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ABSTRACT
Adversarial training has become almost the de facto standard for

robustifying Natural Language Processing models against adver-

sarial attacks. Although adversarial training has proven to achieve

accuracy gains and boost the performance of algorithms, research

has not shown how adversarial training will stand “the test of times”

when models are deployed and updated with new non-adversarial

data samples. In this study, we aim to quantify the temporal impact

of adversarial training on naturally-evolving language models us-

ing the hate speech task. We conduct extensive experiments on the

Tweet Eval benchmark dataset using multiple hate speech classifi-

cation models. In particular, our findings indicate that adversarial

training is highly task-dependent as well as dataset dependent as

models trained on the same dataset achieve high prediction ac-

curacy but fare poorly when tested with new dataset even after

retraining models with adversarial examples. We attribute this tem-

poral and limited effect of adversarial training to distribution shift

of the training data which implies that models’ quality will degrade

over-time as models are deployed in the real world and start serving

new data.
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1 INTRODUCTION
Adversarial attacks have been studied in the Natural Language Pro-

cessing (NLP) domain to expose weaknesses of language models.
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Adversarial attacks are input perturbations that aim to fool NLP

models to make erroneous predictions thereby lowering their pre-

diction accuracy. The adversarial examples can then be integrated

with model training to improve the robustness of these models

to future attacks[15]. Adversarial examples have been applied on

numerous NLP tasks, including sentiment analysis, questions an-

swering, and hate speech detection [1–4]. In the hate speech detec-

tion space, for example, adversarial examples have been utilized to

break hate speech detection classifiers and identify vulnerable spots

within them. Then the same hate speech detection classifiers are

retrained with adversarial examples to enhance robustness against

real-world attacks as a defense. For example, Dinan et al. [10] con-

ducted a research study on the importance of using adversarial

attacks to break dialogue safety NLP models and then made those

models more robust by incorporating adversarial training into the

model retraining. Additionally, Kurita et al. [16] used adversarial

examples to attack NLP toxicity classifiers through character-level

perturbations and made the classifier produce erroneous predic-

tions. They also studied the effect of adversarial training to defend

against adversarial attacks. Both research studies leveraged adver-

sarial examples in the training as a strategy to enhance robustness

of the classifiers.

Adversarial training is a technique used to augment training

data with adversarially-generated examples in each training loop.

The idea of adversarial training was first introduced by Goodfellow

et al. [12] in the image domain, where learning algorithms are

used to generate adversarial examples. The adversarial examples

can then be used to attack ML models and fool them to make

erroneous predictions. The benefit of adversarial training is that

the adversarially-generated examples can be used for retraining the

language models (e.g. BERT and RoBERTa) to make models more

resistant to adversarial attacks and boost the prediction accuracy.

Numerous research works in the NLP domain, and particularly

for the hate speech task, have studied the operational aspects of

adversarial training. For instance, Groundah et al. [13] used adver-

sarial training to generate stochastically transformed versions of

the original training samples thereby doubling the size of train-

ing data. The study concluded that adversarial training can help

improve the classification accuracy of hate speech models against

adversarial examples, however, it stops short in offering any in-

sights on how to extend adversarial training to other NLP tasks

and different model architectures. In a similar study, Tran et al. [24]

utilized adversarial training to retrain a fine-tuned BERT model for

the hate speech classification task. In their study, they demonstrated

that building a hate speech classifier with regularized adversarial

training yields performance gains and improves model robustness

against adversarial attacks. The study was conducted on the BERT

https://doi.org/10.1145/3487553.3524667
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model only using the hate speech task so it is unclear if the findings

can be extended to other language models and different NLP tasks

(sentiment analysis, question anaswering, etc.).

Dinan et al. [10] integrated adversarial training into a “build it,

break it, fix it” strategy whereby researchers built a toxicity detec-

tion classifier, broke the model with adversarial attacks, and then

fixed the model by retraining the same model with examples col-

lected from the adversarial attack phase. The authors demonstrate

that adversarial training improves models performance and robust-

ness against adversarial attacks. This study is somewhat unique

in that it used humans in the loop to attack the model rather than

using algorithms to generate attacks. However, the study falls short

in discussing the long-term effectiveness of adversarial training

and whether or not models remain robust under different model

architectures with new dataset introduced via retraining.

