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Abstract—As ransomware attacks have been prevalent, it becomes crucial to make anti-ransomware solutions that defend against

ransomwares. In this article, we propose a new ransomware defense system, called SSD-Insider++, which prevents users’ files from

being damaged by ransomware attacks. SSD-Insider++ is embedded into an SSD controller as a form of firmware. By being separated

from a host machine, it not only provides more robust data protection than software-based ones which are vulnerable to evasion

attacks, but also offers interoperability with various platforms. SSD-Insider++ is composed of two novel features, ransomware detection

and perfect data recovery, which are tightly integrated with each other. The detection algorithm observes I/O patterns of a host system

and decides whether the host is being attacked by ransomwares in an early stage. Once an encryption attack is detected, the recovery

algorithm is triggered to recover original files by leveraging a delayed deletion feature of an SSD at a low cost. Our experimental results

show that SSD-Insider++ achieves high accuracy of detecting ransomwares with 0 percent FRR/FAR in most cases and provides an

instant data recovery with 0 percent data loss. The overhead of running SSD-Insider++ is negligible – only 80 ns and 226 ns are spent

more for handling 4-KB reads and writes, respectively.

Index Terms—Ransomware, malware detection, data recovery, flash-based SSDs

Ç

1 INTRODUCTION

RANSOMWARE is a type of malicious software that perpetu-
ally blocks access to the victim’s files. To extort a ransom

from data owners, a ransomware encrypts users’ files using
encryption algorithms and releases decryption keys only after
a ransom is paid. To avoid existing malware defense systems,
a ransomware uses complex command and control networks
like Tor, and ransom payments are made through cryptocur-
rency which is actually impossible to track. The high financial
gains and the difficulty of defending against a ransomware
make it a “profitable business” to cybercriminals [1].

There have been several attempts to defend against ran-
somware attacks. The most common solution widely used
today is installing vaccine software in computers which iden-
tifies ransomwares using signature-based detection [2], [3].
However, owing to its inability of detecting new variants with
unknown signatures, a backup-based solution, which stores
old copies of files in backup storage, recently receives serious

attention [4]. The main drawback of the backup-based solu-
tion is high I/O overhead for data backup. To mitigate this, a
hardware- or SSD-assisted backup solution has recently been
introduced [5], [6]. By offloading backup operations to an
SSD, it minimizes extra I/Os involved with data backup. This
offloading, however, leads to the accumulation of large
amounts of old data in an SSD, which results in serious gar-
bage collection (GC) overheads.

In this paper, we propose a novel SSD-assisted ransom-
ware defense system, called SSD-Insider++. Similar to other
SSD-assisted solutions, SSD-Insider++ is designed to be part
of storage firmware executing in an SSD controller. However,
by putting intelligent features, (1) online ransomware detec-
tion, (2) perfect data recovery, and (3) lazy detection, into the
storage side, SSD-Insider++ overcomes the limitations of the
previously proposed techniques.

The online detection algorithm of SSD-Insider++ is fun-
damentally different from signature-based ones. It monitors
and analyzes I/O patterns of a host machine and decides
whether or not the host is being attacked by ransomware
programs. This decision is made at run time by observing
invariant features that characterize unique I/O behaviors of
ransomware-infected host machines. This makes it possible
to detect a ransomware attack at its early stage.

For the ransomware detection, SSD-Insider++ inevitably
allows ransomwares to encrypt files. Evenworse, there is a pos-
sibility that it would fail to detect ransomware activity. To com-
pensate this, SSD-Insider++ employs instant backup/recovery
and lazy detection algorithms. For quick data backup/recov-
ery, SSD-Insider++ does not create any copies of data; instead,
it leverages the operational characteristics of an SSD that keeps
old versions of data to hide the out-of-place update nature of
NAND flash. This enables us to back up original files without
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any extra copies and to instantly roll back infected files if neces-
sary. Since backup data occupy SSD space, SSD-Insider++
have to regularly delete them to reclaim free space. Before per-
sistently removing them, SSD-Insider++ runs the lazydetection
algorithm that evaluates changes of entropy values between
old and new data. If a noticeable difference is observed, SSD-
Insider++ informs a user that ransomwares may infect files
and asks her to recover original ones.

Finally, a tight integration of the ransomware detection
and recovery algorithms gives us another benefit. Thanks to
the fast and accurate ransomware detection, SSD-Insider++
does not require us to maintain large amounts of backup
data inside an SSD, enabling us to throw away data early
once they turn out to be useless for the recovery. This elimi-
nates a burden of keeping obsolete data on the SSD side, in
contrast to existing SSD-assisted solutions [5].

In order to assess the feasibility of SSD-Insider++, we have
implemented both the ransomware detection and recovery
algorithms in our in-house open-channel SSD. We have
evaluated SSD-Insider++ using real-world and in-house ran-
somware programs, including WannaCry and Mole, while
various background applications are running. Our imple-
mentation of SSD-Insider++ has 100 percent detection accu-
racy with almost 0 percent FRR/FAR in most cases with
shorter than 10 seconds of detection latency. We also have
confirmed that SSD-Insider++ recovers encrypted fileswithin
1 secondwithout any data loss.

The rest of this paper is organized as follow. In Section 2,
we review prior studies and Section 3 gives a design of
SSD-Insider++. After describing our detection algorithm in
Section 4, we explain how files can be recovered by SSD-
Insider++ in Section 5. Section 6 evaluates SSD-Insider++
and, in Section 7, we discuss remaining issues. Section 8
concludes with future directions.

2 EXISTING RANSOMWARE DEFENSE SYSTEMS

We review previously proposed detection and recovery
techniques for protecting systems from ransomware attacks.

2.1 Ransomware Detection Techniques

Ransomware detection techniques aim at detecting and
removing ransomware programs before they infect user files.
Depending on detection methods, they can be classified into
two types: signature-based and content-based detections.

Signature-Based Detection. It may be classical yet the most
general technique to detect ransomware programs [2], [3]. It
analyzes an application’s code prior to its execution and
stops the launching if it is suspected to be capable of any
malicious activity. This detection is done by extracting a
code string pattern (a signature) and comparing it to a
repository of known malicious code patterns. Signature-
based detection, however, often fails to detect ransomware
programs if their binaries change. The mutable nature of
ransomwares makes it hard to detect ransomwares only by
signatures and pushes the detection paradigm further into
the realm of content-based defenses.

Content-Based Detection. It detects ransomware activity by
monitoring dynamic behaviors of applications and gener-
ated data [7], [8], [9]. Scaife et al. reported key features that
could be a strong indicator of ransomware activity [7]; 1) a

file type change which is necessarily followed by ransom-
ware attacks; 2) a low similarity between an original file and
its modified version; and 3) a high entropy of a modified
file. While performing better than the signature-based one
(e.g., detecting new variants), the content-based detection
has fundamental limitations. First, since it has to monitor a
large volume of data in real time, high CPU and memory
overheads cannot be avoided. Second, it involves tweaks in
OS, which requires privilege escalation for the monitoring
software. Finally, since the content-based detection should
allow the execution of ransomwares for a while for monitor-
ing, the loss of original files are unavoidable, unless it per-
forms expensive backup process constantly.

2.2 Data Recovery Techniques

The data recovery techniques take a different approach
from the signature-based one in that they focus on recover-
ing infected files.

Decryption-Based Recovery. A ‘No More Ransomware Proj-
ect’ may be the most recognized effort to provide decryption-
based recovery services [10]. This project helps infected users
to regain access to their encrypted files, and, to this end, it cre-
ates and maintains a repository of keys that can decrypt data
locked by ransomwares. Unfortunately, this approach only
works for a previously reported ransomware whose descrip-
tion key is already known.

