme as the baseline. We evaluate the additional num-
ber of write incurred by each scheme, the performance of ASIT,
Phoenix and Phoenix+ schemes, then we show the sensitivity to
cache size and recovery time.

TABLE 1
Configuration of the simulated system

Processor
CPU 4 Cores, X86-64, Out-of-Order, 1.00GHz
L1 Cache Private, 2 Cycles, 32KB,2-Way
L2 Cache Private, 20 Cycles, 512KB, 8-Way
L3 Cache Shared, 32 Cycles, 8MB, 64-Way
Cacheline Size 64Byte

DDR-based PCM Main Memory
Capacity 16GB
PCM Latencies Read 60ns, Write 150ns

Encryption Parameters
Security Metadata Cache 256KB, 8-Way, 64B Block
CM in Phoenix 256KB
CM in Phoenix+ 256KB
Persistence Limit 4

5.1 Methodology
Our evaluation was done using Gem5 [7], a cycle-level simulator.
Table 1 shows the used configuration, we simulate a 4-core X86
processor with 16GB PCM-based Main Memory with parame-
ters modeled as in [15]. The evaluation was done by running
applications from the SPEC 2006 benchmark suit [12]. The used
benchmarks include memory intensive applications in both read
and write intensive applications. For each application, we simulate
500M instructions after fast forwarding to a representative region.

In our evaluation, we model the integrity-protection using ToC,
encryption aspects, security metadata cache, hash calculation la-
tency, shadow tables, and cache mirror region integrity protection.

5.2 Phoenix Writes
To evaluate our scheme, we compared the number of writes
incurred for each of the following schemes.

1) Write Back (Baseline): This is a simple ToC integrity tree
scheme with write back. This system only writes on eviction
and does not provide any recoverability.

2) ASIT: The Anubis scheme for ToC integrity tree updates the
ToC lazily and writes all the ToC updates to a shadow region.

3) Phoenix: This scheme updates the ToC lazily while persisting
the updates for intermediate ToC nodes, and relaxes the
updates for leaf nodes until eviction or the counter is written
N times.

4) Phoenix+: This scheme reduces the number of writes in
Phoenix by only persisting the leaf nodes on the Nth write,
and relies on a counter recovery scheme (Osiris [26]) to
recover the counters on the run.

 0

 0.5

 1

 1.5

 2

 2.5

A
S
T
A
R

C
A
C
T
U
S

L
B
M

L
IB

Q

O
M

N
E
T
P
P

S
JE

N
G

S
O
P
L
E
X

Z
E
U
S

B
W

A
V
E
S

A
V
G

N
o

rm
a
li
z
e
d

 W
ri

te
s

Baseline

ASIT

Phoenix

Phoenix Plus

Fig. 13. Phoenix Extra Writes

Figure 13 shows the number of writes incurred by the above
schemes. Considering the Write-Back as the baseline scheme,
we notice that Anubis-ASIT incurs an average of 87% extra

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 12

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

A
S
T
A
R

C
A
C
T
U
S

L
B
M

L
IB

Q

O
M

N
E
T
P
P

S
JE

N
G

S
O
P
L
E
X

Z
E
U
S

B
W

A
V
E
S

A
V
G

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Baseline

ASIT

Phoenix

Phoenix Plus

Fig. 14. Phoenix Performance

writes, while Phoenix incurs an average of 12.9% extra writes,
and Phoenix+ reduces the writes to less than the write-back by
an average of 3.8%. Phoenix+ reduces the number of writes to
less than Write Back scheme while achieving the recoverability of
ToC. Anubis-ASIT overhead is caused by the strict shadowing of
the ToC updates, on the other hand, Phoenix only persists when
intermediate nodes are changed, or the dirty encryption counter is
evicted, and Phoenix+ only persists on encryption counter fourth
update and relax the persist for evictions. Phoenix+ achieves this
reduction by utilizing the lazy update scheme for the ToC, and by
eliminating the eviction writes for the encryption counter nodes,
while using Osiris counter recovery to recover the latest value of
the encryption counter each time it is fetched.