Although the research community has demonstrated that ad-

versarial training can boost machine learning models’ accuracy

and robustness against adversarial attacks, the current efforts stop

short of understanding the caveats of adversarial retraining under

realistic deployment scenarios, including the introduction of new

training samples in the model due to retraining. Even though mod-

els may perform well after adversarial training, this does not imply

that the same models will consistently perform when deployed to

the real world. Adversarial training is essentially a snapshot of a

model’s performance. However, ML models (including NLP mod-

els) are prone to shift and drift as part of their normal evolution,

and this in turn will likely cause the performance and accuracy to

degrade over time, which we explore in this paper.

Contributions. In this paper, we make the following two contri-

butions. First, we demonstrate that the effectiveness of adversarial

training on language models degrades significantly when models

when new data is introduced to the model via model retraining. An

explanation of this degradation is the distribution shift in the input

data, which shifts the model’s parameters (in the tuning phase) in

a way that alters its awareness of the adversarial examples incor-

porated in an adversarial training phase. We argue that adversarial

examples do not actually contribute to model robustness in the

abstract, but to the current snapshot, and their sensitive to model

update due to previously unseen data from the real-world. Second,

We empirically validate this shortcoming of adversarial training

due to concept drift on hate speech detection, a popular natural

language processing task. In doing so, we utilize various learn-

ing techniques and datasets. Among other intriguing observations,

we found that the efficacy of adversarial training degrades upon

introducing new learning techniques as well as datasets, which

highlights the multi-dimensional set of factors affecting the robust-

ness of such models.

Organization. The related work is outlined in §2 The background

and preliminaries are outlined in §3. Methodology is outlined in

§4. The results and discussion are highlighted in §5, followed by

concluding remarks and open research directions in §6.

2 RELATEDWORK
In the NLP space, numerous research studies have been conducted

to demonstrate the effectiveness of adversarial training in defend-

ing NLP models against adversarial attacks [7, 9–11, 13–16, 22, 23,

25, 28]. Most of the research works conducted in this direction

focus primarily on generating adversarial examples for hate speech

detection models and then incorporate those examples into retrain-

ing of NLP models to robustify them against future adversarial

attacks. The fundamental shorting of this strategy is that it con-

siders a static view of NLP models and does not take into account

the dynamic and evolving nature of models by introducing new

data after adversarial retraining. This shortcoming becomes even

more pronounced and critical once such models are deployed in

the real-world and begin to incorporate previously unseen data in

their fine-tuning. In such a case, the adversarial training becomes

less relevant to the new data because the new data might carry

different distribution characteristics than those pertaining to the

data the model originally trained with.

Recently, Mou et al. [22] conducted an extensive study on hate

speech detection models using CNNs and LSTMs, among other

neural networks. As such, the authors used character- and word-

level attacks under two settings: black-box and white-box, and

demonstrated the effectiveness of their speech detection framework

by comparing it to several state-of-the-art baselines. The authors

showed that their framework contributes to enhanced robustness

of hate speech detection models against future adversarial attacks.

However, the study only considers static data, and does not assess

the effectiveness of their framework with new data upon retraining.

Also related to the role and contribution of adversarial examples

to robustness of hate speech detection models, Tran et al. [24]
conducted a study using adversarial training along with source-

ensemble-head-fine-tuning architecture to improve the robustness

of hate speech classifiers against adversarial attacks. Although they

conducted experiments and demonstrated that their framework

outperforms other state-of-the-art models, e.g., BERT, they only

use one dataset. To ensure transferability of a learning framework,

it is crucial to test it using different learning tasks with various

benchmark dataset, an issue not addressed in their work.

Zhou et al. [29] took a different approach and conducted a study

to defend NLP classification models against adversarial attacks

without retraining models. In their pursuit, the authors developed

a novel framework for detecting and blocking adversarial attacks.
Experimental results on benchmark datasets for a classification task

showed that their novel learning framework outperforms state-of-

the-art learning models in defending against adversarial attacks

without incorporating adversarial examples. The study stops short

of discussing the generalizibility of their findings to other classifi-

cation tasks, such as hate speech detection.