Backup-Based Recovery. Itmonitors every change happening
in a file system and creates copies of original files in preallo-
cated backup storage which is exclusively managed by vac-
cine software [4]. Once a ransomware displays a window
with instructions for payment or users notice that their files
are encrypted, it enables users to recover earlier versions of
infected files by using backup files kept in the backup storage.
Its key drawback is high overheads incurred when making
backup files. It also has to preallocate additional storage to
keep original files, which reduces the usable storage capacity.
Finally, it runs as user-level applications and requires privi-
lege escalation for monitoring activity inside a file system.
Thus, it is vulnerable to ransomwares that are able to evade
defense systems [5].

SSD-Assisted Recovery. To lessen overheads caused by on-
line backups and to avoid the vulnerability of the software-
based solutions, SSD-assisted recovery techniques are pro-
posed [5], [6], [11], [12]. FlashGuard puts a backup algo-
rithm to an SSD [5]. It leverages the out-of-place update
nature of NAND flash to remove extra I/Os for data
backup. FlashGuard maintains all the data that have been
read by a host system at least for 2�4 weeks. This is based
on the assumption that once data are read, they are poten-
tially encrypted and written by a ransomware. This strong
assumption, however, creates serious overheads. As time
goes by, a large amount of data are accumulated inside an
SSD, which results in excessive SSD GC and leads to waste
storage space to keep (probably) uninfected data.

SSD-Insider, which is our prior work [6], showed that the
problems of FlashGuard could be overcome by employing
ransomware detection inside an SSD. Since ransomware
activity is detected in the early stage of infection, it is unnec-
essary to maintain large amounts of old data. SSD-Insider,
however, has fundamental limitations. First, it assumes that
ransomwares always overwrite victim files in place, but
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there are many variants that perform out-of-place update
attacks [7]. Second, there is no way of recovering original
files in the worst case where it fails to detect new ransom-
ware behaviors.

3 DESIGN OF SSD-INSIDER++

SSD-Insider++ addresses the limitations of the existing soft-
ware- and hardware-based ones by putting the ransomware
detection and data recovery algorithms into an SSD. Fig. 1
shows the design of SSD-Insider++ which is composed of
two main modules, detection and recovery.

Ransomware Detection Module. The key consideration in
designing the ransomware detection algorithm is achieving
high detection accuracy with limited information. SSD-
Insider++ is only able to access (1) a header of a block I/O
packet and (2) its payload. A payload could have useful
information, such data entropy, which can be used as a
meaningful indicator reflecting infected data [7]. Owing to
limited computing power, however, examining the content
of a payload exhaustedly at runtime is infeasible.

This practical limitation leads us to develop the detection
algorithm which makes a decision by referring to a header
of a block I/O packet. The block I/O header contains essen-
tial information regarding an I/O request, such as the type
of a request (i.e., read, write, or trim), the location of data to
be read or written (i.e., a logical block address (LBA)), and
its length. By monitoring a stream of packets arriving from
the host, SSD-Insider++ can (1) detect unique I/O patterns
that are observed when a ransomware runs and (2) know
which data are being modified by a ransomware.

Fig. 2a shows what happens when an in-place update
ransomware is infecting files. The content of a victim file is
read, encrypted, and overwritten in place. A ransomware

attempts to infect as many files as possible in a quick man-
ner, trying not to be noticed by a user. Thus, if similar
‘update-after-read’ I/O patterns are heavily observed, it
could be regarded as a sign of ransomware attacks.

However, some ransomwares behave differently, never
overwriting victim files. Fig. 2b and 2c show how out-of-place
update ransomwares attack user files. Those two types of
attacks are classified by ‘Class B’ and ‘Class C’, respectively,
in N. Scaife et al.’s study [7] Note that the in-place update ran-
somware is referred to by ‘Class A’ in [7]. Even though com-
mon ’update-after-read’ patterns are not observed here, the
Class B/C ransomware has to explicitly delete an original file
to prevent it from being found and recovered by a user later.
Fortunately, whenever a file is removed, a file system sends a
trim command to an SSD immediately. This could be used as
an useful hint to identify ransomware activity. That is, if
heavy ‘trim-after-read’ operations are detected (e.g., �1��2 in
Fig. 2b and 2c), we can suspect that there would be ransom-
ware attacks, and trimmed data could be a victim.

We have seen that ransomware activity can be identified at
the storage level just by seeing headers of block I/O com-
mands. Unfortunately, while a ransomware itself has unique
patterns which are not typical observed in normal applica-
tions, I/O patterns actually seen by SSD-Insider++ are the
mixture of I/O requests from a ransomware and normal
applications. Thus, detecting the unique patterns of a ransom-
ware from incoming I/O traffic is a key issue. This will be dis-
cussed in Section 4 in detail.

Backup/Recovery Module. As shown in Fig. 1, the recovery
algorithm is implemented as part of a flash translation layer
(FTL). An FTL maintains a remapping table in DRAM that
maps LBAs to physical page addresses. Old data are kept in
the flash until a garbage collector of an FTL cleans them up.
If a ransomware is detected, it is possible to roll back the
entire storage status to a safe point. This rollback operation
can be done instantly because it only requires updates of
mapping entries in DRAM.

This backup/recovery policy of SSD-Insider++ gives us
another opportunity for more robust ransomware detection.
Since old and newversions of data coexist in the flash for a rel-
atively long time (unless GC removes old ones), we could
have a chance to compare entropy values of old and newdata.
The increase of entropy comparedwith its original data could
be a good indicator of ransomware infection. The high over-
heads for computing entropy values can be hidden over idle
times or can bemitigated by sampling input data.

While it looks like straightforward, several technical
issues must be taken into account. The first issue is how to

Fig. 1. Overall architecture of SSD-Insider++.

Fig. 2. Detailed behaviors of three different types of ransomwares. ‘Class A’ is an in-place update ransomware that reads (�1 in (a)), encrypts (�2 ), and
overwrites a victim (�3 ). ‘Class B’ and ‘Class C’ are an out-of-place ransomware. ‘Class B’ copies a victim file to a different directory (from Dir. A to Dir.
B in the phase 1 in (b)), removing the file on the original directory, and performs encryption on the new directory (the phase 2). It finally copies back
the victim to the original directory (the phase 3). The encrypted file is written as a new file in different LBAs because the original file was removed by
the ransomware. ‘Class C’ removes a victim (�1��2 ) and writes encrypted data with a different filename (�3��4 ).
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keep track of all the old versions of data, while preventing
them from being erased byGCuntil their safety is confirmed.
Second, even though the rollback operation can perfectly
recover infected files to original ones, it must be done with-
out affecting data consistency. Finally, all those features
should be implemented in a lightweightmanner. In Section 5,
we discuss those issues in detail.

4 IN-STORAGE RANSOMWARE DETECTION

SSD-Insider++ uses ‘update-after-read’ and ‘trim-after-read’
behaviors to detect suspicious activity. The common outcome
of the two operations is erasure of old data. Throughout the
rest of this paper, we use the term ‘erasure’ to represent a situa-
tion where data are updated or trimmed after being read.
There would be a time interval between a read and an
update/trim destined for the same data. A time window T is
used as a criterion that decides whether or not a pair of two
operations constitutes an erasure operation. If the time inter-
val between two is shorter than T , they make one erasure
operation; otherwise, they are regarded as independent
events. Currently, T is set 10 seconds.

4.1 Invariant Features of Ransomware

To capture ransomware’s behavioral traits, and to find fea-
tures capable of distinguishing ransomwares, we have ana-
lyzed the I/O footprints of ransomwares and ordinary
applications. We have mainly evaluated four real-world ran-
somwares, WannaCry, Jaff, Mole, and CryptoShield,
along with two additional ones, Locky and Zerber. All of
them are in-place update ransomwares.

Ordinary applications we have selected are summarized
in Table 1. We categorize them into four types. The ‘Heavy
data erasure’ type includes applications which issue many
overwrites and/or trims. The ‘IO-Intensive’ type represents
applications that issue a large number of I/Os for a short
period of time. The ‘CPU-intensive’ type is I/O intensive as
well, but requires considerable CPU cycles. The ‘Normal’
type issues many I/Os, but is not so intensive compared to
the I/O intensive type and does not overwrite or trim exist-
ing data. Those applications enable us to understand how
differently ransomwares leave I/O footprints.

