
Cooperative Public Key Authentication Protocol
in Wireless Sensor Network

DaeHun Nyang and Abedelaziz Mohaisen�

Information Security Research Laboratory of InHa University
Inofmration Technology & Telecommunications Graduate School

253 YongHyun-dong, Nam-gu, Incheon 402-751, Korea
nyang@inha.ac.kr, asm@seclab.inha.ac.kr

http://seclab.inha.ac.kr

Abstract. Recent measurements for Public Key Cryptography (PKC)
protocols on 8-bit wireless sensor nodes showed optimistic results. It has
been shown that Elliptic Curve Cryptography (ECC) is quite applica-
ble to WSN. Still, PKC is much expensive in terms of computation and
memory compared by the Symmetric Key Cryptography (SKC). In ad-
dition, in PKC, each public key needs to be authenticated before it’s
used. We believe that sooner or later, PKC will be widely deployed in
WSN. Therefore, we present a cooperative distributed public key au-
thentication scheme that does not require any cryptographic overhead.
In our scheme, each node is let to store a few number of hashed keys for
other nodes. When a public key authentication is required, nodes who
store this key help in authenticating it in a distributed and cooperative
way. We consider the constrained resources of the sensor node. Addition-
ally, we extend our scheme to fit with small range of authentication error.

Keywords: Public Key Authentication, Cooperative Protocol, Voting.

1 Introduction

Wireless Sensor Network (WSN) is a resulting successful mergence of different
technologies. Advancements in different fields including microelectronics, semi-
conductors, networking, signal processing and many others led to this invention.
The WSN consists of large number of inexpensive and resources constrained sen-
sor nodes which work in a cooperative data-forwarding method to perform some
sensing tasks. Sensors communicate in peer-to-peer mechanism in an open air
environments that enables any man-in-the-middle (MITM), Sybil or even node
replication attacks [7].

The growth of WSN applications which involved many ranging sensitive en-
vironments brought the necessity to provide security rules to guard the com-
munication traffic between the sensor nodes. For more than five years, security
research in WSN was limited to Symmetric Key Cryptography (SKC) proto-
cols that require a key distribution. Notwithstanding of SKC limitations on the

� This work was supported by INHA University Research Grant.

J. Ma et al. (Eds.): UIC 2006, LNCS 4159, pp. 864–873, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cooperative Public Key Authentication Protocol in Wireless Sensor Network 865

side of the connectivity and resiliency, it showed a fastness and resources usage
feasibility that is suitable for resources constrained sensor nodes. For the same
reason, PKC wasn’t used or even researched in WSN. Recently, some works on
the PKC protocols (e.g. ECC, RSA) evaluation and efficiency measurements on
sensor node platform showed optimistic results[10,11,12,13]. Based on recent re-
searches, we believe that the advancement of processors equipped to the sensor
nodes and the improvement of the PKC protocols will make it possible to take
the advantage of the PKC into the WSN security. Once PKC is used in WSN,
the resiliency and connectivity problems will not exist anymore since the PKC
behaves perfectly in both sides (i.e. connectivity and resiliency equal 100%). 1

Recalling that, sooner or later PKC will be deployed in WSN. Therefore, Public
Key Authentication problem should be solved. In this paper, we state the prob-
lem, briefly present the related work, and based on this we present our solution.

1.1 Problem Statment

PKC (e.g. RSA[9], ECC[16]) operates in a way that no need for a node to know
other node’s private key when encrypting a message for it. However, before the
encryption, a node i requires node’s j public key to encrypt a message for it.
The most significant problem therefore is to determine whether a received key
is really belonging to node j or not. One possible naive solution is to store all
of the network public keys in each node that requires (N − 1) × P bits/node
for a network and keys of size N, P respectively, when two key authentication
is required, the received key is simply searched in the keys set of the receiver
node. Another solution is to store the keys corresponding hashed values which
cost (N − 1) × L bits/node where L is the length of the hashed key. It’s clear
that both of the solutions are inefficient in both memory and computation.