We observe from our literature review that the vast majority of

research works examine the effectiveness of adversarial training

on hate speech classification from a static point of view, meaning

that they consider learning models to be static. Moreover, the state-

of-the-art in the literature does not further evaluate the impact of

adversarial training on model robustness beyond training data and

without extending the application to other learning tasks or do-

mains. Our research is different in that we examine the near-/long-

term impact of adversarial training on robustifying languagemodels

by introducing new datasets (which might be out-of-distribution

from training data) as well as various learning algorithms.
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3 BACKGROUND AND PRELIMINARIES
In this section, we will review the background and present the

preliminaries, which shall guide our presentation in the rest of

this paper. To begin our discussion, we review the primary natural

language task of interest, hate speech detection. We then present

various notations and definitions of adversarial training and adver-

sarial examples, followed by a formal definition of the objective

that may cause the difference in the outcomes of the model perfor-

mance upon retraining, and the various metrics used to measure

performance of NLP models.

3.1 Hate Speech Detection
Acknowledging that adversarial examples can be applied to numer-

ous linguistic tasks, we utilize hate speech detection as our main

task, due to the general prevalence of this linguistic task.

Formal Definition: Hate Speech Detection. Let 𝑥 ∈ 𝑋 be an

instance of input text, where 𝑋 is the space of the input text, and 𝑦

be the target prediction of task (e.g., for hate speech classification;

offensive vs. non-offensive, 𝑦 could be either 0 or 1
1
). Our learning

task, that is the hate speech detection classifier is formally denoted

as a mapping function 𝑦 ∈ R𝑛 , where 𝑛 is the number of classes

being predicted. The hate speech classification task is denoted by a

mapping function ℎ\ : X → R𝑛 (alternatively, ℎ\ : 𝑥 → 𝑦), where

\ is the model parameters (more on that is below).

In this definition, it is worth noting that hate speech detection as

a classifier can be implemented using numerous learning algorithms

to obtain ℎ\ , including deep neural networks, such as BERT and

RoBERTa. Given the binary classification task we have (hate speech

detection with two classes only: hate speech or non-hate speech)

and in order to minimize ℓ (ℎ\ (𝑥), 𝑦) we can define a binary loss

function (also refereed to as cost function) to reduce the entropy;

that is to minimize the average loss across the training samples.

min

\

1

𝑚

𝑚∑
𝑖=1

ℓ (ℎ\ (𝑥𝑖 ), 𝑦𝑖 ) (1)

3.2 Adversarial Examples
An adversarial example is an input designed (or crafted) to fool an

NLP model and potentially lead to incorrect predictions [12]
2
. Let

𝑥′ be an adversarial example if it can fool the classifier ℎ\ (.) and
causes it to produce erroneous prediction (classifies offensive as

non-offensive and vise-versa). Thus, an an adversarial example 𝑥 ′

can be obtained by solving the following optimization problem:

max

𝑥 ′
ℓ (ℎ\ (𝑥 ′), 𝑦) = max

𝛿 ∈Δ
ℓ (ℎ\ (𝑥 + 𝛿), 𝑦) (2)

That is, by solving this optimization our goal is to learn 𝑥 ′ de-
fined as 𝑥 + 𝛿 for some perturbation 𝛿 obtained from the affordable

perturbations, Δ, in a way that maximizes the loss between the

1
In this formal definition, we use a binary outcome for simplification, although nothing

in the rest of this paper prevents from using non-binary class labels.

2
We note that the outcome of the adversarial attack may or may not be to alter the

classifier’s outcome; e.g., it could only reducing the classifier’s confidence. We note

that the results in this work are independent of the eventual outcome of the adversarial

attack, and only use misclassification since it is easy to interpret. Extending the results

for other adversarial objectives, such as confidence reduction, is trivial.

prediction function ℎ\ and the original output 𝑦. We observe that

the distribution of 𝑥 typically determines 𝛿 ∈ Δ3
.

In this study, we are only concerned with adversarial exam-

ples on the textual inputs for the hate speech detection models.