Through experiments, we have found the four major and
two minor features uniquely observed with ransomwares.

� EIO is the number of Erasure IOs for a short time
slice. A time slice is defined to be a unit time period
for which the number of I/O events are profiled, and
it is set 1 second by default. EIO is the most signifi-
cant feature indicating the property of reading,
encrypting and erasing the same block of a file for a
short period of time. As illustrated in Fig. 3a, Wan-
naCry and Mole show high cumulative values of
EIO. This supports our hypothesis that heavy era-
sures follow reads within a short duration when ran-
somwares are active. This feature, however, is also
observed during the execution of normal applica-
tions. The accumulated number of DataWiping is
as high as that of Jaff and that of CryptoShield
is as low as those of CloudStorage and P2PDown.
Therefore, more features distinguishing ransom-
wares from these applications are necessary.

� FEIO is the Fraction of Erasure IOs over the total
number of writes for a time slice (i.e., 1 second). As
we have seen in Fig. 3a, one of the hard-to-distin-
guish applications is DataWiping. This is actually
not surprising, considering typical behaviors of data
wiping workloads that intensively overwrite disk
blocks. More specifically, wiping tools perform over-
writing over a single block multiple times to persis-
tently destroy data. For example, the DoD 5220.22-
M [13] requires 7 updates per one read operation
over the same block. A similar trend is also observed
with IOStress, which is the workload of an I/O
stress tool, IOMeter. FEIO is able to exclude such
noises created by applications like DataWiping by
taking into account the fraction of EIO over the total
writes. Fig. 3b confirms that FEIO captures the high
rate of updates in the total writes that occur during

TABLE 1
A Summary of Normal Applications

Category Application Description

Heavy data
erasure

DataWiping Overwriting disk data satisfying
the DoD 5220.22-M standard

MySQL Heavy database workloads
CloudStorage File synchronization w/ Dropbox
WindowUpdate Updating Windows 10 OS
Fragments Defragmenting a file system
Compilation Compiling the Linux kernel
DataCopy Copying a large number of files

IO-intensive IOStress Running IOMeter, I/O stress tool

CPU-intensive Compression Compressing files w/ Bandizip

Normal P2PDown Downloading files w/ BitTorrent

Fig. 3. Four major features that reflect I/O behaviors of in-place update ransomware.
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ransomware operations. Except for Jaff, all the ran-
somwares show high EIO and FEIO compared with
normal applications.

� ACCEIO is the ACCumulated number of Erasure IOs
for a time window T (i.e., 10 time slices). Sometimes,
CPU-intensive or IO-intensive jobs might be running
while a ransomware is in operation. In this case, the
speed of the ransomware slows down, and thus IO
requests are dispersed over a rather long time span.
Some ransomware like Jaff intentionally delays
updates to evade defense systems, and this is the rea-
sonwhy Jaff is not detected byEIO andFEIOwhich
only consider EIOs happened for a short time period
(i.e., 1 second). With a longer time distance (i.e., 10 sec-
onds), however, ACCEIO captures such behaviors
verywell as shown in Fig. 3c. In order to emulate CPU-
and IO-intensive scenarios, we run three combinations
of ransomwares and normal applications, Locky

+WindowUpdate, Zerber+IOStress, and Wanna-

Cry+Compression, respectively. As illustrated in
Fig. 3c,ACCEIO can detect suspicious activity, includ-
ing Jaff that intentionally slows down overwrite
operations.

� AVEIO is the AVErage length of continuously
Erased IOs in a time window T . AVEIO captures
the run-length characteristics of ransomware’s target
files. Ransomwares mainly target documents and
images, so it usually does not involve erase opera-
tions over a large number of continuous blocks (e.g.,
several KB to MB), unlike data wiping, file-system
defragmentation, and DB updates. Thus, the length
of continuously erased blocks is relatively short com-
pared with those applications. Fig. 3d shows that the
values of AVEIO of WannaCry and Jaff are notice-
ably lower than those of Fragments, DataWiping,
and MySQL.

� SHORTSLOPE and LONGSLOPE: The four aforemen-
tioned features are the principal features, but, for more
accurate detection, SSD-Insider++ employs two auxil-
iary features: SHORTSLOPE and LONGSLOPE.
Two features are devised to capture ransomware’s
behavior of abrupt increase of erasure volume from
short-term and long-term views, respectively. This is
reasonable because the activation of ransomwares
causes a sharp increase of erasure operations over pre-
vious time periods. SHORTSLOPE is the fraction of
the number of erasures during a current time slice
over the average number of erasures during the previ-
ous time slice. LONGSLOPE is the fraction of the
number of erasures during a current time slice over
the average number of erasures during the previous
timewindow.

Fig. 3 shows that the six features (twominor ones are omit-
ted) capture well the ransomware’s behavioral characteristics
and distinguish it from applications having similar behavior,
but using only one feature might miss the active ransomware.
Combining all of the six features to maximize detection accu-
racy is thus important. In this study, we take a machine learn-
ing approach to combine them. Using IO data trace collected
during the ransomware’s active period, a machine learning
algorithm is trained with the above six features. Owing to the

resource limitation and the tight time-bound characteristics of
an SSD,wemake use of a binary decision tree, instead of using
more powerful machine learning algorithms, such as support
vector machine or even deep learning. For the training algo-
rithmof the tree, we used the ID3 algorithm [14].

Each vector of input data used in learning is six dimen-
sions, and each dimension is the six attributes defined in the
paper. The tree created with this input data is a binary clas-
sifier that distinguishes whether or not ransomware is pres-
ent and has a maximum depth of 5. The criterion for
determining ransomware in the top layer of the tree is
ACCEIO. And, the behavior of ransomware is determined
primarily by ACCEIO at the higher layer, and by AVEIO
and EIO at the lower layer.

Fig. 4 shows an example of how the decision tree is built. If
ACCEIO is very low (1,000 or less), it is determined that it is
not ransomware. If ACCEIO is slightly higher (less than
3,000), AVEIO, which means the length of the document,
becomes an important criterion for judgment. Finally, if
ACCEIO is very high (15,000 or higher), it is distinguished
according toFEIOwhich separates permanent deletion.

4.2 Applicability to Out-of-Place Update
Ransomware

To confirm the feasibility of using the six features to detect out-
of-place ransomwares, we have carried out additional experi-
mentswith two out-of-place update ransomwares, OOP-B and
OOP-C, which are manually implemented based on the obser-
vations reported by [7]. OOP-B and OOP-C represent ‘Class B’
and ‘Class C’ ransomwares, respectively. Similar to our analy-
sis in the in-place update ransomwares, we compare them
with normal applications, including DataWiping, P2PDown,
IOStress, and so on. Additionally, we include two normal
applications, Compilation and DataCopy, which incur
many trim requests to an SSD. Compilation compiles a large
number of source codes to build Linux’s kernel image. The
compilation process creates and removes many temporary
files (e.g., object and assembly files), so it frequently sends trim
requests. DataCopy is a scenariowhere user files in one direc-
tory are copied to another. Once a file has been copied, the file
is removed from the original directory.

Fig. 5 shows that the four invariant features of in-place
update ransomwares are consistently observed in out-of-
place update ransomwares. OOP-B and OOP-C show notice-
ably different values from the normal applications; OOP-B

Fig. 4. An illustration of the decision tree.
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and OOP-C have high values for EIO, FEIO, and ACCEIO,
and a low value for AVEIO, which implies that the four fea-
tures can be directly used for identifying out-of-place ransom-
wares. In particular, we found that Compilation and
DataCopy behave differently. Compilation creates many
temporary files which are eventually trimmed out, but these
are not mostly read before being trimmed since they are
already cached in the page cache. As a result, ’trim-after-read’
operations are not frequently observed. DataCopy explicitly
reads and trims files after copying them. A time interval
between a read and a trim is longer than a time window T .
This is because the file system intentionally delays sending
trims to lessen I/O traffic. To make it difficult for a user to
recover the deleted files, the out-of-place ransomware explic-
itly sends trim commands by invoking fsync() just after the
removal of victim files. Thus, the time interval is short com-
pared toDataCopy.