5.3 Phoenix Performance

To evaluate Phoenix, we model and compare the aforementioned
four schemes. Figure 14 illustrates Phoenix’s performance in
comparison to other schemes. Considering the Write Back scheme
as the baseline, Anubis-ASIT provides the ability to recover the
ToC with 7.9% extra performance overhead. Phoenix+ is not only
capable of recovering the ToC, but also achieves a performance
of 0.8% better than the write back scheme. That is, Phoenix+’
execution time is less than the Write Back scheme; thus, Phoenix+

reduces the overhead by 8.7% compared to Anubis-ASIT. Note
that ASIT incurs higher overheads due to the high number of
writes, which leads to contesting the shared resources such as the
WPQ. On the other hand, Phoenix reduces the tracking to the first
change only, and thus improves the system performance. We also
notice that Phoenix in both versions is performing better than the
baseline for CACTUS benchmark as shown in Figure 14. More-
over, using memory intensive benchmarks shows that Phoenix+

performs slightly better than the Write Back scheme, while this
difference is expected to be more noticeable with less memory
intensive applications. Phoenix reduces the overhead by relying
on lazily updating the ToC while persisting each update to the
intermediate ToC nodes. Notice that relying on the lazy update
reduces the frequency of updating the intermediate nodes until the
leaf node is evicted. On the other hand, Phoenix+ takes one step
further to relax persisting the leaf counters on eviction and relies
on Osiris as a counter recovery scheme to recover the counters
while running.

5.4 Phoenix VS Phoenix+

Phoenix+ is a modified version of Phoenix that reduces the writes
and improves the performance. However, Phoenix+ achieves
these performance gains and writes reduction by increasing the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

64 12
8

25
6

51
2

10
24

20
48

40
96

R
e
c
o

v
e
r

T
im

e
 i
n

 S
e
c
o

n
d

s

Cache Size (KB)

AGIT+
ASIT

Phoenix+
Phoenix

Fig. 15. Phoenix recovery Time

hardware complexity. Phoenix+ requires multiple AES engines
to recover the encryption counters online. The number of AES
engines should be equal to used encryption counters persistence
limit to achieve optimal performance, as using less number of
engines will lead to a sequential encryption counter recovery
process, which might affect the system performance. Therefore,
Phoenix and Phoenix+ solve the same problem where Phoenix
optimizes for lower hardware complexity and lower recovery time
but incurs extra writes and performance overhead, and Phoenix+

optimizes for better performance and lower writes at the cost of
hardware complexity and extra recovery time.

5.5 Sensitivity Study
5.5.1 Recovery Time
Recovery of ToC protected systems was not possible except for
strict persisting scheme. Anubis-ASIT [2], Phoenix, and Phoenix+

allow the recovery in less than a second, due to making the
recovery time a function of the cache size instead of the mem-
ory size. While Anubis-ASIT relies on a lazy strict persistent
scheme which results in extra 87% extra writes to achieve the
recoverability of the ToC integrity protected systems, on the other
hand Phoenix+ recovers the same NVM with writes less than
Write-Back scheme. Figure 15 shows the recovery time of
Anubis, and Phoenix regarding the cache size. Figure 15 shows
that both schemes achieve a recovery time of less than a second,
even for extremely large cache size (4MB) Phoenix recovery time
is ≈0.12 seconds for Phoenix+, 0.069 for Phoenix, and ≈0.015
seconds for Anubis-ASIT. Notice that Phoenix+ recovery time is
the highest as it needs to recover many nodes, and Anubis-ASIT
scheme has the lowest as it does not need to recover any node, and
Phoenix recovery time is between the two. Phoenix+ takes more
time to recover the system as it requires retrieving the leaf counters
values during the recovery process. For this sensitivity test, the
worst case scenario is considered to calculate the recovery time,
by considering all the eight counters in each leaf node are stale.
We notice that Phoenix+ trades a very small amount of recovery
time for reducing performance overhead and the number of writes
of the system.