Acknowledging that numerous studies have addressed the opti-

mization problem in (2). In the following, we consider one such

work [15] for highlighting the background and the key elements

employed in our analysis, although this part can be replaced by any

adversarial generation algorithm as it is a secondary aspect to the

contribution. The algorithm works in two major steps. First, start-

ing with a sentence of 𝑛 words, 𝑥 = 𝑤1,𝑤2, . . . ,𝑤𝑛 , the algorithm

ranks those words based on their importance. Noting that only the

important words in 𝑥 are going to contribute more significantly to

the outcome ofℎ\ , the authors argue that changing those important

words will significantly affect the output of ℎ\ (𝑥). Moreover, given

that the modification will only affect those important words, it will,

by definition, be minimal. Once the important words are selected,

the second step of word transformer is invoked, where words are
replaced with other words that have similar semantics, fit well in

the context, and force the target model to misclassify the input

sentence 𝑥 . Upon executing the word transformer step, various

sanity checks are imposed, including part-of-speech enforcement

and semantic similarity check.

For evaluating our work, we use an easy-to-interpret metric,

which is the accuracy, defined in the following.

Accuracy. This metric measures the overall prediction accuracy of

the hate speech classifier. The accuracy is calculated as the number

of correctly classified predictions made normalized by the total

number of predictions.

The accuracy is not the only metric used for measuring the

performance of hate speech detection under adversarial attacks,

and other metrics may include the attack success rate maybe used.

The attack success rate is calculated as the number of adversarial

examples incorrectly predicted by the classifier to the total number

of samples. This metric is useful to determine the effectiveness of

adversarial attacks.

To determine the efficiency of our attack model, we use as a

metric the number of queries the attack framework (textattack)

made to the target model and fetch the predicted probability scores.

Perturbed word percentage. Is a metric calculated as the ratio of

the number of perturbed words to the text length.

3.3 Adversarial Training
Adversarial training is the process of generating adversarial ex-

amples by making perturbations on the input text. The generated

examples will then augment the training data to robustify NLP hate

speech classifier against adversarial attacks. The adversarial train-

ing process is considered a combinatorial problem and is solved

using heuristic search algorithms [20]. It involves generating an

adversarial example 𝑥′ from the original example 𝑥 prior to training

the hate speech classifier, ℎ\ (.), on both 𝑥 and 𝑥′ [27].
Definition: Adversarial Training.We define 𝐽 (ℎ\ ) as a loss func-
tion (loss under the true distribution of the samples) and write down

3
This observation is fundamental in the sense that adversarial examples are only model

dependent w.r.t. to the currently used data in the model. Changing the underlying

training data may break such dependency.
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this loss function formally as:

𝐽 (ℎ\ ) = E(𝑥,𝑦) ∈D [ℓ (ℎ\ (𝑥), 𝑦)] (3)

where ℓ denotes the loss function, ℎ\ (𝑥) is the expected label for the
input example 𝑥 , D is the empirical distribution over training data,
E is the expectation function, and 𝑦 is the target label. Since we often
are not provided the actual (accurate, complete) distribution of data
(i.e., real-world data), we approximate the distribution by considering
a set of data points 𝐷 = {(𝑥𝑖 , 𝑦𝑖 ) ∼ D}; 𝑖 = 1, . . . ,𝑚, from which we
can calculate the the empirical loss as follows:

𝐽 ′(ℎ\ , 𝐷) =
1

|𝐷 |
∑

(𝑥,𝑦) ∈𝐷
ℓ (ℎ\ (𝑥), 𝑦) (4)

Our objective in adversarial training process is to minimize 𝐽 ′(ℎ\ , 𝐷𝑥 ),
where𝐷𝑥 is a set of training examples. Using the same notation above,
the loss function can be generalized into an adversarial loss, which is
defined as follows:

𝐽
adv

(ℎ\ ) = E(𝑥,𝑦) ∈D [max

𝛿 ∈Δ
ℓ (ℎ\ (𝑥 + 𝛿), 𝑦)] (5)

Similar to the rationale highlighted for (4), we define the empirical
adversarial loss as:

𝐽 ′
adv

(ℎ\ , 𝐷) =
1

|𝐷 |
∑

(𝑥,𝑦) ∈𝐷
max

𝛿 ∈Δ
ℓ (ℎ\ (𝑥 + 𝛿), 𝑦) (6)

As mentioned above, the goal of the adversarial training is to

minimize 𝐽 ′
adv

(ℎ\ , 𝐷) in (6).