4.3 Ransomware Detection Algorithm

Extracting the parameters of the six features in a lightweight
manner at run time is an important design issue. SSD-Insider+
+ realizes this by maintaining a simple in-memory data struc-
ture, a counting table. Fig. 6 shows the counting table, each
entry of which is composed of Time, LBA, RL, andWL. Time
denotes the time slice number at which the entry is created or
updated. LBA is a starting LBA where data begins to be read
orwritten.RL andWL represent the length of LBA blocks that
have been consecutively read or written, starting from the
LBA, respectively. The counting table covers entries created
or updated for a time window comprised of N time slices.
Entrieswith time slices out of this time range are removed.

Fig. 6 also illustrates how the counting table works with
some example cases. For the sake of simplicity, the length of
every request is assumed to be 1. When a new request comes,
SSD-Insider++ extracts the required information from an I/O
request header, along with the current timestamp. It then
decides whether to create or update an entry by looking up
the table. While it is not displayed in Fig. 6, SSD-Insider++
maintains a hash table to quickly locate a desired entry in the
counting table. It gets an LBA and returns a pointer that
locates an entry in the counting table. Currently, the hash table
contains 250K slots. The first request is a read to LBA 1 (i.e.,
(1,R)). Since there is no matched entry in the table, SSD-
Insider++ creates a new entry with a starting LBA, 1, and the
timestamp, 0 second. It is also registered in the hash table.
Since one LBA is read,RL becomes 1 initially. The second and
third requests are both reads to LBAs 2 and 3, respectively
(i.e., (2,R) and (3,R)). Since those LBAs are read conse-
quently fromLBA 1,RL is updated to 3.

If there are duplicate reads, it is just ignored. For example, at
the time slice 1, (1,R) is ignored.Write requests are dealt with
differently from reads. In Fig. 6, thewrite request to LBA 4 (i.e.,
(4,W)) is ignore because it was not read before. However, the
next write to LBA 3 (i.e., (3,W)) must be reflected on the table
because it was read before. Instead of simply updating WL to
1, SSD-Insider++ splits the entry into two: the one startingwith
LBA 1 and the other starting with LBA 3. This is because the
write starts from LBA 3, not from LBA 1, and the run-length of
erased LBA blocks should be 1. Conversely, more than two
entries can be merged into one. For example, after serving (2,

W) at the time slice 3, the table entry starting with LBA 1 now
hasWL of 2, so it can bemergedwith the next entry.

Fig. 5. Four major features that reflect I/O behaviors of out-of-place update ransomware.

Fig. 6. A data structure of the counting table and working examples.
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Using the information collected in the table, SSD-Insider
++ extracts the values of the six features. Fig. 6 shows how
those values are obtained. While IO counts the total number
of I/Os (including reads and writes) which happen during
each slice, WIO includes write I/Os only. Similarly, EIO is
measured by counting the number of erasure operations
that happen for each time slice. For example, EIOs for the
0th, 1st, 2nd, and 3rd slices are 0, 1, 1, and 2, respectively.
FEIO is calculated by dividing EIO by WIO. ACCEIO is
the sum of EIO over a time window T , excluding the cur-
rent slice. For the 0th, 1st, 2nd, and 3rd slices, the values of
ACCEIO are 0, 0, 1, and 2, respectively. AVEIO is the aver-
age length of EIO over a time window, so it can be obtained
by dividing the sum of WL values by the number of entries
in the table. For instance, AVEIO from the 0th to 3th slide is
4/2. Note that, for the sake of simplicity, we do not include
SHORTSLOPE and LONGSLOPE in Fig. 6.

Algorithm 1. RansomwareDetection

Require:N
1: for all reqi do
2: if the time slice expires then
3: Calculate 6 attributes for N time slices
4: ransomt=DecisionTreeID3(6 attributes)
5: Score ¼ Scoreþ ransomt

6: Slide TimeWindow by one time slice
7: Score ¼ Score� ransomt�10

8: end if
/* for reqi, update the counting table depending on the type
as illustrated in Fig. 6 */

9: end for

Algorithm 1 shows the detection algorithmwith the count-
ing table at a high level. When a request comes, it first sees if a
time slice expires or not. If not, the detection algorithm
updates table entries as mentioned before. Otherwise, the
detection algorithm drops the obsolete entries in the counting
table by sliding thewindow (Line 6), and adjustsScore by sub-
tracting the dropped entry (Line 7). Six feature values are cal-
culated using the counting table (Line 3), and the values are
fed to the ID3 decision tree (DecisionTreeID3) to obtain 0 or 1
results (Line 4), where 1 means that the system is highly likely
to be under attack of ransomwares, and 0 means otherwise.
For a time window (i.e., 10 time slices), the outputs of the tree
are all added up to give a score ranging from 0 to 10 (Line 5).
To determine whether a ransomware is active, we use a
threshold value 3 which is empirically chosen based on
experiments (see Section 6.2).

5 IN-STORAGE DATA RECOVERY

In this section, we explain how the backup/recovery mod-
ule of SSD-Insider++ is incorporated into an existing FTL.
After that, the lazy detection algorithm is presented which
examines the actual contents of data to obtain entropy
changes between original files and modified ones and uses
this information to detect ransomware attacks.

5.1 Online Backup and Instant Recovery

Online Backup Process. We first explain how a conventional
FTL handles update and trim commands from the host. In

Fig. 7, the host writes nine LBAs (i.e., 0, 1, 2, 3, 0, 1, 4, 5, and
2), and three of them (i.e., LBAs 0, 1, and 2) are updated.
Additionally, LBA 3 is trimmed by the host. Using a map-
ping table, an FTL can append all the data to flash, avoiding
in-place updates. The mapping table indexed by LBA num-
bers points to physical page addresses (PPA) that holds the
latest version of data. For example, the mapping entry for
LBA 0 points to PPA 4 in Block #1 (i.e., LBA 0 ! PPA 4).
The old versions of LBAs 0, 1, and 2 still exist in the flash,
but they are not pointed to by the mapping table and the
space occupied by them are reclaimed later by a garbage
collector. The data for LBA 3 is trimmed out, so its mapping
entry points to nothing.

In order to keep track of old versions of data in the flash,
SSD-Insider++ introduces an additional data structure, a
recovery queue, which maintains pairs of LBAs and old
PPAs. Whenever an update to a certain LBA comes, SSD-
Insider++ FTL puts a pair of the LBA and the corresponding
old PPA into the queue. Using old pairs of LBAs/PPAs in
the queue, SSD-Insider++ is able to know where old version
of data are stored and use it for the recovery later. Trimmed
LBAs are also dealt with in the same manner. For example,
when LBA 3 is discarded, SSD-Insider++ puts a pair of LBA
3/PPA 3 into the queue. Thus, even if out-of-place ransom-
wares delete original files after writing down encrypted
ones elsewhere with different LBAs, SSD-Insider++ is able
to revive the deleted ones since all the required information
is maintained the queue.

Let’s see how SSD-Insider++ recovers original data using
Fig. 7. Suppose that the ransomware infection is detected at
t. The new data for LBAs 0, 1, and 2 are encrypted and the
data for LBA 3 is removed by the ransomware. The FTL
recovers the original data just by updating the mapping
table so that the up-to-date mapping pairs (i.e., LBA 0 !
PPA 4, LBA 1 ! PPA 5, LBA 2 ! PPA 8, and LBA 3 ! ‘-’)
are replaced by the old ones (i.e., LBA 0 ! PPA 0, LBA 1 !
PPA 1, LBA 2! PPA 2, and LBA 3! PPA 3).

