
ar
X

iv
:0

80
3.

00
37

v1
 [

cs
.C

R
]

1
M

ar
 2

00
8

A Survey on Deep Packet Inspection for Intrusion Detection Systems

Tamer AbuHmed1, Abedelaziz Mohaisen2∗, and DaeHun Nyang1

1Information Security Research Laboratory, Inha University, Incheon 402-751, Korea
2Electronics and Telecommunication Research Institute, Daejeon 305-700, Korea

tamer@seclab.inha.ac.kr, a.mohaisen@etri.re.kr, nyang@inha.ac.kr

Abstract

Deep packet inspection is widely recognized as a pow-
erful way which is used for intrusion detection systems
for inspecting, deterring and deflecting malicious at-
tacks over the network. Fundamentally, almost intru-
sion detection systems have the ability to search through
packets and identify contents that match with known at-
tacks. In this paper, we survey the deep packet inspec-
tion implementations techniques, research challenges
and algorithms. Finally, we provide a comparison be-
tween the different applied systems.
Key words: Deep packet inspection, intrusion detec-
tion system, network security, algorithms.

1 Introduction

The enormous attacks from the Internet like viruses,
spam, software vulnerabilities and many of attacks
spots make protection methods an important way to
prevent and save the human efforts from destruction.
Therefore, a variety of methods have been used to pro-
tect data. These methods began with using cryptog-
raphy, policies, firewalls,IDS and finally with intrusion
prevention systems (IPS) [42]. IDS and IPS are con-
sidered as the second defense line against the outsider
attack which do not know the cryptographic informa-
tion. Besides, they work as the first defense line against
insider attacks who can bypass the cryptographic sys-
tem.

The DPI is a core component for many systems
plugged in the network including proxies, packet fil-
ters, sniffers, IDS, and IPS. Network components use
DPI as an essential inspector where it is applied in
different layers of the OSI model. Unlike the early be-
ginnings of using DPI where it was applied in only one

∗This work was done while the author was a graduate student
at Inha University.

layer depending on the header (e.g., proxies and fire-
walls etc.), nowadays, layer-independent attacks force
us to inspect attacks in all the layers. According on
the intrusion detection literature, efforts to obtain a
fast implementation can be categorized into two main
categories [31]: (1) design of an efficient data structure
with optimized memory access rate, and (2) design of
high throughput algorithm to process intruder signa-
ture.

In this paper, we survey the deep packet inspection
algorithms and their usage in the several existing tech-
nologies which are used for intrusion detection systems.
The rest of this paper is organized as follows: section 2
introduces an overview on the challenges and goals (or
simply objectives) of using the deep packet inspection
for efficient intrusion detection systems. Section 3 and
section 4 introduce both the software and hardware
implementations of DPI systems, respectively. Section
5 overviews the finite state machine, section 6 intro-
duces a comparison between the existing technologies
and architectures, and finally section 7 draws conclud-
ing remarks.

2 Challenges and Goals

The design and implementation of the deep packet
inspection has several challenges which harden the its
advancement process. Also, there are several ultimate
goals and design objectives that are always considered
when we make a new DPI design. In this section, we
list the different challenges and design objects.

2.1 Deep Packet Inspection Challenges

When the DPI becomes mean to detect the intru-
sion, there are several challenges related to applying it
on the network. In the following, we summarize these
challenges.

1. The search algorithm complexity: the com-
plexity of the algorithm and the operations of

http://arXiv.org/abs/0803.0037v1

comparison against the signatures of intruder de-
crease the throughput of the system. Thus, search
algorithms are the main focus point in DPI re-
searches, whereas matching process is resource
consuming. For example, the string matching rou-
tines in SNORT [35] account for up to 70% of total
execution time and 80% of instructions executed
on real traces[4].

2. Increasing number of intruder signature: ac-
cording to the verity of attacks, the needs for new
intruder signature increase. Therefore, the large
number of signatures makes the task of IDS harder
whereas the matching process must inspect traffic
against all attacks fingerprints.

3. The overlapping of signatures: the signatures
of attacks usually are not general so the signa-
tures can be categorized into groups according to
common properties like protocol type. For exam-
ple http packet in snort [35] has 1096 signatures.
Therefore, there is a need for process the packets
before matching process.

4. The Location of signature unknown: due to
verity types of attacks on different types of appli-
cations, the pattern of intruders is not localized
in specific place in the packet which means that
the IDS must inspect all the payload of the packet
against the attacker signatures.

5. Encrypted Data: the data which is encrypted
cannot be inspected by DPI. However, there are
some solutions to overcome this problem by plug-
ging the DPI component behind the decryption
device.

The DPI system as we mentioned before has many
challenges and in the same time it have to provide the
requirements for network need. There are two main
requirements that should be satisfied on DPI system,
more detail will be provided in subsection 2.2,which
is:(1) the high speed of processing the packets which
affects the throughput of the system and manages the
core speed of the network (10 Gbps-40 Gbps) and the
edges speed (1 Gbps). (2) The low cost for DPI system
as memory, and power consumptions.