3.4 Model Retraining
Given the static nature of NLP models (i.e., hate speech detection

classifier), distribution changes are likely to cause degradation of

model performance and thus lead to incorrect predictions. To cope

with this issue, we retrain each model with samples of new training

data using a new dataset. Retraining with new samples and fine-

tuning models will address the risk of model deterioration with

the passing of time. Given the previous notation, our aim with

retraining will make the model resistant to changes in the input

data distribution.

4 METHODOLOGY
For our experimental setup, We adopted three state-of-the-art pre-

trained hate speech detection models namely: BERT from [19],

CNERG from [5], and RoBERTa from [8]. Additionally, we use the

Tweet Eval benchmark dataset provided by [8] which contains

three datasets: irony, hate, and offensive.

Initially, we started by measuring the classification accuracy

of each of the three models listed above using the three datasets

separately. This is a necessary step in order to gain an understanding

of each model’s performance. We then attacked each model using

the textattack framework provided by [21] (incorporating the attack

strategy highlighted earlier). The textattack framework is used to

test models’ performance under adversarial attacks which provides

a sense of how the model will perform when tested with new data.

We further retrained all three models with the irony dataset in

order to cope with the effects of adversarial attacks and ultimately

robsustify models against attacks.

In the real world, NLP models will be serving data it has not seen

before and therefore the mapping between the input and output

will likely change causing the model to make incorrect predictions.

This is due to data shift causing concept drift as discussed in the

previous section. To simulate the impact distribution shift (i.e., data

shift) on NLP models, we attacked each of the three models with

two datasets: hate and offensive after they had been retrained with

the irony dataset. Our aim was to see how each model architecture

performs when tested with new dataset and to determine if hate

speech detection is task-dependent. Its also interesting to see how

the hate speech model transfers across multiple dataset.

4.1 Implementation Details
In conducting our experiments, we followed [30] and utilized the

Projected Gradient Descent (PGD) algorithm on hate speech clas-

sifier with a softmax cross-entropy loss function. This classifier

simply takes the input features 𝑋 , multiplies them with a matrix

of weights𝑊 and adds a vector of biases 𝑏 afterwards. This will

give us a score 𝑥𝑖 = 𝑊 𝑡
𝑖
𝐹 + 𝑏𝑖 for each 𝑖-th class in our classifier.

We will then pass this score through a softmax activation func-

tion, softmax(𝒙𝑖 ) = 𝑒𝒙𝑖∑
𝑗 𝑒

𝒙 𝑗 . In order to evaluate the quality of

our model’s predictions on training data, we will use the softmax

cross-entropy cost function 𝐿 = − log(𝑆𝑦).
We then performed the adversarial retraining, by feeding the

models both the original data and the adversarial examples to cope

with distribution shift and the subsequent drift in the model. We

collected the adversarial examples curated from the Irony dataset

which had been used in the attack phase to fool the three hate

speech models. For generating adversarial attacks, we adopt the

textattack framework introduced by [21] which divides the process

of generating NLP adversarial examples into four parts: (1) a goal

function which we aim to maximize in order to maximize the proba-

bility of a successful attack: 1−𝑃 (𝑦∥𝑥 ;\ ) where \ is the parameters

and 𝑃 (𝑦∥𝑥) is the model confidence of the output 𝑦 given input 𝑥 ,

(2) a search algorithm to search for the best input perturbations

and find an adversarial example 𝑋𝑎𝑑𝑣 that can fool the classifier

(we limit the search method to making 1,000 queries to the victim

model for generation of adversarial examples), (3) a transformation

module to perturb a text input from 𝑥 to 𝑥′, (4) a set of constraints
that filters out undesirable 𝑥′ to ensure that perturbed 𝑥′ preserves
the semantics and fluency of the original 𝑥 [27].

4.2 Data Shift and Associated Questions
In our implementation of the training process thus far, for both the

baseline model training utilizing the optimization in (1) and the

adversarial training depicted in (6), we assumed no data shift has

happened and that our dataset is a static one,𝐷 . Even when training

models with adversarial examples, perturbation𝛿 will be of the same

distribution of the dataset 𝐷 . This, in turn, limits the efficacy of the

adversarial training to the current distribution of data, and making

the adversarial examples less relevant to training examples from

other datasets. When NLP systems, such as hate speech detection

models, are deployed to the real-world (production environment),

however, the underlying model will be constantly serving new data.