The recovery queue grows as an SSD receives update and
trim commands. Since DRAM inside an SSD is a precious
resource shared by other modules, it is infeasible to main-
tain all the LBA/PPA pairs in DRAM. Thus, SSD-Insider++
has to limit its maximum size and flush out its contents into
the flash when the queue reaches the maximum. The in-
memory recovery queue is set to 8-KB so that it fits into a
8-KB physical page size. Each queue entry is consisted of

Fig. 7. Handling of overwrites and trims in SSD-Insider++. In the SSD-
Insider++’s FTL, the information of the old entries (i.e., LBA 0 ! PPA 0,
LBA 1 ! PPA 1, and LBA 2 ! PPA 2) are put into the queue for data
recovery.
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one LBA (4-byte), one PPA (4-byte), and a timestamp (4-
byte), so the total 682 entries are maintained in the 8-KB in-
memory queue. It means that, whenever 682 update and
trim commands come, only one flush operation involving
one page write is required. Extra overheads introduced by
adding the recovery queue is thus negligible.

Data Recovery Process. Once ransomware activity is
detected, SSD-Insider notifies a user of suspicious behaviors
being observed. This notification can be made by using a
customizable I/O interface with an integrated user applica-
tion. The modern storage interface standards provide a way
of adding user-defined commands so that the host and the
storage device exchanges maintenance information [15]. In
our case, a ‘ransomware attack alarm’ can be added as a
new command. Once the host receives an alarm from the
SSD, it launches the application that displays a warning
message and gets a response from an user.

If a ransomware attack is suspected, SSD-Insider++ gets a
roll-back time, Dt, from a user which indicates how much we
have to go back to the past. SSD-Insider++ makes an SSD
read-only, ignoring all the writes arriving from the host. And
then, as depicted in Fig. 8, SSD-Insider++ scans backup entries
in the two queues from the back to the front, replacing FTL’s
mapping entries with corresponding backup entries. After the
recovery process finishes, the status of the mapping table is
rolled back to the time just before Dt seconds. This roll-back
process is done in one second because it does not involve any
data copies, but just updating the mapping table. After the
SSD is recovered, a user is able to copy recovered files to a safe
storage device.

The recovery algorithm restores the status of the SSD to Dt
seconds earlier, but this process is done without any aware-
ness of data consistency between files and their metadata
(e.g., inodes). Thus, a recovered SSD could have an inconsis-
tent status, where on-disk file-system structures and files are
partially updated. This consistency problem can be resolved
by using a file-system check/recovery tool (e.g., fsck). fsck
is designed to restore a consistent file system after sudden

power loss or a system failure. The SSD status after the recov-
ery is similar to one after sudden power loss or a system fail-
ure. Only the differences are: 1) it is intentionally caused by
SSD firmware and 2) it looks like that a power failure hap-
pened Dt seconds before. A series of experiments on EXT4
show that file-system is successfully recovered to a consistent
statewith fsck (see Section 6.2).

Permanent Removal of Backup Data. Garbage collection is
only the way of permanently deleting data in the flash. In
an attempt to safely keep original data, obsolete data which
were updated by new data or trimmed by the host are not
immediately deleted by GC in SSD-Insider++; instead, the
removal of obsolete data are delayed until they exceed a
predefined backup time Tback.

This delayed removal could be a serious burden on the FTL
side.Once a victimflash block is chosen, a typical FTLgarbage
collector just needs to copy valid pages only to a free block,
excluding invalid ones. In our case, however, some of those
obsolete pages have to be copied if their backup times are not
expired yet, which results in the increase of copy costs during
GC. The backup time Tback decides the overall GC overheads;
the longer Tback, the more data are accumulated. However, if
Tback is set too short, it is more likely that a user loses their files
by ransomware attacks. For this reason, the previous study
sets Tback sufficiently long (e.g., two to four weeks), sacrificing
user-perceived performance.

Fortunately, thank to the detection algorithm having high
accuracy, SSD-Insider++ is relatively free from the trade off
between performance and recoverability. Our experimental
results say that, for about 99 percent of ransomware attacks,
SSD-Insider++ detects suspicious activity in few seconds (e.g.,
within 10 seconds). This implies that, if the detection algo-
rithm says nothing for a relatively short period of time (e.g.,
several ten minutes), SSD-Insider++ can throw away obsolete
data, believing that there have been no attacks from ransom-
wares. In this study, Tback is configured to 30minutes. Consid-
ering that the detection time of 10 seconds, it is set very
conservatively.

With Tback of 30 minutes, the recovery queue size in the
flash could be huge. Let’s consider the worst-case scenario
where an SSD offers the write throughput of 512 MB/s and
an application updates existing data at the maximum write
throughput for a long time. In this case, the recovery queue
grows up to 1.3 GB. (= 512 MB / 8 KB � 12 bytes � 30 � 60).
Considering that the capacity of modern SSDs is several ter-
abytes, the recovery queue of 1.3 GB is small. However,
since the recovery queue should be scanned to detect origi-
nal data whenever GC is invoked, it would cause non-trivial
overheads in the worst case. According to experiments with
normal use cases, the recovery queue in the flash is kept
small enough, and thus serious overheads for scanning the
queue do not occur. But, under heavy overwriting work-
loads, noticeably high overheads are observed. Such over-
heads can be reduced by shortening the backup time Tback

or by employing the idea of [16].

5.2 Lazy Detection

In the worst case, SSD-Insider++ couldn’t detect ransomware
activity for some reasons. This has not happened or not been
observed in our experiments with various ransomwares.

Fig. 8. Data recovery process in SSD-Insider++. A ransomware attack is
detected (�1 ) at time t, and a roll-back time, Dt, is chosen as 10 seconds
by a user. The SSD-Insider++ FTL scans the recovery queue (�2 ), exam-
ining LBAs, old PBAs, and timestamps. For LBAs 9, 13, and 11 that were
recently overwritten (i.e., > t� 10), SSD-Insider++ locates a mapping
entry in the mapping table (�3 ) and updates the entry so that it points to
the physical location of the original data (�4 ). In case of LBA 11, its map-
ping entry is reverted from PPA 26 to PPA 22 that contains old but safe
data. For LBAs 7, 8, and 10 that were written 10 seconds ago (i.e.,
� t� 10), a user presumes that their data are safe, and thus their map-
ping entries are not updated.
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However, as part of efforts to defend data against potential
evasion attacks by future or unknown ransomwares, SSD-
Insider++ adopts a lazy detection approach.

An idea of the lazy detection is based on the well-known
fact that the resulting files of ransomware attacks have high
entropy values, compared to those of original ones. This is
the immutable property all of the ransomware programs
have. Therefore, if we can measure the changes of entropy
values between new and old files, a more accurate detection
is possible even when the I/O pattern-based algorithm fails
to detect suspicious activity. Fig. 9 shows the entropy values
of files that are often selected as victims for ransomware
attacks (e.g., doc, ppt, txt, pdf, and gif) and the entropy
values of when they are encrypted by a ransomware. While
the original files have diverged entropy values, the infected
ones have high entropy all the time.

SSD-Insider++ internallymaintains the locations of original
data and corresponding modified one. Given a certain LBA
number, a physical page containing original data can be
obtained by looking at the recovery queue and a page holding
the latest data can be found by referring to the mapping table.
For example, in Fig. 7, the original and the modified data for
LBA 2 are stored in PPA 2 and PPA 8, respectively. However,
SSD-Insider++ cannot figure out a pair of old and newdata for
an LBA that was trimmed since the corresponding mapping
entry points to nothing. In the example of Fig. 7, SSD-Insider+
+ is able to know that PPA 3 contains old data for LBA 3, but
the corresponding new data cannot be identified due to the
lack of information. The applicability of the lazy detection is
thus limited to in-place update ransomwares only.

