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Abstract. The privacy preserving data mining (PPDM) has been one afibet
interesting, yet challenging, research issues. In the PRiéVseek to outsource
our data for data mining tasks to a third party while mairtajnts privacy. In this
paper, we revise one of the recent PPDM schemesK&).which is designed for
privacy preserving association rule mining (PP-ARM). Onalgtsis shows some
limitations of theFS scheme in term of its storage requirements guaranteeing a
reasonable privacy standard and the high computation ésQvethe other hand,
we introduce a robust definition of privacy that consideesaterage case privacy
and motivates the study of a weakness in the structuf& @fe., fake transactions
filtering). In order to overcome this limit, we introduce abhigl scheme that
considers both privacy and resources guidelines. Expataheesults show the
efficiency of our proposed scheme over the previously intced one and opens
directions for further development.

Keywords: privacy preservation, data sharing, association rulemginiesources
efficiency, average and worst case privacy.

1 Introduction

The data mining is a powerful tool for discovering knowledweh like hidden pre-
dictive information, pattens and correlations from larggathases [1]. However, since
the data itself may include information that can lead to udentification, the privacy
preserving data mining (PPDM) has became of a great intfpsn the PPDM al-
gorithms, not only the accuracy of the mining result but als® privacy of the data
itself is considered[3]. Since the first work by Agrawal et[2], several PPDM al-
gorithms have been developed though the challenge of datcprhas not been to-
tally solved. These algorithms are basically classifiedeurtdio directions: crypto-
graphic and non-cryptographic (i.e., randomization-daségorithms[[4]. While it is
believed that the cryptographic based approaches are datigmally infeasible for
most of the existing data mining models due to the large datg the randomization-
based algorithms suffer from the problem of their low accuif&l€]. Though, the ran-
domization based algorithms have been favored over theagygphic algorithms and
therefore several PPDM algorithms based on randomizagicimnique have been in-
troduced. These algorithms include data clusterifig[[718]9 association rule mining
[[1[12.1%,14.15,16.17], data classification[[18. 19 R@.

One of the interesting, though challenging, data minindiagfions is the associa-
tion rule mining (ARM) [21[,22]. The ARM is a well researchee@thod for discovering
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interesting relationsbetween variables in large databases. When adding thecpriva
concern to ARM, the privacy preserving association ruleingr(PP-ARM) aims to
discover such relations between the variables in the daita wiaintaining the data pri-
vacy. To do so, several algorithms have been introduceddinmy) the aforementioned
works in [11,12.13,1/4,75,16.17].

One of these works (in_[14] and will referred through the i@&sthe paper a§S)
considered adding fake transactions to anonymize thenaligata transactions in order
to maintain their privacy. This work has several advantayes other existing schemes
including that any off-the-shelf mining algorithm can beedgor mining the modified
data and the ability of providing a high theoretical privagyarantee though being sub-
ject to several limitations. In this paper, we revise fitescheme and show several
results:

— We show an average case study of the privacy preservatifiinat better express
the real privacy consideration.

— In order to provide a high privacy measure, fffescheme requires an exhaustive
amount of storage. Even for same level of privacy with othxétang schemes such
like PS[11], FS scheme still requires higher storage (sediibn 4).

— In practice, the privacy provided by tt& can be breached given that the original
transactions are not modified and kept in the released mddifiea. Similarly, the
fake transactions since they are larger in number than dig¢remsactions in most
cases can be filtered and affect the overall attained pri{semtior #).

— Also, to take advantage of tH€ and reduce its memory requirements, we intro-
duce a hybrid scheme that utilizes b&thandPS schemes (sectidd 6).

— We introduce a thorough theoretical and experimental @ealyhat demonstrates
the achieved properties of both the revised and hybrid seBem

The rest of this paper is organized as follows: sedflon ®ihices the preliminaries,
definitions and notations. Sectiéh 3 details the procedtitbeo PP-ARM using the
fake transactiongS scheme, sectidi 4 introduces the first part of our contiiouy
revisiting theFS scheme, and sectidd 5 lists some remarks motivating the foeed
hybrid scheme, describing tHeS scheme (the MASK), and comparing it to thé
scheme. Sectidd 6 introduces our hybrid scheme and it piepewer other schemes in
term of privacy, resources, and error (in both analytical @xperimental formulations).
Finally, sectioi ¥ draws concluding remarks.