The newly incoming data may even be out of distribution (OOD)

with respect to the original data used for training and evaluating the

performance of the model (baseline; before deployment). Moreover,
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data shift will occur eventually, yielding temporal changes to the

underlying model consequently causing concept) drift.

Concept drift implies that the statistical properties of the target

variable (i.e., model’s prediction accuracy) can change over-time

in unforeseeable ways [17]. In the context of NLP models, concept

drift means that a model’s performance is highly likely to deterio-

rate over time as it sees new data after deployment to production

environments [17]. Going back to the notation used earlier in this

section: the mapping between the input features and the target

function ℎ\ : X → R𝑘 (alternatively, ℎ\ : 𝑥 → 𝑦) will most likely

change due to distribution shift causing concept drift. Let 𝑃 (𝑥) be
the probability of the input features 𝑥 , and 𝑃 (𝑦∥𝑥) the conditional
probability of the targets 𝑦 given the input features 𝑥 . Additionally,

we will subscript the probabilities as 𝑃𝑡 to refer to the training data,

and as 𝑃𝑛 to refer to the new data, that is the data the model has not

yet seen (i.e., data the model will see after deployment to the real

world). Formally, we can define model drift as 𝑃𝑡 (𝑦∥𝑥)≠ 𝑃𝑛 (𝑦∥𝑥)
Intuitively, when we train a model used to realize the goal in

(1), we expect the model performance and prediction accuracy

to be high since we would minimize model loss as part of this

optimization). We then generate adversarial examples, as defined

in (2), and expect the model loss ℓ (ℎ\ (𝑥 + 𝛿), 𝑦) to rise significantly
due to adversarial attacks. Addressing the high loss would require

implementing adversarial training steps by solving the optimization

in (6). We observe that adversarial examples are generated using 𝐷 ,

an empirical distribution using a set of finite examples (𝑥𝑖 , 𝑦𝑖 ) for
𝑖 = 1 . . .𝑚. An important question to address would be: how would

the adversarial examples in 𝐽 ′
adv

(ℎ\ , 𝐷) affect model loss if 𝐷 is

changed to 𝐷 ′
, updating ℎ\ without updating 𝐽 ′

adv
(ℎ\ , 𝐷)? In other

words, by solving min\ 𝐽 ′
adv

(ℎ\ , 𝐷) for some 𝐷 , then updating the

dataset 𝐷 to 𝐷 ′
, and solving for \ ′ in min\ 𝐽 ′(ℎ\ , 𝐷 ′), how big is

the gap in the inner model loss? This is, how do we compute that

gap as the following difference:

1

|𝐷 ′ |
∑

(𝑥,𝑦) ∈𝐷′
ℓ (ℎ\ ′ (𝑥), 𝑦) −

1

|𝐷 |
∑

(𝑥,𝑦) ∈𝐷
ℓ (ℎ\ ′ (𝑥 + 𝛿), 𝑦)

One can trivially answer the above question in a binary form

(i.e., whether there will be a gap or not, since it is intuitive that the

model loss will cause the performance to deteriorate when tested

against old adversarial examples generated by taking 𝐷 into ac-

count). However, our focus in this work is rather the quantification

of this gap, which is both interesting and important.

5 RESULTS AND DISCUSSION
In the following, we present the details of our experiments con-

ducted on various datasets using different model architectures and

validate our assumptions about the limited impact adversarial train-

ing has on hate speech classification models due to data shift in the

underlying models caused by the arrival of new data.

We first report the accuracy of the three target models on the

original test data before the attack and refer to it as the original

prediction accuracy. Then we measure the prediction accuracy

of the target models under the adversarial attacks. By comparing

these two accuracy scores, we can determine the effectiveness of

our adversarial attacks, the more significant the gap between the

original accuracy and the accuracy under attack, the more effective

and successful the adversarial attacks are. Additionally, we also

report the perturbed word percentage as the ratio of the number of

perturbed words to the text length. Additionally, to determine the

efficiency of our attack model, we use as a metric the number of

queries the attack framework (textattack) made to the target model

and fetch the predicted probability scores.