The most challenging issue with the lazy detection is hid-
ing computation overheads associated with entropy compu-
tation. SSD-Insider++ may exploit a backup time that leaves
obsolete data undeleted for a relatively long time. Thus,
before backup data are persistently removed, SSD-Insider+
+ computes entropy values of old and new data in back-
ground. As another option, we can perform entropy compu-
tation for randomly sampled data. In our experience (see
Fig. 16), a low sampling rate does not badly affect detection
accuracy. Thus, using a sufficiently low sampling rate (e.g.,
10 percent) is a reasonable choice. A final option is using a
hardware accelerator. Y. Lai et al. showed that entropy of
data can be computed at throughput of 30 Gbit/s [17] with
hardware, which can remove almost all of the associated
overheads. This work selects the first two approaches.

SSD-Insider++ reads both original and new LBAs in
chronological order and calculates their entropy values.
Then, SSD-Insider++ considers the follows three cases:

1) Both original and newLBAs have high entropy: It is hard to
distinguishwhether the original onewas encrypted by

ransomwares or it had high entropy data by nature.
Thus,we exclude them tomake a decision.

2) Both original and new LBAs have low entropy; or original
LBAs have high entropy but new ones have low: New data
might be overwritten by normal applications (e.g., a
vector editor) with up-to-date data having similar
value patterns. This is an indication of which our sys-
temmight not be under attack by ransomwares.

3) Original LBAs have low entropy, but new ones have high:
This is a strong sign indicating that user files may be
encrypted by ransomwares.

SSD-Insider++ calculates the numbers of LBAs that belong
to the second case or the third case, respectively, and computes
an encryption ratio which represents a ratio of the number of
third-case LBAs to the sum of the second- and third-case
LBAs. If the ratio is kept higher than 0.2 for a short period of
time (i.e., 1 second), it decides that some of fileswere encrypted
by ransomwares. The ratio, 0.2, is empirically chosen while
running both ransomwares and I/O intensive applications
simultaneously; that is, when nose I/Os are heavily issued.
Please note that creating a compression file (e.g., tar.gz) and
writing a bunch of images files to a disk do not cause a ransom-
ware alarm because those files are usuallywritten to new ones.
However, if a user intentionally encrypts files in place, a false
alarm might occur. Currently, it is user’s responsibility to
decidewhether or not there has been a ransomware attack.

6 EXPERIMENTAL RESULTS

We implemented SSD-Insider++ in an in-house open-channel
SSD prototype. Unlike off-the-shelf SSDs, our SSD platform
enabled us to implement and test various FTL algorithms
because all those algorithms were run on the block device
layer of the host system. Our implementation could be
adopted to off-the-shelf SSDs because of no differences in the
design principle. To evaluate SSD-Insider++ in terms of per-
formance and overhead, we used a x86 host with Intel’s Xeon
CPU running at 3.0 GHz and 4 GB DRAM. Our SSD card was
connected to the x86 host through a PCIe interface. Ubuntu
16.04was used as a host OS.

6.1 Ransomware Data Sets

We used various well-known ransomwares such as Locky.
bdf, Locky.bbs, Zerber.ufb, WannaCry, Jaff, Mole, GlobeIm-
poster, and CryptoShield [18]. As well as those, we imple-
mented three new in-house ransomwares that were not
reported before using open source ransomwares [19], [20];
one of them performed an ‘in-place update’ encryption attack
(denoted by INP-A) while the others were based on an ‘out-
of-place update’ (denoted byOOP-B andOOP-C).

We set up the environment where a ransomware ran with
various normal applications, which were divided into four
types, as in Section 4.1. (1) a ‘Heavy erasure’ type included a
data wiping tool (WMP) satisfying DoD 5220.22-M, heavy
database updates (MySQL), cloud storage synchronization
(Dropbox), Windows updates (WindowUpdate), Linux ker-
nel compilation (Compilation), and copy files (Data-
Copy). (2) an ‘IO-intensive’ type included IO stress tools
such as DiskMark, IOMeter, and HDTunePro, and (3) a
‘Normal app’ type included software installation such as
Viusal Studio (VS) and AutoCAD (AutoCAD), web-surfing

Fig. 9. Entropy values of original and infected files.
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(Chrome), email synchronization (Outlook), P2P download
(BitTorrent), SQLite activities, and video playback
(PotPlayer). (4) a ‘CPU-intensive’ type included compres-
sion (Bandizip) and video encoding (PotEncoder) that
consumed lots of CPU cycles.

Various combinations of ransomwares and normal appli-
cations were used for training a decision tree with ID3.
Using the trained tree, we carried out experiments with a
different set of ransomwares and applications. The whole
dataset and evaluation scenarios for the experiments are

summarized in Table 2. Experiments with each combination
were conducted 20 times, and the average was taken.

Fig. 10 illustrates how our detection algorithm is trained.
We annotate each time slice of a training trace with six prop-
erties and a label. The values of six properties are obtained
as mentioned in Section 4.1. A label indicates whether ran-
somware is activated at a specific time slice. The 0 label
reports that ransomware is operating, while the label 1 indi-
cates that no ransomware is running.

It is noteworthy that, as shown in the table, we have run
different combinations of ransomwares and applications
simultaneously for the training and for the testing, respec-
tively. This is to show how accurately and promptly SSD-
Insider++ detects unknown or new ransomwares under
mixed I/O patterns. For example, for the training phase, we
included only three ransomwares (i.e., Locky.bbs, Zerber.ufb,
and Locky.bdf) and didn’t include CPU-intensive applica-
tions. On the other hand, for the testing phase, we used five
real-world ransomwares (i.e., WannaCry, GlobeImposter,
CryptoShield, Mole, and Jaff) as well as three in-house ran-
somwares (i.e., INP-A, OOP-B, and OOP-C) which were not
used for the training.

6.2 Evaluation of Detection Algorithm

FAR and FRR Analysis.To evaluate the accuracy of SSD-Insider
++ detection algorithms, we measured False Acceptance Rate
(FAR) and False Rejection Rate (FRR) of the detection algo-
rithm varying the threshold of the score value to detect a ran-
somware. The FAR is a ratio of which SSD-Insider++ indicates
ransomware attacks even though it is not. Conversely, the FRR
is a ratio of which SSD-Insider++ does not send any alarms
even when the system is under ransomware attacks. For accu-
rate detection, both FAR and FRR should be low enough.

Fig. 11 summarizes our experimental results on accuracy
in terms of FAR/FRR. We evaluated the combinations of

TABLE 2
Various Combinations of Ransomwares and Applications for

Training and Testing of SSD-Insider++

For Training

Category Normal Application Ransomware

Ransom only None Locky.bbs

Heavy data erasure
(overwrite/trim)

WPM (DataWiping) None
MySQL (Database) None
Dropbox (CloudStorage) None
WindowUpdate Locky.bdf

IO-intensive DiskMark (IOStress) Zerber.ufb
IOMeter (IOStress) Zerber.ufb
HDTunePro (IOStress) Zerber.ufb

Normal App AutoCAD/VS (Install) Locky.bdf
Chrome (WebSurfing) Locky.bbs
Outlook Locky.bdf
BitTorrent (P2PDown) None
SQLite None

For Testing
Category Normal Application Ransomware

Ransom only None WannaCry

Heavy data erasure
(overwrite/trim)

WPM (DataWiping) GlobeImposter
MySQL (Database) INP-A
DataCopy OOP-B
Compilation (Linux kernel) OOP-C

IO-intensive IOMeter (IOStress) CryptoShield

CPU-intensive Bandizip (Compression) Mole
PotEncoder (VideoEncode) Jaff

Normal App AutoCAD/VS (Install) GlobeImposter
PotPlayer (VideoDecode) WannaCry
Outlook Mole
Chrome (WebSurfing) GlobeImposter

Fig. 10. The process of generating input data for learning.

