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Abstract. Data aggregation is one of the main purposes for which sen-
sor networks are developed. However, to secure the data aggregation
schemes, several security-related issues have raised including the need for
efficient implementations of cryptographic algorithms, secure key man-
agement schemes’ design and many others. Several works has been in-
troduced in this direction and succeeded to some extent in providing
relatively efficient solutions. Yet, one of the questions to be answered
is that, can we still aggregate the sensed data with less security-related
computation while maintaining a marginal level of security and accuracy?
In this paper, we consider data randomization as a possible approach for
data aggregation. Since the individual single sensed record is not of a
big concern when using data for aggregation, we show how data ran-
domization can explicitly hide the exact single data records to securely
exchange them between nodes. To improve the security and accuracy of
this approach, we introduce a hybrid scheme that uses the cryptographic
approach for a fraction of nodes. We study the efficiency of our schemes
in terms of the estimate accuracy and the overhead.

Keywords: security, sensor network, data aggregation, computation ef-
ficiency, data randomization, experimental justification.

1 Introduction

Data aggregation is one of the main functions for which the wireless sensor net-
works (WSN) are developed. In data aggregation networks, the different sensor
are scattered in a field for sensing some physical phenomena (e.g., temperature,
light, humidity, etc). The avalanched aggregated value of several readings over
the time is of more interest rather than the single reading. However, to enable
nodes to perform the in-network processing, the concept of secure data aggrega-
tion (SDA) is introduced. The SDA has been studied intensively in the context of
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the security study in WSN where several cryptographic-based schemes have been
introduced. A nice survey of these works is in [1]. In WSN, the cryptographic-
based aggregation schemes are used so far [2,3,4,5]. In these schemes, the sensing
node encrypts the raw sensed data using a previously shared key (in the sym-
metric key model) or public key of the other node (in the public key model) and
forwards the encrypted data to the destination which has the corresponding key.
The destination in this case is the aggregator. Upon receiving the forwarded en-
crypted records, the aggregator decrypts them, obtain the raw data, and perform
the aggregation function on the aggregated data.

For the above model, both public and symmetric key techniques have been
investigated. The public key algorithms have been shown to be computationally
feasible to some extent on the typical sensor nodes [6,7,8]. As the public key
authentication is crucial requirement for the deployment of public key, authen-
tication services have been introduced in [9,10]. Also, secret key pre-distribution
services have been introduced in [11,12,13,14,15] and key revocation techniques
have been introduced in [16] to make the applicability of these algorithms and
techniques more feasible on the typical sensor nodes. However, to deploy the
public key algorithms widely in WSN, several algorithms and designs need to be
considered as the aforementioned existing algorithm do not solve the aforemen-
tioned problems perfectly. On the other hand, the applicability of symmetric key
algorithms in WSN, though computationally feasible, is subject to the resiliency
and connectivity tradeoff [9].

As another direction of performing aggregation, we investigate the applicabil-
ity of the data randomization for efficient data aggregation. The work is moti-
vated by the question of that: can we still reduce the overhead while performing
the same task of marginally securing the data aggregation?

To answer the above question, we try the data randomization as a solution.
The data randomization has been intensively studied in the context of privacy
preserving data mining (PPDM) [17]. In the PPDM, the data owner needs to
publish an image of his private data to be used by third party for applying data
mining algorithms without revealing this data’s privacy [18]. That is, the data
itself is modified using some mechanisms so that modified data is statistically
similar to the original data leading to that some aggregate functions can be
still applied on the modified data with an acceptable accuracy. An example of
the modification techniques is the data perturbation. A promising feature for
making the applicability of the randomization more feasible in sensor network
is that many randomization components are used already as part of the sensor
node design like TinyRNG [19] and RandomLFSR [20]. Though, the data
perturbation algorithms face an accuracy/privacy trade-off which is related to
that increasing the privacy of the data by increasing the deviation of the added
noise (in case of normally distributed noise) results in a high loss in the aggregate
accuracy [18,21]. However, one of the facts that may help in reducing the impact
of that problem is the huge amount of data delivered by the different sensor
nodes over the time making it minimizing the impact of the accuracy loss.



340 A. Mohaisen et al.

In this paper, we consider the data randomization as a possible technique for
secure data aggregation in sensor network. We begin with the randomization-
only scenario instead of the existing cryptographic-based aggregation. Facing the
accuracy and security problems arising from that, we extend this scheme to more
secure/accurate hybrid scheme in which both randomization and cryptographic
approaches are utilized. To evaluate our scheme and demonstrate the goal beyond
its design, we study the overhead analysis in terms of computation. We also study
the accuracy of aggregation estimate.