2 Preliminaries and Definitions

2.1 Why does privacy matter?

In order to illustrate the importance of the privacy whengidaring data mining, we
provide several examples. These examples are recalledifiohealth, marketing, and
law areas.

Example 1 (Health care systen®).hospital would like to release health care data for
external research purposes. Howeurgsurance companigsheattacke) are interested



in knowing the health record of the patients and their par@nrivacy). Given that if
somebody’s parents have a specific disease then the theyHeechildren) may have
the same disease with high probability, they insurance eonigis may increase the
insurance of the children in order to guarantee a high manfgimofit.

Example 2 (Marketing and competitiod.retailing company would like to know the
pattern of customers choice and future directions from argimarketing records that it
already has. One of the possible options for that comparnyaésitsource its own data
to a third party that performs the mining task and discoveriateresting patterns and
provide them back to the company. While this data is not ingdrfor many people,
it would be important for other companies which competinglom same market (the
attacke)). Therefore it is required to provide an image of the data tiaa imply the
required task without revealing additional informatiortiie third party.

Example 3 (Regulations and law#)ccording to several currently applied regulations
and laws, personal data is preserved and can not be storedpently or used for mak-
ing decision by other party. Specially, as data mining atgors build decision on data
patterns, it is hard to remove the bias of decision based ndeger race. An example
of Sﬁch regulations includes HIPAA (Health Insurance Ralitg and Accountability
Act)d.

2.2 Major Notation

— FS: the PP-ARM algorithm using fake transactionsin/[14].

— PS: the PP-ARM algorithm using data maskingin{[11].
— PPS: reconstruction probability when using tR& algorithm.

- PFS reconstruction probability when using th8 algorithm.
PPS quantification of preserved privacy when usig algorithm.
PFS quantification of preserved privacy when using Hsealgorithm.

- w , w1, wz: general parameters used for the ARM with fake transactmrepresent
the ratio of fake to real transactions.

— Ry, Ry: reconstruction probability of ones and zero®Birespectively.

— a: privacy parameter ifrS scheme which determines the ratio according to which
ones and zeros are handled.

Note that other notations are defined and used in the corftéxisgpaper as well.

2.3 Data Model

The market basket model is used for the ARMn the market basket, each user par-
ticipates with a tuple (also called transaction) in the bas® where the data tuples are
of fixed length as a sequence of ‘0’ and ‘1. The columns in thtadase represent
the products (i.e., items) where the existence of ‘1’ in tinglé indicates a purchase

L www.hhs.gov/ocr/hipaa/
2 Note that this model is figurative where the applicationsds limited to data driven from
market model but any other models as well (see the above dgamp



of the specified product and the existence of ‘0’ indicatepum@hase. Since the users
normally buy a smaller fraction of products than the wholenber of products in the
market, the number of ‘1's is much fewer than the number of.‘T’he goal of the
mining process is to compute the set of association rulebardatabase that satisfy
a specific criterion. For general representation, the databe represented as follows

23]:
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Whereagj) = 1if and only if the item: of the user; is selected (marked, bought,
access, etc) or equal tootherwise.

2.4 Definitions

Definition 1 (association rules)[d2] Letthe whole itemsetbe= {a;, az,a3...,a,}
andT is a set of N transactions wher@ = {t;, 1o, ...,ty} Where each transaction
is a subset of. The association rule is a statistical implication whicindze expressed
as follows: X = Y whereX, Y C I, X NY = ¢.

The association rul& = Y is said to have a suppostif X NY appears is% of T'.
Also, the association rule is said to haveonfidence it:% of theT that satisfyX also
satisfyY. While the support is a measure of the significance of thecéetson rule, the
confidence is used as a measure of strength. Also, an assoaiale is of interest if
bothc ands are greater than some threshold. According to the Aprionimgj algorith,
finding the association rule in a dataset is equivlant to figdhe frequent itemsets in
that associations rule. An itemset is frequent if its supogreater than a threshold.
Formally, the support of the itemset is defined as follows:

Definition 2 (Support of Itemset).[I4] Let A be a set ofi items wherd = {a1, a2, a3 ...
andT is a set ofNV transactions wherd = {t1, o, ..., ¢y} where each transaction
is a subset of. The support ofd is defined as follows:

teT|ACt
supyf (4) = TLETAEY @
Example 4.Let the items be I¥m, c, p, b, }, and the minimum support bg,;, = 3.