Fig. 11. SSD-Insider++’s detection accuracy varying the score during a time window (10s) When the threshold score (or, the threshold frequency of
the decision tree’s reporting of ransomware activity for a time window) is set to 3, FRR is 0 percent and FAR is at most 5 percent only when heavy
overwriting such as data wiping.
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normal applications and ransomwares listed in ’For Testing’
in Table 2. We denoted application names only in the
graphs (e.g., WPM instead of WPM+GlobeImposter). For
comparison purposes, the FAR/FRR values of when Wan-
naCry solely (i.e., None+WannaCry) ran were included in
all the graphs. Even though there was some variation
depending on the scenario, the detection algorithm was
able to detect ransomware’s activity accurately under all
types of background applications when the score threshold
was 3. In terms of FRR, the worst background noise came
from IO-intensive and CPU-intensive jobs as shown in
Figs. 11b and 11c. This is because they interfered with ran-
somwares to slow down the speed of data erasure by heavy
usage of CPU and IO. In case of FAR, on the other hand, the
worst scenario was heavy overwriting applications (see
Fig. 11a) whose behaviors were similar to those of ransom-
wares. However, even in such heavy CPU, IO usage and
heavy overwriting scenarios, SSD-Insider++ detected accu-
rately ransomware activity with the threshold value 3.

Overall, FRRs in all the scenarios were 0 percent, and
FARs were close to at most 5 percent with the threshold
value 3. This means that SSD-Insider++ did not miss any
ransomware activity, but sometimes falsely recognized nor-
mal application’s activity as that of ransomware. Before
recovery process starts, SSD-Insider++ prompts users to
confirm whether she will start the recovery process or not.
A false alarm might interrupt users, but it would rarely hap-
pen only with heavy DB update (MySQL), data wiping
(WPM), and software install (AutoCAD/VS) as shown in
Fig. 11. Here we note that 5 percent of FAR is not average
for all applications, but only with those uncommon applica-
tions, so false alarm to users occurs 5 percent � the uncom-
mon applications’ running probability.

The out-of-place ransomwares, OOP-B and OOP-C,
exhibited low FAR and FRR, so they were accurately
detected by SSD-Insider++ even when they ran with the
applications that issued many trim and I/Os requests. As
mentioned in Section 4.2, this was due to the fact that out-
of-place ransomwares behaved quite differently, generating
unique I/O footprints, from normal applications.

Detection Latency. The time window size, T , has a high
impact on SSD-Insider++’s detection accuracy and latency
because it affects deciding values of three invariant features,
ACCEIO, AVEIO, and LONGSLOPE. There is a trade-off
between accuracy and latency; if we increase T , the accuracy
gets better because we monitor incoming I/O traffic longer,
but the detection latency increases. For a smallT , we candetect

faster, but with lower accuracy due to lack of information. In
Fig. 12, we measured detection accuracy with threshold score
3 varying the timewindow length. If T is 10s, ransomwares in
all the scenarioswere detected 100 percent. The detection algo-
rithmusingT < 10 could not detect perfectly ransomwares in
some scenarios having CPU-intensive and IO-intensive back-
ground applications such as IOMeter and Bandizip as
shown in Fig. 12b and 12c. Otherwise, most of them were
detected successfully with a time window of T ¼ 7; 8; 9. For
example, T ¼ 8 was enough for WPM and MySQL with similar
data erasure behavior as shown in Fig. 12a.

6.3 Evaluation of Recovery Algorithm

Recovery Time. We assess the time taken to recover infected
SSDs. For the 13 scenarios, we measured the time between
the infection and SSDs recovery. Fig. 13 summarizes our
experimental results. Even though there are differences
among the scenarios, we notice that the elapsed time to fully
recover SSDs was less than 1 second. As expected, this is
because SSD-Insider++ only modified the mapping table for
data recovery, avoiding physical data copies in flash.

For traces like Bandizip and PotEncoder, SSD-Insider
++ showed a relatively long recovery time. Those traces
wrote a large amount of data before the ransomware was
detected. When the recovery module was activated, it found
many items in the recovery queue to be examined and to
roll back infected mapping entries into safe ones. However,
even with such workloads with long queue lengths, recov-
ery times were short. It must be noted that, even though
some parts of the recovery queue were stored in flash (see
Section 5.1), reading in-flash queue entries didn’t take so
long because their sizes were small enough.

Data Consistency. To evaluate data consistency, we inten-
tionally exposed the host to ransomware attacks repeatedly
100 times using a custom ransomware we developed. It

Fig. 12. SSD-Insider++’s detection latency: all of the ransomware in various scenarios were detected 100 percent in 10 seconds.

Fig. 13. Total elapsed times taken to recover ransomware-infected
SSDs with various background applications.
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infected larger than 1 GB files at an arbitrary point of time.
Once SSD-Insider++ detected the activity of the ransom-
ware, it stopped servicing writes from the host, asked the
user to recover infected files and to reboot the host. After
the reboot, a fsck tool was triggered to find and resolve
data inconsistency. After fsck finished, we saw if the file
system was still in the consistent state. We also checked if
all the infected files were rolled back to unencrypted ver-
sions. Our results confirmed that infected SSDs successfully
returned to a consistent status with no encrypted files left.
See Table 2 in [6] for more detailed results.

Lazy Detection. We evaluated the effectiveness of the lazy
detection algorithm. To this end, we intentionally disabled
the I/O pattern-based detection algorithm, and then we ran
the INP-A ransomware while updating source codes (i.e.,
git pull) and compiling them. This background job was
I/O intensive and overwrote many files. Fig. 14 plots how
the encryption ratio has changed over time. While the back-
ground task solely ran, the encryption ratio was maintained
low because of small differences of entropy values between
old and new files. INP-A was triggered at 10 seconds, and
by analyzing the entropy values of overwritten LBAs later,
SSD-Insider++ detected a sharp increase of the entropy ratio
around 25 seconds.

We evaluated how FAR and FRR values changed
depending on a target encryption ratio which was used as a
criterion to decide whether ransomware attacks happened
or not. We conducted experiments with three ransomwares,
INP-A, CryptSky [21], and GonnaCry [22], which ran
with three usual scenarios, git clone, Compilation, and
git pull each. Fig. 15 shows our experimental results.
When the target encryption ratio was set too high (e.g.,
0.5�0.9), FRR greatly increased, lowing detection accuracy.
On the other hand, regardless of the encryption ratio, FAR
was kept low. As expected, this was because in normal
applications there were no significant changes on entropy
values between old and new data. This implies that, even if
a relatively small increase in an encryption ratio is observed,
it can be regarded as a sign of ransomware attacks. Conse-
quently, we found that when the ratio was 0.2, both FAR
and FRR became almost zero.

Finally, we evaluated the impact of sampling-based
entropy computation on accuracy and overhead. Fig. 16
shows measured average entropy values and computation
times for a same dataset with different sampling levels
ranging from 100 to 10 percent. Here, 100 percent sampling
means that we measured an entropy value for all the target
data, while 10 percent means that we measured entropy for
data of 10 percent randomly selected. As illustrated, the
similar level of accuracy was maintained even with 10 per-
cent sampling. This indicates that we can reduce entropy
computation time by a fraction of 10, while maintaining its
accuracy.

6.4 Overhead Evaluation

I/O Elapsed Time. For the 13 testing traces in Table 2, we mea-
sured read/write elapsed times increased by SSD-Insider+
+. Fig. 17 shows the length of time spent by 1) the FTL codes
and by 2) the SSD-Insider++ detection/recovery algorithms,
excluding NAND device latency. To confirm the feasibility
of SSD-Insider++ on embedded processors, we intentionally
slowed down the host CPU clock from 3 GHz to 1.2 GHz on
which SSD-Insider++ runs.

Compared with the conventional FTL, read and write
latencies with SSD-Insider++ increased by 17.3 and 12.8 per-
cent, on average. More specifically, the elapsed times taken
for the FTL (without SSD-Insider++) to handle 4-KB block
reads and writes were 462 ns and 1,765 ns, respectively, on
average. The extra overheads added by the SSD-Insider++
detection/recovery algorithms were just 80 ns and 226 ns,
respectively. Considering that NAND page-read and page-
write latencies are 50 ms and 500 ms [23], these extra delays
accounted for a negligible portion of the total I/O latency,
not affecting the user-perceived response times.