The rest of this paper is organized as follows: section 2 introduces the assump-
tions and network models which are used through the paper, section 3 introduces
the details of our scheme, section 4 introduces the analysis of our scheme, and
finally, section 6 draws concluding remarks for future works.

2 Definitions and Network Model

The nodes in the network are represented as s1, s2, . . . , sn where the group itself
is represented as S. The sensed data by the nodes respectively is denoted with
the random variable D where d1, d2, . . . , dn ∈ D. Also, we define the random
variable X which is used to generate noise such that x1, x2, . . . , xn ∈ X . The
above random variable statistical characteristics like the mean and deviation.
The mean is d̄, x̄ for D and X respectively. Also, we define the noise addition
operation � which is invertible by �̄. The following operations and their inference
are applied on the random variable realizations:

– di{∈D} � xi{∈X} → yi{∈Y } . That is, D � X → Y .
– yi{∈Y }�̄xi{∈X} → di{∈D} . That is, Y �̄X → D.

Through this paper consider the following: D represents the the sensed data, X
represents the noise and Y represents the randomized data. In the following, we
define the set of definition used through the rest of the paper.

2.1 Definitions

Definition 1 (aggregation function). For a set of sensed data (d1, d2, . . . , dn)
∈ D that is sensed by the set of sensor nodes s1, s2, . . . , sn, in the context of this
paper, the aggregation function f(d1, d2, . . . , dn) is a function that computes a
single value result from a collection of inputs. Here, we mainly define the follow-
ing aggregate function instances:

– summation: f(d1, d2, . . . , dn) =
∑n

i=1 di.
– average: f(d1, d2, . . . , dn) = 1

n

∑n
i=1 si.

– maximum: f(d1, d2, . . . , dn) = max{di|i = 1, 2, . . . , n}
– minimum: f(d1, d2, . . . , dn) = min{di|i = 1, 2, . . . , n}
– median: f(d1, d2, . . . , dn) = dr : r = n+1

2 where {d1, d2, . . . , dn} are sorted.
– count: f(d1, d2, . . . , dn) = |{di|i = 1, 2, . . . , n}|.
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Fig. 1. Illustration: network model

More precisely, in the context of sensor network, the average function is the
mostly used.

Definition 2 (distribution function). Let X be a discrete random variable
where x1, x2, . . . , xn ∈ X. The random variable has a distribution D with a
mean value μ and a standard deviation σ. The commutative distribution func-
tion (CDF) of X is defined as FX(x) = P (X ≤ x) =

∑
xi≤x P (X = xi) =∑

xi≤x p(xi). This function is used to generate all the instances (a.k.a., nonces)
of the random variable X.

Definition 3 (Derandomization). In the context of this paper and unlike the
common use of the word, the derandomization process is defined as the operation
of generating a random sequence of random integers that belong to a random
variable with specific statistical parameters which are equivalent to the added
noise in the randomization phase. Two random variables X and Y are equivalent
if they are equal in distribution. That is, P (X ≤ x) = P (Y ≤ x)∀x.

2.2 Network Model

In this paper, we use the well known 3-tiers model [22,23]. The network of 3-
tiers is a common in the large networks and consists of the huge number of
sensor nodes which are classified into clusters [24,25]. The cluster is a functional
grouping of the nodes where each cluster has a cluster head (CH). The communi-
cation pattern follows a forwarding mechanism where each cluster has backbone
nodes which are updated frequently to keep power consumption fair. The cluster
head communicates immediately with the base station (BS) or through the sink.
The base station can be typically a special kind of sensor node connected to a
computer machine. An illustration of the network model is shown in Fig. 1.

3 Randomization for Lightweight Aggregation

In this section, we introduce the details of our scheme including the basic
randomization-only scheme, its shortage, and hybrid scheme. Our schemes both
consider the above notation and definitions as an underlying intuition.

3.1 Randomization for Secure Data Aggregation

The randomization-only scheme consists of two stages which are namely the
offline and online phases. The two phases are performed as follows:
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Offline Phase: In the offline phase, the set of node within the cluster agree on
the distribution parameters required as entries for the randomization function.
That is equivalent to statically assigning the different parameters (e.g., μ, σ, etc)
to the different nodes.