Also, let the set of transactions (tuples)the~ ts shown as follows

,an}



t1={m, ¢, b} t; = {m, b} ts = {m, p, b} tr={c,b,j}
to={m,p,j} ts={c,j} te={m,c, b, j} ts ={b, ¢}

From the transactions, we can systematically derive theesemtation matrix in
terms of ones and zeros representing the existence andcabsta specific item in
each transaction.

t1 /11010
10101
ts5]1 10010
t+1 01001
ts 110110
te | 11011
t-lo1011
ts \01010

By applying the support model iftl(2) on the above data matvixobtain the fol-
lowing frequent itemsets and their support respectivily}, {c}, {b}, {j}, {m, b}, {c,
b}, {j, c} and their supports arg, 3, ¢, 2,4 2 and2.

Definition 3 (Privacy measure)[14] The privacy is defined as the probability accord-
ing to which the distorted data can be reconstructed.

Definition 4 (False positives™). [LI] This false positive estimation happens when
k—itemset with a support slightly less,;, is supported with more FT than other
k—itemsets (included).

Definition 5 (False negatives™). [L1] This false negative estimation happens when
k—itemset with a support slightly greater than or equgl;,, is supported with less FT
than otherk—itemsets (discarded)

3 Association rule mining with fake transactions

Unlike the previously introduced scheme by Evfimievski ¢18], which is per-transaction
noise addition scheme, the ARM using fake transactionsmset{@Z] (PS for brevity)
adds fake transactions as a mean of noise in between of th&aegactions in the
database. The privacy K6 is determined by thquality andquantityof the fake trans-
actions added in between of the real transactions.quantityof fake transactions is
determined according to the parameterhich represents the ratio of fake to real trans-
actions and the paramefarvhich determines the average length of the fake transagction
The parametetfris chosen to be same as the average length of the real tremsaand
the parametetv is chosen based on the desirable quantification of privadyetat-
tained (PpFS). ThePpFS can be expressed in terms of the hardness of filtering theetie r

transactions from the fake transactiof$¥) given as
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The PF> is then given ag?[® = 1 — P™ = 1 — 1. Technically, therS scheme

consists of two parts which are the data anonymization aadi#ta mining parts. For
the data anonymization, the following procedure is perfeadm

PFS N 1

1. Determind; as a realization of uniformly distributed random variabléwmeani
that is equals to the average length of the real transadfiensl < I; < 21 — 1).

2. Determinew® as the number of fake transactions to be inserted betweereio
transactions (specifically for two real transactions wilthdx; and index + 1 in the
real database). For a predefinedi.e., mean)w(® is determined as a realization
of a uniformly distributed random variable with mear(i.e.,1 < w; < 2w — 1).

. 1, number of items are selected frahto construct a fake transaction.

. The process is performed fat?) times for the current insertion.

. Thew™ number of fake transactions generated above are inserteddrethe real
transactions with indexesandi + 1.

g b~ w

The above steps are performed for the next pair of tuples {V.e- 1 times) for theNV
tuples in the database. For the data mining part (i.e., legthe association rules from
the anonymized data), the following steps are performed:

— The new minimum support of a transactionieftemset in the list of anonymized
transactiond” is computed.

— Using any off-the-shelf algorithm (such like the apriogatithm), the association
rules are driven according to the new minimum support.