5.1 Datasets, Algorithms, and Baseline
5.1.1 Datasets. As shown in Table 1, we conducted our experi-

ments using three datasets: Irony, Hate, and Offensive, all of which

are popular datasets and are part of the benchmark dataset tweet-

eval [8] which is widely used in the hate speech domain.

5.1.2 Algorithms. We utilize three deep learning algorithms that

have been shown to provide state-of-the-art classification results

for hate speech: BERT-base-uncased-hatexplain-rationale-two [19],

twitter-roberta-base-offensive [8], and Hate-speech-CNERG [5].

For consistency and clarity, in our results we refer to BERT-base-

uncased-hatexplain-rationale-two as BERT, twitter-roberta-base-

offensive as RoBERTa, and Hate-speech-CNERG as CNERG model.

5.1.3 Evaluation Metrics. We use the classification accuracy as a

metric. The accuracy is calculated as the number of correct predic-

tions made normalized by the total number of predictions.

5.2 Results
5.2.1 Baseline. We implement the above three algorithms for estab-

lishing a baseline of performance (using the classification accuracy)

of the learning algorithms without any attacks. As we can see from

Table 2, BERT consistently achieves the highest classification accu-

racy (92.63%, 89.12%, and 90.57% on the three datasets, respectively ).

Conversely, CNERG consistently achieves the lowest classification

accuracy (79.17%, 74.34%, and 81.98% on the three datasets, respec-

tively). The fact that BERT outperforms the other two models under

different datasets is expected as BERT is a state-of-the-art model

and this is consistent with findings in the literature.

5.2.2 Classification Accuracy Under Adversarial Attacks. We study

the impact of the adversarial examples on the performance of the

different models using the different datasets by employing the

adversarial example generation method mentioned in section. For

each run, we use 200 adversarial examples to attack each model.

Table 3 shows that the classification accuracy upon introducing

the adversarial examples is significantly low. In Table 3, we show

that the classification accuracy of our BERT model drops signifi-

cantly (accuracy as low as 13.36%) when tested with adversarial

examples using a new dataset (Hate dataset). To further validate

the temporal changes of models and prove the transfer ability and

generalization of our findings, we extend our experiments to differ-

ent model architectures and observe that BERT and CNERG models

suffer even a lower classification accuracy. The CNERGmodel fared

worst with a classification accuracy of as low as 11.86%when tested

with adversarial examples using the Hate dataset.

5.2.3 Retraining with Adversarial Examples. To generate AEs we
utilize the idea of Adversarial Text Generation by [25], although

using a different model architecture and for different datasets.
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Table 1: Datasets: We employed the three real-world datasets: Irony, Hate, and Offensive for our hate speech task. Each dataset
has binarized ratings and is set as positive and as negative. and split into a training, validation, and test sets

Dataset Name Dataset Description Atributes

Irony tweet classification for irony task set of 2862 for training and 784 for testing

Hate tweet classification for hate task set of 9000 for training, and 2970 for testing

Offensive tweet classification for offensive task set of 11916 for training and 860 for testing

Table 2: Baseline Experiment shows the classification accu-
racy of each of the threemodels prior to adversarial training.
Note that BERT consistently achieves the highest classifica-
tion accuracy. Conversely, CNERG consistently achieves the
lowest classification accuracy

Dataset Model Accuracy

Irony RoBERTa 87.39

BERT 92.63

CNERG 79.17

Hate RoBERTa 86.98

BERT 89.12

CNERG 74.34

Offensive RoBERTa 88.00

BERT 90.57

CNERG 81.98

Table 3: Classification accuracy under adversarial attacks.
Note that the classification accuracy dropped significantly
after attacking models with adversarial examples. We ob-
serve that BERT is consistently performing better than
other models across multiple datasets

Dataset Model Accuracy

Irony RoBERTa 14.94

BERT 12.67

CNERG 11.00

Hate RoBERTa 11.98

BERT 13.36

CNERG 11.86

Offensive RoBERTa 6.84

BERT 7.98

CNERG 4.58

Implementation Details. The adversarial examples generation

model includes an encoder and a decoder for generating adversarial

examples. The encoder and decoder are trained over a large text

corpus to ensure that adversarial examples adhere to the linguis-

tic constraints and preserve semantics [25]. To enforce semantic

preservation, we follow the work of [20] and tighten the thresholds

on the cosine similarity between embeddings of swapped words and

between the sentence encoding of original and perturbed sentences.