Online Phase: In the online phase, the data randomization is performed upon
the need of forwarding the data to the cluster head. That is, the procedure
interaction in Fig 2 is performed (for cluster with size c). The protocol in Fig. 2
can be summarized as follows:

1. At Each Node: each node si generates a random nonce xi ∈ X using its
own parameters, add the generated xi as a noise to the sensed di resulting
yi as yi = xi � di, and forwards yi to the cluster head.

2. At the Cluster Head: The cluster head (CH) receives the forwarded ran-
domized data [y1, y2, . . . , yc] from the different nodes [s1, s2, . . . , sc] in the
cluster, generates a vector of random nonces [z1, z2, . . . , zc] ∈ Z, remove the
equivalent (in distribution) noise to the added one resulting D̂ = Y �̄Z =
[y1, y2, . . . , yc]�̄[z1, z2, . . . , zc] where �̄ is the corresponding items with the
corresponding indexes resulting [d

′

1, d
′

2, . . . , d
′

c]. Then, on the
resulting [d

′

1, d
′

2, . . . , d
′

c], the CH performs the aggregation function resulting
A = f(d

′

1, d
′

2, . . . , d
′

c) and finally, using some previously shared key K and
encryption algorithm Enc, the CH encrypt the resulting A to A

′
= EncK(A).

3. At the Base Station (BS): using some previously agreed-on key K and
decryption algorithm Dec, the BS retrieve A = DecK(A

′
) for each received

A
′

value from each CH in the network and then the BS performs its own
aggregation function f(A1, A2, . . . ) and estimate the final aggregated value.

Note that the aggregation works well because the modification of the data will
maintain the same mean of the modified data. That is, the statistical properties
of X and Z are same resulting that E[X + D] = E[Z + D] = E[Y ] when using
the simple addition instead of �. When using the simple subtraction instead of
�̄ we get that E[X ] = E[Y ] − E[Z] = E[Y ] − E[X ].

Limitations: the limitations of the above scheme are two. First, the accuracy
due to the randomization grows highly when we set σ to a large enough value
that guarantees good standards of security (as shown in Fig. 4(b)). Even though
a small deviation could be sufficient for randomization if we set the mean of the
noise to some non-zero value, possible data filtering attack can be applied to
that once the σ is small. The second shortage is that not all of the aggregation
functions shown in Definition 1 can be applied on the perturbed data accurately
due to the high variance. For example, the min, max and median functions
cannot be applied with the required precision. To overcome this shortage, we
introduce the hybrid scheme which introduces reasonable solutions for the two
problems.
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at each node si

Gen xi ∈ X
yi ← xi + di

yi

�
at the cluster head CH

receive [y1, . . . , yc]
Gen [z1, . . . , zn] ∈ Z : μZ = μX , σZ = σX

[d
′
1, . . . , d

′
c] ← [y1, . . . , yc] + [z1, . . . , zc]

A ← f(d
′
1, . . . , d

′
c)

A
′ ← EncK(A))

A
′

�
at the base station BS

receive [A
′
1, . . . , A

′
c]

[A1, . . . , Ac] ← DecK([A
′
1, . . . , A

′
c])

Afin ← f(A1, . . . , Ac)

Fig. 2. The online phase of the randomization-only algorithm

3.2 Hybrid Scheme: Randomization with Encryption

In the above scheme, once the attacker had access to enough number of points
in the randomized data, he can study its distribution (when some hint is given
on the type of the distribution). Therefore, it would be good choice to harden
this kind of natural attack. To do so, the number or randomized data records
need to be carefully assigned in that they do not reveal further information. In
that case, the attacker will still have some ability to study the distribution but
with very high percentage of estimate error.

Our solution for solving this is the hybrid scheme. In this scheme, not only
randomization but also encryption is performed. The hybrid scheme also con-
sists of two phases; namely, offline and online phases which are detailed in the
following subsections.

Offline Phase: in this phase, the different nodes in the network are predeter-
mined to whether to use the encryption scheme or the randomization scheme for
data delivery. That is, the following is performed:

– The operator divide the sensor nodes to be used within each cluster into two
parts representing the number of nodes that will use the encryption scheme
and the nodes that will use data randomization. The number of nodes is
nr = n − ne and ne for randomization and encryption respectively.

– In the set of nodes to use the randomization scheme, the operator assign the
randomization parameters.