The procedure of computing the new minimum support is draegording to the fol-
lowing steps: Given a fake transactiowf lengthY and k-itemsetA, the probability
thatt supportsA is:

ork oY
pe = —F% = ZE (whenY > k and0 otherwise) 4)
cy Cy

The number of fake transactions that suppgoitemset is approximately given as
follows

20—1 20—1
CY wxN wN v
;::kck 20— 1 Ck(21—1);::k F

Assume the support ot € 7" is s’ (i.e., supf (A) = s'), then the number of
transactions if” that supportd is s (1 + w)N. Therefore, the number of real transac-
tions that supportl in T is given as follows:

20—-1

/ wN
s(1+w)N—m£CZ (6)



If we consider the real support to Bethen it is possible to write the above formula

ass = s (1+w) — reeIESY] ZQYZ;,IC CY . Therefore, we can write the new minimum
k

support as follows:

20-1 ~Y
g Smin + Cg(;}lfl) >y Ck %
k= 14+w

Since all of the parameters inl (7) are known, it is then eadgdm the associa-
tion rules in the anonymized transactigis given the minimum suppo,,;,, in the
unanonymized set of transactiofisFor further details on thES scheme and its opti-
mization, please refer to [114].

4 Privacy preserving association rule mining revisited

In this section, we revisit the aforementionesl scheme and introduce three main re-
sults which are as follows: (i) First, we show that fffescheme is resources exhaustive
(specially in terms of its requirements for high memory idento provide a reasonable
level of privacy), (ii) we show that the theoretical quattion of the privacy in th€S
follows the worst-case study while the aver can can be ba#scriptor for the privacy
quantification. We derive a general formula for the average guantification, and (iii)
we show that using two round attack where the first attackiedxy applying common
filters on the data and the second by the random selectiorheve that the privacy can
be less than the above two cases.

4.1 Requirements analysis of th&S scheme

The privacy of thé=S scheme is merely dependent on the paramégardw. While the
first parameter does not hamay effect on the required memory, the second parameter
which is the determinant factor of the privacy (accordingd)) has a great effect. The
privacy attained by thES scheme is defined &3> = 1 - P> =1— w+r1|§ In order to
attain a relatively high privacyy need to be high. For example, to achieve a privacy of
90% (i.e., 0.9 on thel-scale),w need to be at leadtl. That is, the required additional
memory (as one mean of resources) for representing andigtibie fake transactions
in 7" will be 11 times of the original database size. To illustrate the gnoaftsuch
functions, Fig[lL shows different growth regions. In Fig)jL¢ae growth is shown for

0 < w < 1 which reflexes the fast growth region attaining privacy (i.e.,50%). Fig.
[I(®), shows the range of < w < 10 from which we obtain that an increment of

in w leads to only0.4 additional privacy preservation form the casewf= 1 (i.e.,
overall preservation 1). Finally, for thig) < w < 100, Fig.[1(c) shows that the change
of w by 90 would add a privacy preservation @04 to accumulat®.99 for the overall

w = 100.

% Though the function growth may not express the real requéresnof the memory, its being
with O(%) growth function is a clear indicator that the privacy groves\&r asw grows larger
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Fig. 1. The attained privacy versus the requiredhat reflex the required overhead in
terms of memory and computation.

As we early mentioned, the parameterdirectly affect the required resources in
term of memory and computation. While the memory part istiated above, the re-
quired computation linearly depends on the size of the datasvhich the association
rules to be learned. That s, the increment of the databasérsl” will requirew times
computational power more than the case of the associatieriscovery inl” only.

4.2 Average-case for privacy quantification

The privacy attained in thES scheme according to the description[inl[14] is referred
to as the worst-case privacy. The worst privacy is driven $ésuening that the recon-
struction probability of any tuple in the anonymized dat#s& is equal to the recon-
struction probability of the first (thus the worst) tuple dilmer words, the probability of
all tuples is assumed to be equal. However, since the att&ckesumed to reconstruct
tuples successively without replacement, the necessiydfining an average case pri-
vacy exists. In the following (theorelmh 1), we define the ageraase privacy and show
its relation to the worst-case privacy [n[14].

Theorem 1 (average-case privacy)The quantification of privacy in [14] considers
the best reconstruction probability of a single record.(ivorst case privacy measure)
while the real privacy preserved (at average) is greatemntktze worst case quantifica-
tion.

Proof. Consider an adversany interested in obtaining the whole setrefil transac-

tions by applying a random selection process. For the sequencalsfto obtain the
transactions, ...ty € 7', the following is the probability for successful reconstru
tion of the NV real transactions anonymized in the setwok NV fake transactions.