We ensure and enforce the grammaticality of the adversarial exam-

ples by validating perturbations with a grammar checker. Moreover,

we apply the semantics as well as the grammatical constraints at

each step of the search following [21] We conduct our experiments

on real-world NLP datasets to demonstrate the effectiveness, ap-

plicability and generalizability of our approach. We show that our

generated attacks are more diverse and more robust against model

re-training and various model architectures. For the retraining, we

adopted our three learning models (BERT, RoBERTa, and CNERG)

to ensure the generalizability and transferability of our results to

different network architecture and under multiple datasets.

Results. As shown in Table 4, retraining models with adversarial

examples lowers the misclassification rate and improves the accu-

racy, which is consistent with the literature of adversarial training

[16, 22, 26, 27]. In Table 5, we present the results of retraining

each of the the three models (BERT, RoBERTa, and CNERG) with

adversarial examples training. Specifically, we divide generated

adversarial examples into two subsets, one is used for augmenting

the training data, and the other is a hold-out set used for testing.

With the augmented training data. We observe that adversarial

training achieves accuracy gains consistently across all models and

under different datasets.

Table 4: Adversarial example generation algorithm results.
Note that the classification accuracy, after adversarial train-
ing, for each model consistently increased

Dataset Model Accuracy

Irony RoBERTa 70.11

BERT 78.35

CNERG 62.98

Table 5: Classification accuracy under adversarial attacks af-
ter model retraining. Note that the classification accuracy
dropped significantly after attacking models with adversar-
ial examples upon model retraining. We observe that BERT
is consistently performing better than other models across
multiple datasets

Dataset Model Accuracy

Hate RoBERTa 18.89

BERT 21.67

CNERG 17.45

Offensive RoBERTa 12.92

BERT 16.65

CNERG 11.83

5.3 Comparative Analysis With SA Task
A key insight of this study is to highlight the impact of out-of-

distribution data on the performance of adversarial training un-

der different tasks. To this end, we have borrowed results from a

previous work of ours demonstrating the impact of the ODD on

the performance of AT using the sentiment analysis as the task

of choice. Our objective was to determine if the performance of

adversarially-trained language models would change under dif-

ferent tasks provided that we control the learning algorithm. To
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answer that question, we have compared the performance of adver-

sarial training under both the hate speech detection task as well as

the sentiment analysis task. As we can observe from Table 6 that the

performance of adversarially-trained model does actually change

when the underlying language task changes (changing from the

sentiment analysis to the hate speech task) upon exposing models

to new data (i.e., OOD data). For instance, in the sentiment anal-

ysis task, the BERT-based model achieved only 15.75 prediction

accuracy when tested with the MR dataset [18] compared to the

same model in the hate speech detection task where the adversarial

training lead to an accuracy of only 21.65 when tested with the

Hate dataset. On the other hand, when the same model with tested

with the Yelp dataset [6] under the sentiment analysis task, the

prediction accuracy was only at 19.88 versus 16.65 for the hate

speech detection task when tested with the offensive dataset. We

observe from the above results that OOD data negatively impacts

the performance of adversarial training on NLP models and that

this impact may vary based, although slightly, on the learning task

(e.g., sentiment analysis versus hate speech detection).

Table 6: Comparative Results. A-AT stands for accuracy
upon adversarial training (percentage).

Dataset Model A-AT Dataset Model A-AT

MR BERT 15.75 Hate BERT 21.65

Yelp BERT 19.88 Offensive BERT 16.65

6 OPEN DIRECTIONS
The findings in this study call for further research into the im-

pact of training data shift and concept drift and their implications

on the performance of NLP models/tasks after deployment in the

real-world. While we addressed the impact of on the hate speech

classification task, it is interesting to see how much of this insights

can be applied to other linguistic task such as Natural Language

Inference and Question Answering, or even other domains such as

speech recognition and the vision domain. Designing solutions to

the problem is also another direction. Such solutions might be as

simple as reordering the training, increasing the model capacity,

or sparing model variables to attend to the adversarial examples,

which are all questions we will explore in our future work.
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