1.2 Related Work: Symmetric Key Cryptography (SKC)

There are intensive studies on SKC in WSN. Many schemes to secure WSN were
developed. Perrig et al. developed SPINS that uses μTesla as a building block
[8]. Additionally, for efficient SK management, many techniques and mechanisms
were developed. Eschenauer-Gligor[5] proposed a key distribution scheme based
on the random graph theory. In this scheme, a pair of node can establish a key
when they have a shared key in their key ring. Chan et al. proposed q-composite
scheme [3] based on [5]. In q-composite, a pair of nodes can communicate only
they share q number of common keys in their key’s ring. Du et al. also developed
several schemes based on [1]. In [4], a similar results as in [6] was independently
achieved to distribute pairwise keys for WSN. Liu et al [6] developed several
schemes based on the Symmetric Bivariate Polynomial Protocol [2]. Moreover,
different schemes based on [4,6,1,2] was developed using the deployment knowl-
edge to reduce the used resources.

1 Currently, BTnode[17] is equipped by ATMega128L which operates at 8 MHz and
Crossbow mote is equipped by ATmega128 which dually operates at 8,16 MHz[18].

866 D. Nyang et al.

1.3 Related Work: Public Key Cryptography (PKC)

The recent results of the PKC protocols on sensor nodes showed relevant accept-
able efficiency. In Gura et al work [10], practical measurements for ECC[16] and
RSA[9] signatures verification was obtained. It was shown that ECC signature
verification consumes 1.62 ms on the 8-bit ATmega128 processor which operates
at 8 MHz. An extension of [10] on PKC protocols’ enery consumption was de-
veloped in [11]. Watro et al. developed another limited PKC architecture with
a practical evaluation of consumed resources per sensor node TinyPK [12]. Key
distribution in TinyOS based on Elliptic Curve Cryptography (ECC) with real
measurement and evaluation was also considered in Malan’s et al work [13].

To the best of our knowledge, the public key authentication in WSN has been
studied in a unique scheme by Du et al [15]. In this scheme, Merkle hash tree is
used. Merkle hash tree is a binary tree of N leaves that represent the different
node’s hashed keys. Each internal parent till the root stores a hashed value of its
corresponding children data block (i.e. using SHA1 of 160-bit). In [15], each node
stores log2(N) + 1 hashed values (which are selected from the node to the root
of the tree). Once Bob’s key authentication is required by Alice, Alice receives
Bob’s hashed values and public key. Locally, Alice perform SHA1 hashing for the
received value and compares the resulting root with his own root. Depending on
the equality of the resulting hashed value and the store root, Alice can determine
whether Bob’s key is real or not. Using the deployment knowledge, Merkle tree
is split into sub trees (i.e. Merkle forest) to reduce the used memory per node.
Therefore, each split reduces the used memory by one key.

1.4 Our Contribution

In this paper, we present a novel scheme for authenticating the public key in
WSN. Our scheme uses distributed and cooperative mechanism to perform such
a need. Our contribution relies in that we don’t use any cryptographic operations
to authenticate a key. In addition, each node stores a limited number of hashed
keys for a set of different nodes that limits the used memory.

2 Network Model: Assumptions

A.1 Our network model assumes that there are hundreds of sensor nodes within
the same radio range. Note that, the network size is dependent on the MAC
layer and not Physical layer, which rationalizes the assumption.

A.2 The different nodes in the network can overhear every traffic between any
pair of nodes. In the normal case, this overhearing is necessary to make the
nodes decide whether they have to rely a frame or not even when it is not
for them.

A.3 Static data is deliverable from one node to another while attackers reside
in the same geographical area or the same radio coverage range.

A.4 Interception and modification of frame(s) are possible during one hope
transmission only when the attacker knows who is about to send.

A.5 Attackers have the ability to inject forged frames.

Cooperative Public Key Authentication Protocol in Wireless Sensor Network 867

3 Basic Protocol

To reduce the used resources in the sensor node in our protocol and to resist
the flooding attack as well, some of the authentication decision is held in MAC
layer. To enable such a decision, the following is a list of our modification on the
MAC frame:

– Since we use specific frames for authentication, we added one bit flag AC to
discriminate the authentication frames from the normal frames. Additionally,
this bit will be used as a check bit for discarding any extra frames more than
the required for the authentication (i.e. > k).