P*l N N N-1 N—(N-1)
" N|wN+N wN+N-1 wN +N — (N —-1)

X (po+p1+---+pN-1) (8)

2|~



Then, itis easy to verify that; > p, 41 for 1 <i < N — 1. Take for example = 1
then —*— > —¥=—. By multiplying both sides byM+X=1, we get* N1 >

TA which is valid for anyw > 0 and N > 2 (note that these conditions are always
valid under the real data assumptions). We can similarlgrekthe above result to any

¢+ > 1 and say that x p; > ijopiﬂ- forany: > 1 andec > 1. Thatis (as a
special case by substituting= 1 andj =N-—-1),N xp; > vaz’olpi which means
P> = Zl 0 L. However,+; Zl 0 'p; = P.andp; = PFS. Then,PFS > P.. From

the f|nal result, we get that.

PS> P,
1-PB<1-P.

Fs ps’
P> < Py 9

where P> and PP are the quantification of privacy preserved in fescheme in
[14] and at average case introduced by us, respectively. O
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Fig. 2. The average versus the worst case privacy preservation

Note that the last result of the average-case privacy dfiGaiion is more general
and better express the real situation of the privacy attbéweording to the definition
in [14]. Specially, this privacy is more suitable for modegjithe attack below.

4.3 On fake transactions filtering

The main concern in[14] has been the filtering (and therefwreeconstruction) of the
real transactiongnserted in between of the fake transactions. However, aaradry



A might be interested in removing some of the fake transastidnich are obvious in
order to maximize the chances of obtaining the real trafmain the remaining set of
transactions according to the aforementioned privacy tfication model.

The above is possible because, practically, it is not ptessibgenerate fake trans-
action that typically resemble the distribution of the thiggimal data. This is specially
obvious when the distribution of the the dataset is unknommased. This shortcoming
opens a great chance for filtering the weak fake transactisimg many off-the-shelf
statistical tools. Moreover, given additional information the distribution of the user
choice in the data it is further possible to filter high amooifake transactions. Gen-
erally speaking, however, the filtering may take one, or dveth, of the following
strategies:

— Random filtering: since the number of the fake transactionginis greater than
the number of real transactions, specially when> 1, then it ismore likelyto
select a transaction at random such that the selected ¢taorsaelongs to the set
of fake transactions.

— Guided filtering: given enough information tgl about the distribution of the real
and fake transactions and the choice of users (in genetayn easily (with high
certainty) filter a large amount of the fake transactions.

In order to study the impact of this filtering on the quantifpgt/acy preservation,
let the efficiency of the filter applied di be~y where0 < v < 1. Then, it is easy to
extend the result if{8) to the following:

o 1 N N-1 N—(N-1)
PO == + ot
N|Ql-ywN+N (1-y)wN+N-1 (1-y)wN+N—-(N-1)
(10)

Similarly, we can define the new average-case privacy (giyers

. N-1 .
Fs(v): _p(v)zl_z N—i
P " — (1 —-=~)wN+N—i

(11)

To illustrate the impact of the filtering on the privacy pnesgion, Tabld L shows
the quantified privacy preservation for different filteriefficiency parameters and
different values ofv.

5 Remarks and Extensions

Obviously, theFS scheme introduces some great properties and, yet, suftenssome
drawback which are summarized as follows

— Unlike other schemes (such like tiS scheme), théS scheme introduces the-
oretically high privacy given enough resources (i.e., cotaffon and memory).
Though, such resources are a drawback for high privacy.



Table 1.qunatified privacy preservation under several filteringceficy factors.

guantification of preserved privacy
w=1llw=2lw=3w=4|w=5lw=60w=Tw=8w=9|w=10
v = 0.0/0.69290.81080.86290.89250.91150.92480.934710.94220.94820.9531
~ =0.1|0.67220.79510.85060.88230.90290.91740.92810.93630.94290.9482
v = 0.2]0.64850.77660.83580.87010.89250.90830.92000.92910.93630.9422
v = 0.3]0.62080.75440.81770.85490.87950.89690.90990.92000.92810.9347
~ = 0.4/0.58820.72710.79510.83580.86290.88230.89690.90830.91740.9248
v = 0.5/0.54900.69290.76600.81080.84100.86290.87950.89250.90290.9115
v = 0.6/0.50070.64850.72710.77660.81080.83580.85490.87010.88230.8925
~ = 0.7|0.43950.58820.67220.72710.766(00.79510.817710.83580.85060.8629

— The presence of the (bare) real transactions in betweeneofalte transactions
enables a great chance of real/fake transactions filteggdjhg to reduction of the
privacy.