– In the set of nodes to use the encryption scheme:
• The operator assign the encryption scheme to each of the different nodes.
• Based on the encryption scheme (say, symmetric key model), the oper-

ator pre-assign the keys (as in [13]) or keying material (as in [11,12]).
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Data Separation: For the packets which include data that has been treated
by the randomization method, a ‘0’ flag is attached and for the data which has
been encrypted, a ‘1’ flag is added. That is, if < 0||di > is received, the cluster
head will perform derandomization for di and if < 1||di > is received the CH will
use the decryption.

Online Phase: In the online phase, the raw data is encrypted or randomized
based on the the class of the nodes. That is performed in the following steps.

1. At the node side: For each node si in the cluster c, the following is performed
on the sensed data item di:
(a) If si is in the randomization group, si generates a random nonce xi ∈ X ,

performs the noise addition to generate yi as yi = xi � di and forwards
< 0||yi > to the cluster head.

(b) If si is in the encryption group, si encrypts di using the pre-assigned
key and the pre-loaded encryption scheme resulting yi = EncK(di) and
forwards < 1||yi > to the cluster head.

2. At the cluster head: for each received data from the different nodes, the
following is performed:

at si at CH at BS
[σ, μ] or [σ, μ and K, Enc, Dec] [K, Enc, Dec]

[K, Enc, Dec]
if si ∈ Rn

Gen xi ∈ X
yi ← xi + di

f = 0
if si ∈ En

yi = Enck(di)
f = 1

�
< f||yi > if f == 0

Gen zi ∈ Z

d̂i ← yi + zi

if f == 1
di ← Deck(yi)
repeat for each si ∈CH
A ← f(d

′
1, . . . , d

′
n, d1, . . . , dn)

�
A

′

A ← DecK(A
′

repeat for each CH
Af ← f(A1, A2, . . . )

Fig. 3. The online phase of the hybrid scheme
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(a) If < 0||yi > is received, using the same randomization parameters at
the node side the cluster head CH generates a vector of random nonces
[z1, z2, . . . , zc−nr ] ∈ Z. Then, the CH performs the addition inverse
operation �̄ for the resulting Z and the received Y resulting D̂ =
Y �̄Z =[y1, y2, . . . , yc−nr ] �̄[z1, z2, . . . , zc−nr ] where �̄ resulting
[d

′

1, d
′

2, . . . , d
′

c−nr
]. Finally, the CH performs the aggregation function on

[d
′

1, d
′

2, . . . , d
′

c−nr
] that leads to Ar = f(d

′

1, d
′

2, . . . , d
′

c−nr
).

(b) If < 1||yi > is received, using some previously agreed-on key K and
decryption algorithm Dec, the CH retrieves di = DecK(yi) and performs
the aggregate function on the resulting set d1, d2, . . . , dne resulting Ae =
f(d1, d2, . . . , dne).

(c) The CH performs the aggregation function on the results Ae, Ar in the
previous two steps resulting A = f(Ar, Ae) and using some previously
shared key with the BS (K) and encryption algorithm Enc, the CH en-
crypt the resulting A resulting A

′
= EncK(A).

3. At the base station (BS): Using some previously agreed-on key K and de-
cryption algorithm Dec, the BS retrieves A = DecK(A

′
). This is performed

for the different cluster heads in the network. Finally, the BS performs its
own aggregation function f(A1, A2, . . . ) and estimate the final aggregated
value.

A brief description of this protocol is shown in Fig. 3.

4 Analysis and Evaluation

In this section, we introduce the analysis of our scheme. This typically includes
the evaluation of overhead in terms of the required computational power, pos-
sible attack scenarios and their countermeasures, and finally the accuracy of
aggregation estimate for some commonly used aggregation functions.

4.1 Overhead Evaluation

for the overhead evaluation, there are three scenarios: the randomized only, the
encrypted only, and the hybrid scheme. The memory and communication require-
ments for each scheme is the same however the computation overhead differs.