– The authentication frame can be authentication request frame, authentica-
tion response frame from the concerned node, or authentication response
frame from an assisting node. Therefore, we added two bits (Authentication
Request Reponse bits ARR) to discriminate those different frames. This
addition is required for the flooding attacks resistance in the MAC layer.

Table 1 shows the corresponding meaning of initially assigned bits for AC and
ARR bits. Making this clear, our protocol then consists of two phases: initial-
ization and online procedure. In the following, two sections we will present it.

3.1 Protocol Initialization

In this protocol, we assume that: Each sensor node has the ability to do a random
coin tossing with probability for head p. Probability p determines whether a node
will assist in a key authentication or not.

Installation of PK information in the sensor nodes: For each sensor node
i, the following procedure is performed for all the nodes in the network.

1. Security Authority (SA) randomly selects k number of nodes.
2. SA installs the public key information of a node i (Ki) to the k different

sensors; where Ki = hash(Node i public key|Node i ID).

3.2 Authentication Protocol’s Online Procedure

Eventually, a node j wants to get Ki which is the public key information of node
i. At that time, the following procedure will be performed:

1. Sensor node j sends a request frame to sensor i informing that it needs Ki.
Note that all the nodes in the network can overhear this request under the
second assumption of section 2.

2. Not only sensor i, but also every sensor node that has the key Ki sends it
to j. Different from the other nodes, sensor node i actually sends both Ki

and its own public key.
3. As soon as node j receives the first response, it begins to count the number

of the received response frames up to the threshold number of response.
After this threshold, node j discards every incoming frame for the same key
authentication.

868 D. Nyang et al.

4. Let k′ be the number of incoming responses to node j. Defining e as the
error bound (i.e. deviation from original k), the following will be performed:
(a) If |k′ − k| ≤ e then:

i. Node j performs a majority voting to decide Ki.
ii. Every node that has Ki must delete it from its memory.

(b) If |k′ − k| > e, that indicates a probability of an attack, and sensor node
will discard the received frames to perform the request again.

5. Every other sensor node must perform the step 4 parallely, which is possible
under the consumption A.2. Only if in case 3.(a), do the following:
(a) Tosses a coin.
(b) Only if the result is head, then store Ki. Note that, if we consider p as

the probability of head (which is the same probability of keeping the
Ki), then, p = k

N , where N is the number of nodes in the network and
k is the number of nodes that will keep Ki on average.

3.3 Hurdle: Tossing Deviation Control

Even if we assign the tossing probability p = k/N , we can only guarantee that
the number of the nodes that hold the public key information Ki of a node i
is k “at average”. Recall that, the probability of such process has the binomial
distribution. Given the network size N and k at average, we can obtain the stan-
dard deviation of tossing probability is (σ) =

√
k(1 − (k/N)). An illustration of

the deviation is in Fig 1(a). Even if we reduce the average of the authenticat-
ing nodes k, the standard deviation is little bit large for a small sized network.
So, the receiver might be confused whether the difference is from attacker or
from the large tossing deviation and communication noise. In the case of a large
network size (say 1000 nodes), as in Figure 1(b), the authentication is held suc-
cessfully since the deviation is bounded by small value compared to the size
authentication assisting group k.

4 Solution: Efficient Protocol

To overcome the high deviation in a small size networks, we propose two modi-
fied versions of our basic protocol. The first version guarantees optimal security
for limited number of authentication rounds (This security is guaranteed under
the condition that no key is authenticated by the same assisting node twice.
That means even if an attacker could monitor the network traffic and know the
authentication set for the current key authentication, this type of information
is not valid any more after the current authentication round. The second mod-
ified version is long-living with limited security feature and rounds traceability
scheme (reversed situation of the first protocol, since with some probability for
success, given enough information about c authentication rounds for a given key,
it’s more possible for the attacker to have successful chances for alterning the
groups authentication replies.