Based on that, there is a great chance to utilize and exteradsin of theFS scheme
that maintain its advantages and reduces (or overcomedisiaslvantages. Here, we
recall another scheme of PP-ARM from the literatup§) and explain how a hybrid
scheme of both thBS andFS (referred ad1S) will maintain the aforementioned goals.

5.1 MASK for privacy preserving association rule mining

The distortion of the data using the MASK scheme (iRS,scheme) is very simple
when applied on a database defined according to the abovd ofdbde market basket
(i.e., (A). To preserve the privacy, the data owner perfahmagollowing:

— Each tuple in the database is considered as a random vaiabte{ X;} where
X;=0orl.

— The distortion follows the following procedur®: = distor{ X ) whereY; = X; &
7; wherer; is complement of; which is a realization of a random variable with
the probability distribution functiotf () = bernoulli(p) for0 < p < 1.

The implication of such random variable is thattakes a value ‘1’ with probability
and ‘0’ with probabilityl — p. For the case of; = 1 the original bitX; in the data
tuple is kept same (with probabilify) and for the case aof; = 0 the original bitX; is
altered to its complement. On the other hand, the privaclye®$ scheme is estimated
by the probability according to which the reconstructiozeifos and ones is possﬁmle

1. Reconstruction of ones accordingRe = P.{Y; = 1|X; = 1} P.{X; = 1|Y; =

P {Y; = 01X: = 1K = LIY: =0} = sl + i s
2. Reconstruction of zeros accordingRg = P.{Y; = 1|X; = 0} P.{X,; = 0|Y; =

o o o - o 1—s0) Xp2 1—s 1—p)?
U4PA{Y; = 01X; = 0}P{X; = 0]Y; = 0} = sl Losalxlon)

4 Note that this definition for the privacy is better the prexd@ne since it implies an average-
case reconstruction per bit.



The overall probability of reconstruction is given as folk

PP = 4Ry 4+ (1 —a)Ry (12)

Whereaq is a privacy parameter (for more details on the derivatieferrto [11]).
The amount privacy preserved is given as follows:

PP =1-P =1—(aRi +(1-a)R) (13)

The miner simply compute the minimum suppegt;,, for all candidate in the ran-
domized tuples that maps to the same original tuple requoitly a linear number of
counters. That is, the computation overhead linearly dégeton the size of the dataset
and the length of the each itemset (in the worst ﬂase)

5.2 Comparison

In this section, we compare the two aforementioned schentegant out their strength
and shortcomings. Obviously, tiR scheme requires no memory overhead (apart from
the required from representing the data itself) while fiSescheme requires memory
space for the additionab N number of fake transactions used to hide the real trans-
actions. Such memory can be tens of gigabytes for an ideabdsé limiting the later
schemes feasibility and applicability.

ThePS scheme has an upper bound for the quantified privacy. Thiatrithe max-
imum possiblep, the attained privacy is equal 8%. While this is possibly sufficient
for some applications, for many privacy critical applicais this would be a a great
enough breach[13]. On the otherh and, the overhead iR3lseheme is merely depen-
dent upon the allowed amount of overhead.

Both schemes excessive privacy results in a relativelydrighror of the mining
algorithm. Also, while thé®>S scheme requires modification in the mining algorithm to
maintain a reasonable computation overheadFthecheme can use any off-the-shelf
algorithm for mining. Tablgl2 shows a concluding comparisetween the two schemes
above.

Table 2. Comparison between th€& andPS schemes

Feature PS schemgFS scheme
Memory Overhead O O(wN).
Computation ~ N ~wN
Mining Algorithm | Modified |off-the-shel

5 Also this is considered an additional merit of th8 over theFS. Further optimization tech-
nique is shown in[24] as well.