Scenario 1 (fully randomized): . In the fully randomized scenario, the overall
computation overhead results in the computation required the randomization
and de-randomization operations at the node and aggregator respectively. That
is, CO =

∑n
i=1 Prand +

∑n
i=1 Pderand = n(Prand + Pderand). However, Prand

is equivalent to Pderand (based on definition 3). Assuming that the required
computation power for calculating � is equal to that for calculating �̄, the final
required computation overhead can be concluded as: CO = 2

∑n
i=1 Prand =

2nPrand. From that, we define the average overhead per node as

CO = 2
1
n

n∑

i=1

Prand = 2Prand. (1)
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Scenario 2 (fully encrypted): In the fully encrypted-data scenario, Pe and Pd

defines the required power for encryption and decryption respectively. The over-
head required computation power can be defined as: CO =

∑n
i=1 Pe+

∑n
i=1 Pd =

n(Pe + Pd). Similar to scenario 1, we define the average required power as:

CO =
1
n

(
n∑

i=1

Pe +
n∑

i=1

Pd

)

= Pe + Pd. (2)

Scenario 3 (hybrid scheme): In the hybrid scheme, both randomization and
encryption are used for portions of the network size. Let nr be the number of
randomized and ne be the number of encrypted and decrypted data. That is, the
overall required overhead can be defined as: CO =

∑nr

i=1 Prand +
∑nr

i=1 Pderand +
∑ne

i=1 Pe +
∑ne

i=1 Pd = 2
∑n−ne

i=1 Prand +
∑ne

i=1(Pe + Pd) = 2(n − ne)Prand +
ne(Pe + Pd). Similarly, we define the average overhead per node as CO = CO

n
which results:

CO =
2(n − ne)Prand + ne(Pe + Pd)

n
. (3)

By evaluating the above equation at the experimental values for the parameters
Pe, Pd and Prand, we can write the average computation (when using TinyRNG)
per node as a function of the network size and number of nodes that use the
encryption scheme only as: CO = 45.6 n−12.72 ne

n μJ.

4.2 Possible Attacks

Several attacks have been studied in the literature of the data perturbation.
Some of these attacks are general and some are scheme-specific. However, in all
of the attacks regardless to their type, the adversary tries to derive the per-
turbed data from the modified data given some apostriori knowledge on some
of the original data [21,26]. For example, in [26] the independent component
analysis technique (ICA) [27] is used to derive the original data from the per-
turbed data under some conditions. However, this attack will not work with our
scheme for two reasons: (i) the data in our scheme is modified separately. (ii)
The Non-Gaussianity condition for the original data cannot be satisfied. For sim-
ilar shortages, the PCA attack in [21] cannot be directly applied to our scheme.
Another more serious attack on the additive noise has been also studied in [28].
However, to accomplish a high precision of estimation for the modified data,
the deviation σ need to be as small as possible. In our scheme, however, we can
set the deviation dynamically considering the required aggregation accuracy and
security level.

4.3 Accuracy of Aggregation Estimate

As we previously assign the statistical parameters for the different random vari-
able from which the noise is generated, the resulting aggregate result after the
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derandomization process will have a small deviation from those values which are
calculated on the raw data prior randomization. For example, the deviation of
the mean in D̂ from the mean in D is defined as follows:

Δd = |D̂ − d| = | 1
n

(
n∑

i=0

di −
n∑

i=0

d
′

i)|. (4)

In Table 2, the deviation value is used to express the error of the estimate
due to the randomization as a percentile from the original prior randomization
estimate. That is, these values are expressed as Δd

d
× 100% for the above mean

deviation Δd.

5 Experimental Results

In section, we detail the evaluation of our proposed scheme in terms of the re-
quired average overhead in term of computation, the aggregation estimation over
the randomized data, and finally, the accuracy of the resulting results compared
to those theoretically performed before randomization.

To experimentally estimate the required overhead, we consider the Ran-

domLFSR [20] and TinyRNG [19] as random number generators. For the cor-
responding symmetric key algorithm, we consider the AES-128.

For evaluating the impact of randomization on the accuracy, we consider Intel
Lab Data 1. The used data reflects sensing four different phenomena which are
the voltage, temperature, humidity and light. The data is collected over 32 days
using 54 typical sensor nodes. For our usage, we consider a fraction of 1296
readings per node and perform our simulation on them.

5.1 Numerical Results of Power Consumption

The power consumption on the typical Crossbow’s Mica2 [29] to perform a ran-
domization for generating a 64-bit random number using the RandomLFSR

algorithm [20] is 0.75 μJ [19]. For the same settings, the consumption is 11.4
μJ using the TinyRNG algorithm [19]. The symmetric key’s encryption and
decryption operations using the AES-128 are estimated at the level of 12.96 μJ
and 19.92 μJ respectively [6]. For ne = nr = 50% of n, the overhead in the
hybrid scheme can be rewritten as CO = Prand + 0.5(Pe + Pd). Based on that,
Table 1 is driven. In Table 1, I denotes the saving in the energy as a percentage
from the original used in the encryption scheme. That is, I is defined as follows:

I =
COencryption only − COspecified scheme

COencryption only
× 100%, (5)

where the specified scheme can be the hybrid or randomized using either of
the randomization algorithms. Though the TinyRNG is computationally heav-
ier than the RandomLFSR resulting a smaller I, the former algorithm (i.e.,
TinyRNG) is recommended to be used due to its more accurate results [19].
1 Available at: http://db.csail.mit.edu/labdata/labdata.html

http://db.csail.mit.edu/labdata/labdata.html
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Table 1. Comparison between the three scenarios in terms of computation

Protocol CO CO/RandomLFSR CO/TinyRNG

Encryption Only 32.88 μJ - -
Randomization Only - 1.5 μJ (I = 95.44%) 22.8 μJ (I = 30.66%)
Hybrid (ne = 50%)) - 17.19 μJ (I = 47.72%) 27.84 μJ (I = 32.39%)

5.2 Data Aggregation and Accuracy: Results

To evaluate the accuracy of data randomization, we perform the experiment on
the different sensed data records for the above scenario using the same parame-
ters regardless to their values and the values’ corresponding interval. Fig. 6 shows
a representative plots for the original sensed raw data and Fig. 5 shows the ran-
domized data records. for estimating the accuracy, Table 2 summarizes the aggre-
gation error estimation for the different values. Note that, when using the same σ
for the different sensed data regardless to their domain, data records with small
interval will be fully distorted and their aggregation accuracy will be low (see Fig.
4(d) and 5(d)). In addition, when σ is relatively small compared to the original
data’s interval like the case of light aggregation, the distortion will be limited and
the accuracy will be high (see 4(c) and 5(c)). To deal with this limitation, σ need
to be considered considering the interval of the original data (e.g., with maximum
σ as 200% of the mean value of the original data).

5.3 Impact of Randomization on the Accuracy

To guarantee the minimum standards of security, the deviation σ need to be as
high as possible. However, by doing that the accuracy of the aggregated data will
be lowered. Fig. 6(a) shows the accuracy of aggregation for the calculated mean
over the sensed raw data and Fig 6(b) translates the difference into an accuracy
ratio. From the two experiments we figure out that accuracy of the aggregation is
proportional with deviation σ. Note that when σ is as big as the original data, the

Table 2. Error estimation in the aggregation results due to data randomization

Temperature (noise: σ = 10, μ = 0) Humidity (noise: σ = 10, μ = 0)
Data Average Summation Count Data Average Summation Count
D 21.0341 27260 1296 D 35.8392 46448 1296
D̂ 20.5600 26646 1296 D̂ 35.3651 45833 1296
error 2.55% 2.55% 0 error 1.32% 1.32% 0

Light (noise: σ = 10, μ = 0) Voltage (noise: σ = 10, μ = 0)
Data Average Summation Count Data Average Summation Count
D 177.7460 230360 1296 D 2.7105 3512.8 1296
D̂ 177.2719 229740 1296 D̂ 2.2364 2898.3 1296
error 0.27% 0.27% 0 error 17.49% 17.49% 0
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Fig. 4. Raw sensed data over a 24 hours’ day from real sensing system representing
four different phenomenas from the point of single node
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Fig. 5. Randomized versus raw sensed data over a 24 hours day from real sensing
system representing four different phenomena from the point of single node
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Fig. 6. The impact of σ as a security parameter on the accuracy of the aggregation
(a) comparison between the non-randomized and randomized aggregation of data for
different σ (b) the accuracy of aggregation as a percentile for different σ values

accuracy achieved as higher than 96%. The simulation considers the temperature
which can be applied also to the other sensed data with the same consideration.

6 Conclusion and Future Works

The aggregation functions over raw sensed data are meant to perform some sta-
tistical functions in which the exact single value is of less importance. In this
paper, we utilize this fact and introduce the data randomization as a mean of
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data hiding. For the attacker to understand the statistical properties of ran-
domized data, he needs to take control over a big fraction of the communica-
tion pattern. We showed the efficiency of the randomization in terms of the
required computation as the main resources and introduced several perspectives
on attacking scenarios including an extension of a hybrid work which generate
a trade-off between the resources, accuracy, and security.

In the near future, it will be valuable to study the impact of several statistical
distributions on the hardening of the data expectation from the randomized
data. Also, we will study the impact of multiple randomizations for the single
data records on the accuracy of estimate the security.
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