Cooperative Public Key Authentication Protocol in Wireless Sensor Network 869

4.1 c-Rounds Protocol: Optimal Security with Limited Life

The sensor network is very static. Thus, we can pre-compute the exact public
key information distribution before deployment. This protocol has two phases of
initialization and online protocol as follows:

Initialization Phase: In the initialization phase, for each sensor node with
public key information Ki, the following is performed:

1. Security authority randomly picks c groups of node of size k from WSN.
2. The key information is paired as 〈r, Pi〉, where r is a serial and 0 < r ≤ c.

The different pairs are loaded to the corresponding group of nodes.

Online Authentication Phase: In the online authentication phase, the fol-
lowing is performed:

1. A node j requests public key information from node i. Initially, j sends the
request including a serial that express the authentication round (i.e. 〈1, req〉
at the first time Ki authentication is required).

2. Not only the node i, but also all of the other node that contains the pair
〈r, Ki〉 respond the request. All of the nodes participating in the authen-
tication have listeners on the traffic so that they can receive all copies of
Ki.

3. As soon as node j receives the first authentication response from a node, it
starts counting the received key information frames till a threshold number.
After that, node j begins discarding any incoming extra frames.

4. The majority voting is performed at node j and all of the other authentica-
tion group to decide the acceptance of Ki.

5. If the majority voting admits the received key Ki, all copies of Ki in the
authentication group with the current authentication round are removed
from each sensor node memory.

6. The authentication round counter is increased by one so that the next au-
thentication group assist in authenticating Ki in the next round.

Note that, the modified protocol does not require any coin tossing to predict
the number of the next authentication round, but it relies on the predistribution
of the public key iformation which guarantees a zero deviation. In addition, this
protocol is limited to r authentication round for any key Ki. Also, when the key
authentication proccess is performed, each node has the ability to recognize every
incoming frame based on the AC and ARR bits values. Based on the current
status of the authentication proccess, each node also can determine whether to
pass the received authentication frame to the upper layer or not.

4.2 Long Living Protocol

The noticeable problem of the the above protocol is the limited life. In some
intelligent attacks, it’s possible to inject many faked keys for just limiting the
life of the protocol. In the following, we extend the protocol life giving up a small
fraction of the overall security. Note that, the initialization phase is typically the
same like the initialization of the c-rounds protocol explained in 4.1.

870 D. Nyang et al.

Online Authentication Phase

1. Once node Ki authentication is required by node j, node j firstly sends a
request as 〈r, req〉 where r is a random integer as 0 < r ≤ c.

2. Not only node i, but all nodes holding the Ki and the random round number
as a pair answer the request. Exceptionally, node i sends its own public key
as well.

3. As in the early protocols, node i starts couting the number of the received Ki

copies till a threshold number of frames. After the threshold value, j begins
rejecting any addition frames for Ki authentication.

4. After the majority voting is performed, none of the round’s nodes contents
is deleted.

5. Again, an authentication is required for the same key, r is picked randomly
and the request is performed.

6. The attackers has the ability to perform an attack, if and only if, he knows
r and the authentication group in advance (say τ−time before) that enables
him to alter the authentication contents.

5 Evaluation

5.1 Authentication Decision and Tradeoffs

In our basic protocol, the voting decision can be performed as long as there are
limited number of the forged messages (i.e. The attacker has a chance to deliver
forged message with the timer of the authentication). Figure 1(a) shows the
deviation for different network size when using limited number of authenticating
nodes (i.e. up to 10 nodes per group). Figure 1(b) shows the upper and lower
bounds for successful authentication when using a group of 5% to 10% of the
overall network size.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of authentication participating nodes (k)

R
e
s
u

lt
in

g
 d

e
v
ia

ti
o

n
 o

f
th

e
 c

o
in

 t
o

s
s
in

g
 (

e
)

N = 50 (max(k)=20%)
N = 100, (max(k)=10%)
N = 1000, (max(k)=1%)

(a) Tossing Deviation

50 60 70 80 90 100
40

50

60

70

80

90

100

110

Average number of participating authentication nodes
for network size N = 1000 Nodes