Garbage Collection Cost. SSD-Insider++ recovery algo-
rithm has to copy invalid pages to keep old versions of data

Fig. 16. Impact of sampling-based entropy computation.

Fig. 15. FRR and FAR with different encryption ratios.

Fig. 14. Change of entropy ratios over time.

Fig. 17. Impact of SSD-Insider++ on I/O elapsed times.
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during GC for data recovery later. Moreover, since those old
pages occupy additional space, it would lead to more fre-
quent GC invocations, which negatively affects both I/O
performance and storage lifetime. However, compared with
FlashGuard that keeps all the obsolete data for a very long
period of time (e.g., at least two or four weeks), SSD-Insider
++ incurs less GC overheads. This is because SSD-Insider++
maintained backup data for only 30 minutes, as explained
in Section 2.2.

We compared FlashGuard and SSD-Insider++ under the
worst-case scenario where GC costs were high. We filled up
90 percent of the SSD with files and ran traces on it. In addi-
tion, we created an I/O intensive workload, Combined, by
combining three heavy workloads, Bandizip, PatEn-

coder, and DataCopy. Fig. 18a shows that SSD-Insider++
had 4.6, 5.3, 3.3, and 7.7 WAFs for Bandizip, PotEn-

coder, WannaCry, and Combined, respectively, which
were higher than the conventional FTL. However, it was
much lower than FlashGuard that had 5.5, 6.6, 52.7, and
60.7 WAFs for the four benchmarks. Other workloads (e.g.,
PotPlayer and Outlook) had low WAFs which were
close to 1.0 because they did not require many page copies
for GC.

We also analyzed extra I/Os that occurred during GC in
SSD-Insider++. In Fig. 18b, ‘GC’ is the number of pages cop-
ied during GC, ‘Backup(R)’ and ‘Backup(W)’ represent the
number of invalid pages read and written to back up origi-
nal data, and ‘Recovery(R)’ and ‘Recovery(W)’ are the num-
ber of pages read to scan and to update the recovery queue
in the flash during GC. ‘Backup(R/W)’ and ‘Recovery(R/
W)’ accounted for a trivial proportion of the total I/Os dur-
ing GC. This confirms that those extra I/Os do not cause
serious overheads.

For Combined, however, we have observed a noticeably
high WAF with a relatively large number of extra I/Os for
backup and recovery pages. Under a write-heavy workload,
the recovery queue gets huge (see Fig. 19) and the number
of backup pages accumulated in the flash increases, which
results in non-trivial I/O overheads during GC. As men-
tioned in Section 5.1, this problem can be mitigated by using
a better backup algorithm [16] or by reducing the length of
the backup time.

Finally, some readers might notice that, even considering
the number of extra I/Os for backup and recovery pages,
the WAFs of SSD-Insider++ were higher than those of the
conventional SSD. For example, in the case of Bandizip
(Fig. 18b), extra I/Os for backup/recovery pages accounted
for a negligible proportion of the total I/Os, but SSD-Insider
++ suffered from a much higher WAF. This is owing to its
victim selection policy. To prevent backup pages from being
removed by GC, SSD-Insider++ chooses victims, assuming
that backup pages contain latest data. This leads SSD-
Insider++ to select blocks with more valid pages, which
results in the increase of WAFs. Fig. 18b also displays the
number of page copies for GC in the conventional SSD
(labeled by GC(Conv.)). As expected, it requires a smaller
number of page copies for some workloads.

Recovery Queue Overhead. To understand the impact of
flushing out the recovery queue on performance, we have
measured the write throughput of SSD-Insider++ when a
write intensive workload, FIO, ran. Fig. 20 shows our exper-
imental result. SSD-Insider++ showed 8 percent lower write
throughput than the conventional SSD. We observed that
the number of extra writes to flush out recovery-queue
entries to the flash was small as explained in Section 5.1.
Instead, SSD-Insider++ software running in ARM CPUs
incurred non-trivial overheads when it handled large num-
ber of I/Os simultaneously. We believe that this overhead
can be lowered through software optimization.

Fig. 18. Analysis of GC I/Os.

Fig. 19. Recovery queue size (MB). Fig. 20. Write throughput with FIO.
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DRAM Requirement. SSD-Insider++ has to maintain addi-
tional data structures, the hash table, the recovery queue, and
the counting table. The sizes of the hash table with 250K slots
and the recovery queue are fixed to 10 MB and 8 KB, respec-
tively. However, the counting table size varies depending on
input workloads. To understand how much memory SSD-
Insider++ consumed, we measured the memory consumption
of the counting table for five workloads. Fig. 21 shows our
experimental results. QuickWriter is our in-house ransomware
to overwrite heavily to consume as much memory as possible.
Gryphon is a newly-found ransomware with a strategy similar
to the delayed overwriting. Heavy overwriters such as Quick-
Writer and WannaCry consumed the largest amount of mem-
ory, but even with 30s time window, 9 MB was enough for
our SSD-Insider++ operation. Finally, we measured the mem-
ory usage of the Combined workload. Similar to other heavy
workloads, its memory consumption was about 8.5 MB.

7 DISCUSSION

Delayed TRIM. We have assumed that all the out-of-place
update ransomwares explicitly invoke fsync() to immedi-
ately send trim commands to deleted files. This is a reason-
able strategy because it makes it impossible for users to
recover original files. However, there is a possibility that
some OOP ransomwares do not explicitly call fsync()

after deleting victim files. Even in such a case, SSD-Insider+
+ is able to detect out-of-place update ransomware.

Fig. 22 shows our experimental results using two differ-
ent types of OOP ransomwares: one with explicit fsync()
and the other with no fsync(). For no fsync(), the detec-
tion latency slightly increased owing to delayed trims.
However, SSD-Insider++ could detect ransomware activi-
ties in 10 seconds. The commit time of EXT4 for synchroniz-
ing all its data and metadata was 5 seconds. We guess that
this forced all the pending trims for deleted files to be even-
tually sent to the SSD in 10 seconds.

When or how frequently trim commands are sent to an
SSD is different depending on file-system implementation.
Some file systems may delay sending trims as long as possi-
ble. SSD-Insider++ cannot detect ransomware activities, but
since deleted files are not permanently erased and still exist
in the file system, users can recover original files.

File System Dependency. SSD-Insider++ is designed for
journaling file systems (e.g., NTFS and EXT2/3/4). Unlike
journaling file systems, log-structured file systems (LFS)
and copy-on-write file systems (COW) append almost all of
the data to storage media sequentially, avoiding overwrites
of user data. Since our detection algorithm identifies attacks

based on frequent in-place update behaviors of ransom-
wares, it would not work properly under LFS and COW.
One way to address the above problem is to enhance a host-
to-storage interface so that more detailed file-system level
information, such as inode numbers and offsets, is delivered
to the FTL. This allows us to keep track of I/O access pat-
terns of ransomwares on a file basis, so SSD-Insider++ can
identify ransomware behaviors more accurately without
relying on LBA-based overwriting patterns.

8 CONCLUSION

In this paper, we have proposed an SSD-assisted ransomware
detection and data recovery technique, called SSD-Insider++.
Based on a new set of behavioral features of ransomware pro-
grams, SSD-Insider++ was able to detect ransomware attacks
early. By carrying out various experimental results with real-
world ransomwares, the discovered features have been proven
to be effective as strong indicators of ransomware activity.
SSD-Insider++ also supported quick and perfect data recovery
by leveraging the out-of-place update nature of NAND flash.
To address the worst case scenario where SSD-Insider++ can-
not identify ransomware attacks, SSD-Insider++ supported a
lazy detection algorithm. To show the feasibility of SSD-Insider
++, the detection/recovery algorithms were implemented in
an open-channel SSD. Our evaluation results showed that
SSD-Insider++was accurate and fast for detection, and it could
perfectly recover an infected SSDwithout any data loss.
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