6 Hybrid scheme for association rules

Our scheme utilizes the two introduced schemes above to thaeadvantages to-
gether and reduce from their disadvantages speciallyectkat the memory overhead
and limited privacy.

6.1 HS for PP-ARM

Our hybrid schemeHS from brevity) works as follows: first fake transactions are-p
duced using the same way of tR8 scheme and inserted in between of the real trans-
actions for the whole set of transactions in the databage tthee modified database
is distorted using the procedure of tR8 scheme. The scheme is detailed as follows
(analysis is omitted):

PPS
Pr'-isd:efPrFSPfS:H;w (14)
PPS
pHsEhy _pHs — 1 14T- (15)
w

since bothP"> andP"® are less than zero, the resulting probabifify*' is always
greater than either of the two probabilities.

6.2 Measures and Metrics

To study the characteristics of thtS scheme, we use the following three criteria (1)
Privacy measure (Lemnid 1), (2) Error measure, (3) Overhezabunes in terms of
computation and memory (Lemih 2).

Lemma 1. The quantified privacy preserved using our hybrid schétfeis higher
than the preservation using either tR& or theFS alone.

Proof (sketch)Given that0 < PS> < 1 and0 < P75 < 1 then it is trivial to see
that PFSPPS < PFS and PFSPPS < PPS. Thatis,1 — PFSPPS > 1 — PFS and
1 — PP PPS > 1 — PP which givesP/'> > PF® andP}'> > PPS respectively. [

As a special case, it can be easily shown that our schemasiedtprivacy is higher
thanPS scheme whe®"™> equals to its maximum value (i.e., minimuRY®).

Lemma 2. For same privacy level, oS scheme requires less storage th&scheme.

Proof. Let w; andwsy be two parameters defined f6f andHS schemes respectively.

: . o _ 1 HS _ pfe
The privacy attained by each scheme is g|veP?151%_ l—qrgrandP = 1— .

By setting[> = P/ (i.e., attained privacy is equal in both schemes) we get that

ps _ 1+ ws
" 1+ w

However sinceP’ is less than 1 (more specifically, maximudi® is equal t00.89),
the above equality is only possible when < w;. O



Table 3. Error of mining in terms of false positivet and false negative~ for HS
versusFS considering different parametesisand forp = 0.5 and different minimum
support values.

Smin = 0.005|8min = 0.0025|8min, = 0.001
scheme [wlprivacyl ™ | o~ | o7 o~ o | o~

HS scheme2| 0.833 |4.013 2.728 |2.341 2.340 |2.172 1.503
FS scheme2| 0.667 {2.985 1.493|1.6071 1.607 |1.102 0.701
HS schemeg4| 0.900 (6.731 4.275 (4.762 3.698 |1.591 1.620

FS scheme4| 0.800 [4.975 2.985 |3.214 2.501 |1.027 1.152

Example 5.For example, to attain a privadyy> = P/ = 0.95 whenPP® = 0.3, itis
enough to setvy = 5 while w; must be at leasit9

For the part of the error measurement, represented by falsigve and false neg-
ative, we perform the experiment on the dataBmtS-WebView-1 [22]. The used
dataset consists 69602 transactions where each consistsi97 items and the length
of transaction at average (i.8),is equal to2 [22]. We further setw with two values:

2 and4 generating fake transactions according to the proceduBeaind setp = 0.5
according to which the privacy ¢fS scheme is determined. The measurements for the
error is shown in Tablel3.

7 Conclusion and Future Works

The privacy preservation association rule mining (PP-AR8a critical issue of re-
search where several are proposed for computing the supfptamnset in a randomized
dataset considering different randomization techniglrethis paper, we revisited the
PP-ARM using fake transactions and showed three majortse3Mé first redefined the
privacy to include the average case consideration. We tbarmqu out the exhaustive
requirements of th&S in terms of memory and computation. We further pointed out
a drawback of thé&S in practice by showing it weakness against the fake traiwsesct
filtering. In order to avoid such limitations of tHe&5, we extend it to a hybrid scheme
with the PS scheme and show in both analytical and experimental reselattained
properties.

In the near future, it will be interesting to investigate therivation of concrete
error measures (in term of false negative and false pokitAdso, we will consider
experimentation over datasets with different parametersi( n, andN).
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