L
im

it
 b

o
u

n
d

s
 f

o
r

th
e
 a

c
c
e
p

te
d

a
u

th
e
n

ti
c
a
ti

o
n

 w
it

h
 d

e
v
ia

ti
o

n
 e

rr
o

r

Exact nodes for the authentication decision (k)
Upper bound for authentication decision (k+e)
Lower bound for authentication decision (k−e)

(b) Authentication Bounds

Fig. 1. The tossing deviation and the authentication upper and lower bounds for the
actual required number of trusted nodes to authenticate a key

Cooperative Public Key Authentication Protocol in Wireless Sensor Network 871

In the other hand, the c−rounds and the long living protocols don’t gen-
erate any type of deviation, because the group of the different authentication
proccesses is determined in advance before the installation of the protocol.

5.2 Overhead Evaluation and Comparison with Other Works

The resources overhead generated by our protocol is analyzed in terms of the
memory, communication and computation. In the following we detail each of the
required overhead.

– Memory Overhead: recall that each node can assist in k nodes’ authen-
tication. In addition, each node has r authentication rounds. Therefore, the
required memory per node is k × r ×L bit, where L is the size of the hashed
key in bit (e.g. SHA1 generates 160 bit hashes).

– Communication Overhead CTOH : cosidering the distributed performance
to perform a majority voting for a key, the required commuication is to
send/receive k keys’ hashes.

– Computation Overhead: using 8-bit processor (i.e. ATmega128L, f = 8
MHz) and 160 bit hashed keys, the required computation per authenticating
one key is (2.5k)μsec. In general, assuming that W is the proccessor word
size, L is the hashed key size and f is the frequency of the processor in Hz,
the required computation in seconds is CMOH = L

W × k
f .

A detailed comparison of the consumed resources for the authentication is
shown in Table 2.

5.3 Security Analysis

The security in our protocol relies on performing the authentication successfully
without making the atackers affect the decision of the voting. In our first, second

Table 1. Authentication (ARR) and (AC) flags indication

Feild value Stands for
ARR(00) Authentication request frame
ARR(01) Authentication response frame from concerned node
ARR(10) Authentication response frame from an assisting node
AC(0, 1) Normal, Authentication frame respectively

Table 2. Resources Comparison between our scheme, RSA[9], ECC[16] and Du et al
Scheme [15]. CTOH , CMOH stand for communication and computation overhead.

Key/Hash size (bit) CTOH (bit) CMOH (ms)
RSA[9] 1024 1024 430
ECC[16] 160 320 1620
Du et al.[15] 160 160k 7.2k

Our scheme 160 160k 2.5 × 10−3k

872 D. Nyang et al.

and third protocols, this goes fine for a threshold number of injected faked keys
for one key authentication. Assuming that the number of the nodes that assists
in performing the authentication voting is k with an error range at e, each node
requires k − e/2 number of faked keys to redirect the result of authentication.
Even though, using our modification for the MAC frame and the threshold for
accepting the required k ± e keys for authenticating a concerned node’s key Kj

will make it hard to deliver more than the k attacker’s faked keys. For illustration,
Figure 2(a) shows the behavior of the authentication chances per node for single
attacker. Figure 2(b) shows the behavior when different k’s are used.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Number of successfully delivered faked packets

P
ro

b
ab

ili
ty

 o
f

au
th

en
ti

ca
ti

o
n

 s
u

cc
es

s

Probability of Authentication

(a) Single Node/Attacker

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Size of authentication group per key (k)

P
ro

b
ab

ili
ty

 o
f

su
cc

es
sf

u
l a

u
th

en
ti

ca
ti

o
n

as

su
m

in
g

 e
n

o
u

g
h

 f
ak

ed
 p

ac
ke

ts

k =50 nodes (5%)
k =100 nodes (10%)
k =150 nodes (15%)

(b) Different k’s

Fig. 2. For 1000 nodes, (a) Single attacker behavior is simliar to the multiple when the
number of attackers and nodes is equal. (b) different thresholds to authenticate a key.