5.5.2 Performance Sensitivity to Cache Size
Phoenix+ allows the recovery of ToC integrity protected NVM
as a function of the cache size. To fully evaluate the scheme, we
vary the cache size and measure the performance overhead of our
scheme. Figure 16 shows that the performance of Anubis-ASIT
and Phoenix+ almost stay the same, while Anubis-ASIT incurs
an overhead of 8%, Phoenix+ performance is about 1% better
than Write-Back scheme. This can be explained by Phoenix

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 13

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

64 12
8

25
6

51
2

10
24

20
48

40
96

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e
 i
n

 S
e
c
o

n
d

s

Cache Size (KB)

Phoenix+
ASIT

AGIT Read
AGIT+

Phoenix

Fig. 16. Phoenix sensitivity to Cache Size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1
0
K

2
0
K

3
0
K

4
0
K

5
0
K

6
0
K

7
0
K

8
0
K

9
0
K

S
lo

w
d

o
w

n

Number of Crashes/Hour

ASIT

Phoenix+

Phoenix

Fig. 17. Performance Sensitivity to Crashes

operation; Phoenix+ performs in a manner similar to the baseline
(Write Back). However, Phoenix+’ performance depends on the
number of writes to cached data: the more writes to the cached
data will result in more counter writes, which results in more
Phoenix writes.

5.5.3 Performance Sensitivity to Crashes

Figure 17 illustrates an analytical comparison between Phoenix,
Phoenix+ and ASIT. It shows how the normalized system slow-
down varies with the number of crashes per hour. The slowdown
in our calculation includes slowdown during system runtime, and
slowdown during recovery process. Because of the straight for-
ward recovery mechanism in ASIT, it achieves low recovery time
at the cost of significant run-time performance implications. On
the contrary, Phoenix and Phoenix+ have improved performance
at the cost of slightly higher recovery time. Therefore, Phoenix
and Phoenix+ have better performance if the frequency of crashes
is small. However, with a higher frequency of system crashes, the
performance gains of Phoenix and Phoenix+ are obliterated by the
extra time needed for the recovery.

As shown in Figure 17, Phoenix+ shows the best performance
for systems with a crash rate lower than 17K per hour. Moreover,
We observe that ASIT scheme shows better performance than
Phoenix+ if the crash rate is higher than 44K per hour. However,
Phoenix would still perform better than ASIT for systems with a
crash rate that is lower than 70K per hour. Therefore, for ASIT
can perform better than Phoenix+ in systems that crashes more
than 12 times each second. Although such a high frequency of
system crash is uncommon, we perform such sensitivity analysis
to have an insight on how the two schemes would perform in a
system that is vulnerable to frequent system crash. In most servers
where a system crash is rare, Phoenix and Phoenix+ can be used.
However, in systems that are susceptible to frequent crashes and
power loss (e.g., intermittent power devices) ASIT can be used.

5.5.4 Counter Persistence Limit
The number of writes on which the encryption counter is persisted
affects the performance of Phoenix. Using a large number of writes
before the encryption counter is persisted reduces the number of
writes and the performance overhead. However, this comes at a
cost: a large persistency limit would cause higher recovery time
and higher performance overhead as the counter latest value needs
to be recovered each time its fetched or during recovery. The
performance overhead can be avoided by using multiple ECC
engines to recover the counter value. In our design, we opt for
using the 4th write to be the persistence limit, choosing to persist
the counter at the 4th write provides a very low performance
overhead and enables the recovery within less than a second.

6 RELATED WORK
The most related work to Phoenix are Anubis [2], cc-NVM
[25], Triad-NVM [6], Osiris [26], and Crash Consistency [18].
Anubis [2] addresses the recovery time of NVM systems and
uses a shadow region to track down all the changes to cache
contents, where each writes to the cache results in a write to
the shadow region. The shadow region facilitates recovering the
cache contents in ultra-low time, but incurs 87% extra writes for
ToC. cc-NVM [25], proposes a crash consistency scheme that uses
an epoch-based persistency model. cc-NVM tracks the updated
BMT nodes in a dirty-address-queue and commits the updates
once the queue is full. Thus, cc-NVM reduces the traffic to the
NVM and improves the system performance. Triad-NVM [6], on
the other hand, discusses the trade-off between recovery time and
performance, and reduces the recovery time by persisting N levels
of the MT. On the downside, Triad-NVM does not work with ToC,
and requires persisting multiple levels of the integrity tree.

To recover counters, Osiris [26] relies on the ECC-bits as a
sanity check for the used encryption counter. By applying a stop-
loss mechanism, Osiris restores the encryption counters using a
limited number of trials. Osiris works for retrieving the encryption
counters while assuming building the integrity tree is possible,
which is not the case with ToC integrity tree. Crash Consistency
[18] for counters recovery proposes an API for programmers
to selectively persist counters, and ensures atomicity through a
write queue and Ready-Bit. In order to reduce the overhead, it
proposes selective counter atomicity of the persistent applications.
The scheme depends on the amount of applications persistent data
and does not address the recoverability issue of ToC.

There are several state-of-the-art works done in NVM security
and persistence [9], [14], [19], [21], [22], [23], [28], [29] without
considering the crash-consistency and recovery that discusses to
optimize the run-time overhead of implementing security to NVM.
Most works employ counter-mode encryption for encrypting data
and MT for ensuring integrity. However, to the best of our
knowledge, none of the works consider the recovery and crash-
consistency of integrity protected systems. As a matter of fact,
any work that does encryption counters compression or increases
the integrity tree arity boosts our scheme, by increasing the
cacheability of the encryption counters and reducing the number
of intermediate nodes. SecPM [29] proposes a write-through
mechanism for the counter cache that tries to combine multiple
updates of counters to a single write to memory, however, does
not ensure recovery for ToC and incurs significant recovery time
as in Osiris. While Anubis [2] discusses the reduction of recovery
time of secure non-volatile memory and recovery mechanism for

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 14

ToC, however; the scheme incurs almost 2x extra writes which
reduces the NVM lifetime by half.

7 CONCLUSION

Our work bridges the gap between recoverability and high per-
formance in secure Non-Volatile Memories. Our solution can be
seamlessly integrated into various secure and integrity protected
systems. Anubis scheme can achieve significant improvement in
recovery time and incurs an overhead of 3.4% when implemented
in general Merkle Tree integrity-protected systems. Phoenix is
based on four observations, first, most updates of the lazily
updated ToC are done to leaf nodes. Second, leaf nodes are
the least likely to be evicted as they will be reused frequently
for verification and update purposes. Third, leaf nodes can be
recovered using any encryption counter recovery scheme, we used
Osiris in our work, but any other scheme should work. Fourth,
cached intermediate nodes can be persisted at their location instead
of being copied to the shadow region, and the small MT only
needs to cover the dirty cached intermediate nodes and the dirty
encryption counters. Phoenix achieves recoverability with ultra-
low recovery time while keeping the number of writes to the
minimum in ToC integrity protected NVMs. Our solution achieves
a significant improvement in the number of writes as it reduces the
number of writes to 3.8% less than the write back scheme, with
a recovery time of less than a second in ToC integrity protected
systems. In addition, Phoenix recovery time and extra writes are a
function of the cache size, as it works by recovering the lost cached
ToC nodes. In summary, Phoenix recovers the ToC in less than a
second, reduces the number of writes significantly, and improves
the performance.

ACKNOWLEDGEMENT

This research was developed with funding from the Defense Ad-
vanced Research Projects Agency (DARPA). The views, opinions
and/or findings expressed are those of the author and should not
be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Approved for
public release. Distribution is unlimited.

REFERENCES

[1] “NVDIMM Block Window Driver Writer’s Guide,” https://pmem.io/
documents/NVDIMM_DriverWritersGuide-July-2016_wChanges.pdf,
accessed: 2019-12-30.

[2] K. Abu Zubair and A. Awad, “Anubis: Low-overhead and practical recov-
ery time for secure non-volatile memories,” in International Symposium
on Computer Architecture (ISCA), 2019.

[3] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2,
pp. 263–276, 2016.

[4] A. Awad, S. Suboh, M. Ye, K. Abu Zubair, and M. Al-Wadi,
“Persistently-secure processors: Challenges and opportunities for secur-
ing non-volatile memories,” in 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2019, pp. 610–614.