6 Conclusion and Further Work

We introduced a novel distributed and cooperative protocol to authenticate pub-
lic keys in WSN. Our protocol does not require any computational cryptographic
overhead. In addition, our protocol considers the different constrained-resources
of the sensor node. Even in the our basic protocol, the authentication can be
held successfully with limited deviation. Our protocol is designed for one hop
authentication. In the further work, we will investigate its extenssion to work for
multi-hop. In addition, we will study the usage of parameters except of the devi-
ation to perform authentication voting. More detailed mathematical evaluation
for the effect of the attackers will be studied.

References

1. Blom, R.: An optimal class of symmetric key generation systems, Advances in
Cryptography, Proc. EUROCRYPT 84 , LNCS-209, pp: 335-338, 1985.

2. Blundo, C., DE Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., and Yung, M.:
Perfectly secure key distribution for dynamic conferences, CRYPTO ’92, LNCS-
740, pp: 471-486, 1993.

Cooperative Public Key Authentication Protocol in Wireless Sensor Network 873

3. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks, IEEE SS&P, pp. 197-213, May 2003.

4. Du, W., Deng, J., Han, Y. S., and Varshney, P.: A pairwise key pre-distribution
scheme for wireless sensor networks, ACM CCS’03, pp. 42-51, 2003.

5. Eschenauer, L., Gligor, V. D.: A key management scheme for distributed sensor
networks, ACM CCS’02, pp. 41-47, 2002

6. Liu, D., Ning, P.: Establishing Pairwise keys in distributed sensor networks, ACM
CCS’03, pp. 52-61, 2003.

7. Parno, B., Perrig, A., and Gligor V.: Distributed Detection of Node Replication
Attacks in Sensor Networks, IEEE SS&P’05, May 2005.

8. Perrig, A., Szewczyk, R., Wen, V., Culler, D. E., Tygar, J. D.: SPINS: security
protocols for sensor networks, MOBICOM’01, pp. 189-199, 2001.

9. Rivest, R. L., Shamir, A., Adleman, L. M.: A method for obtaining digital signa-
tures and PK cryptosystems, Comm. of the ACM, 21(2): pp. 120-126, 1978.

10. Gura N., Patel A., Wander A., Eberle A., Shantz S. C.: Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs, CHES 2004: 119-132

11. Wander A., Gura N., Eberle H., Gupta V., Shantz S.C.: Energy Analysis of Public-
Key Cryptography for Wireless Sensor Networks, PerCom’05, pp. 324-328.

12. Watro R.J., Kong D., Cuti S.F., Gardiner Ch., Lynn Ch., Kruus P.: TinyPK:
securing sensor networks with public key technology, SASN’04, 59-64, 10-2004.

13. Malan D.J., Welsh A., Smith M.D.: A Public-Key Infrastructure for Key Distribu-
tion in TinyOS Based on ECC, IEEE SECON’04, pp. 71-80.

14. Pietro R.D., Law Y.W., Etalle S., Hartel P.H., Havinga P.: State of the Art in
Security of Wireless Sensor Networks, IEEE Computer, 35(10): pp. 1-10.

15. Du W., Wang R., and Ning P.: An Efficient Scheme for Authenticating Public Keys
in Sensor Networks. Sixth ACM MobiHoc, pp: 58-67.

16. Koblitz N., Menezes A., Vanstone S.: The State of Elliptic Curve Cryptography,
Designs, Codes and Cryptography, 19, 173-193 (2000).

17. BTnode Project - ETH-Zurich: http://www.btnode.ethz.ch/
18. Crossbow Tech. Inc. Wireless Sensor Networks: http://www.xbow.com/

	Introduction
	Problem Statment
	Related Work: Symmetric Key Cryptography (SKC)
	Related Work: Public Key Cryptography (PKC)
	Our Contribution

	Network Model: Assumptions
	Basic Protocol
	Protocol Initialization
	Authentication Protocol's Online Procedure
	Hurdle: Tossing Deviation Control

	Solution: Efficient Protocol
	c-Rounds Protocol: Optimal Security with Limited Life
	Long Living Protocol

	Evaluation
	Authentication Decision and Tradeoffs
	Overhead Evaluation and Comparison with Other Works
	Security Analysis

	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