[5] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-
overhead access obfuscation for trusted memories,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, pp. 107–119, 2017.

[6] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-nvm:
Persistency for integrity-protected and encrypted non-volatile memories,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: ACM, 2019, pp. 104–
115. [Online]. Available: http://doi.acm.org/10.1145/3307650.3322250

[7] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A. Wood, B. Beckmann, G. Black, S. K.
Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, and
T. Krishna, “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, p. 1, aug 2011. [Online]. Available:
https://doi.org/10.1145/2024716.2024718

[8] S. Chhabra and Y. Solihin, “i-nvmm: a secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual international
symposium on computer architecture (ISCA). IEEE, 2011, pp. 177–188.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM Sigplan Notices, vol. 47,
no. 4, pp. 105–118, 2012.

[10] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[11] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” 2016, https://eprint.iacr.org/2016/204.

[12] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, sep
2006. [Online]. Available: https://doi.org/10.1145/1186736.1186737

[13] https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-
down-loses-66240-per minute/#68dc6b6b495c, “Amazon.com goes
down, loses $66,240 per minute.” 2019.

[14] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 481–493.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 2–13, 2009.

[16] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE Micro, vol. 30, no. 1, pp. 143–143, Jan. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MM.2010.24

[17] Z. Li, R. Zhou, and T. Li, “Exploring high-performance and
energy proportional interface for phase change memory systems,”
in Proceedings of the 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), ser. HPCA ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 210–221.
[Online]. Available: http://dx.doi.org/10.1109/HPCA.2013.6522320

[18] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2018, pp. 310–323.

[19] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2015, pp. 672–685.

[20] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2007, pp. 183–196.

[21] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 416–427.

[22] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 454–465.

[23] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, pp. 665–678.

[24] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Im-
proving cost, performance, and security of memory encryption and
authentication,” in ACM SIGARCH Computer Architecture News, vol. 34,
no. 2. IEEE Computer Society, 2006, pp. 179–190.

[25] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
nvm with crash consistency, write-efficiency and high-performance,” in
2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

[26] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories,” in 2018 51st Annual

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, AUGUST 2020. 15

IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 403–415.

[27] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient encryp-
tion for non-volatile memories,” ACM SIGPLAN Notices, vol. 50, no. 4,
pp. 33–44, 2015.

[28] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in 2013 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2013, pp. 421–432.

[29] P. Zuo and Y. Hua, “Secpm: a secure and persistent memory system for
non-volatile memory,” in 10th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 18), 2018.

Mazen Alwadi is a second-year Ph.D. student majoring in Computer
Engineering at the University of Central Florida. His research interest
is in hardware security, secure computer architecture, security of het-
erogeneous and fabric attached memory systems. He received holds a
bachelor degree in Computer Engineering from the Jordan University
of Science and Technology, A Master degree in Computer Engineering
from Yarmouk University in Jordan.

Kazi Abu Zubair is a third-year Ph.D. student majoring in Electri-
cal Engineering at North Carolina State University (NCSU). His re-
search interest is in hardware security and secure computer archi-
tecture. He received his bachelor degree from the University of Chit-
tagong, Bangladesh worked in the R&D of several startup companies in
Bangladesh before joining the Ph.D. program.

David Mohaisen is an Associate Professor at the University of Central
Florida (UCF). His research interests are in the area of computer sys-
tems security. He holds 10 U.S. patents, has published more than 100
peer-reviewed research papers, is serving on the editorial board of IEEE
Transactions on Mobile Computing and IEEE Transactions of Parallel
and Distributed Systems, among others, and and is a senior member of
both ACM and IEEE. Currently, he leads the Security and Analytics Lab
(SEAL) at UCF.

Amro Awad is an Assistant Professor at North Carolina State University
(NCSU). His research interests include secure hardware architectures,
non-volatile memories and hardware/software co-design. He holds sev-
eral U.S. patents and he is IEEE member. Currently, he leads the
Secure and Advanced Computer Architectures (SACA) research group
at NCSU.