2.2 DPI Design Objectives

DPI systems have to satisfied specific objectives to
sustain the traffic rate and intrusion signatures growth.
Hence, we conclude some objectives which have to sat-
isfy in DPI architecture as following [45] [40]:

TCAM CAM

Content

Addressable

Memory

FPGA Network

Processors(NP)

DPI

Implementation

Hardware Software

SNORT

Bro

Figure 1. DPI implementations

1. Deterministic performance: the architecture
has to operate and process traffic stream indepen-
dently of signature characteristics or traffic char-
acteristics. So, the system has to manage traffic
in worst case in software and hardware based sys-
tems.

2. Memory efficiency: memory access time is one
of the main bottlenecks in DPI system in software
implementations meanwhile, it is critical in hard-
ware design as access time and memory scarcity.
Thus, high memory efficient design is preferable.

3. Dynamic update: this objective is very impor-
tant in hardware based design to add and remove
intruder signature to system without affect system
operation.

4. Signatures: DPI system support fixed intruder
patterns and regular expression. Also, the system
can deal with all types of intruder patterns [20]
which we will illustrate in the literature in section
4.4.

5. Scalability: scalability is not big issue in software
based system. On the other hand, it is critical in
hardware based systems. Thus, hardware design
has to support unlimited number of signatures.

6. Additional functions: DPI system can support
another function like; multi traffic’s sessions in-
spected separately, not only inspect the intruders
but also allocate it, and customize signatures sub-
sets or entire signature to inspect.

3 Software Deep packet Inspection sys-

tems

There are many packet scanning applications that
require deep packet inspections. Here, we review three
popular ones: SNORT [35], Bro [10] and Linux L7-
filter [28]. SNORT and Bro are two popular intrusion
detections systems, while L7-filter is an application for

application layer protocols analysis which makes packet
classification based on application layer data. These
systems are all open source systems, which allow us to
perform a detailed analysis and show their abilities and
constraints.

3.1 SNORT Intrusion Detection System

SNORT is an open source intrusion detection sys-
tem which used for protocol analysis and full packet
inspection against intruder signature. The SNORT sys-
tem processes the traffic of packets on multi stages as
illustrated in Figure 2 [47]. SNORT system and all
common IDS use method called analyze-normalized-
matching (ANM) [32]. SNORT use many string match-
ing algorithms, on of them is Boyer Moore (BM) algo-
rithm which we will talk about it in literature about
matching algorithms in section 4.1. SNORT rule may
contain header and content fields where the header part
checks the protocol, source and destination IP address
and port, and the content part scans packets payload
for one or more patterns. Rules with more than one
pattern are called correlated rules. Furthermore, rules
can also contain negation patterns, which mean nega-
tion of patterns stands for no occurrence of the pattern.
The matching pattern may be in ASCII, HEX or mixed
format. HEX parts are included between vertical bar
symbols “j” as an example of a Snort rule is [35]:

alert tcp any any -> 198.165.200.24/32 111

(content: "idcj|3a3b|j"; msg: "mountd access";)

Packet

Decoding
Preprocessing

Content

Normalization

Detection

Engine

Alert

State Info.

Figure 2. SNORT Process Stages

4 Hardware Implementation

As a need to speed up the inspection process, the
hardware (HW) implementations always appear as a
preferable solution for high speed DPI implementation.
However, the different requirements for DPI provide
limitations to perform the deep packet inspection in
HW. The limitation refers to the large number of sig-
nature, complexity and overlapping of signatures and
finally the high rate of signature update and addition.
Therefore, the HW solution has to satisfy the previous
requirements by special properties which are as follows:

1. Use of high degree of pipelining to support inspec-
tion for large number of intruder patterns.

2. The HW component must have high degree of
processing capability to manage complex patterns
with LAN speed (e.g., 10 Gbps).

3. It must be configurable HW to be suitable for
changing situation of intruder patterns.

4. It must be design to be capable of update or add
a new pattern without turning off the DPI com-
ponent.

The hardware implementation can be categorized
into three depending on the used technologies in that
implementation as follows:

1. Ternary content addressable memory (TCAM) im-
plementation [41]

2. Field-programmable gate array (FPGA) imple-
mentation [17]

3. Multi-core processors [22]

However, each implementation has its advantages and
limitations which as we will see later when we detail
each implementation. In general, multi-core proces-
sors implementations are considered the best preferable
among the implementations due to its programming
flexibility. On the other hand, the TCAM is preferable
when the speed is considered.

4.1 Matching Algorithms

The matching for pattern depends on the algorith-
mic way to process the data and return the result of
existence of the pattern or not in considerable time.
Accordingly, many algorithms have been introduced to
perform string matching. Though, the string matching
algorithms always suffer from two factors that affect
the throughput of processed data. The first factor is
the computation operations to make comparison be-
tween the pattern and the data and second is the num-
ber of patterns that need to be compared with the traf-
fic of the incoming data. Historically, the first string
matching algorithm was the brute force (BF) algorithm
which compares the first character in the pattern with
the data stream. If the a single charter match, BF
compares it with the next character of the pattern and
so on. Finally, if the whole pattern is finished, it issues
the pattern matching results.

Later on, many algorithms appear to increase the
performance of matching. These algorithms can be

categorized according to the implementation as soft-
ware based, HW based or mixture of both implemen-
tations. Briefly, there are a lot of algorithms for pat-
tern matching. However, the most famous software
based algorithms are Knuth-Morris-Pratt (KMP) [24],
Boyer-Moore (BM) [9], Aho-Corasick (AC) [1], AC BM
algorith [14], Wu-Manber [48], and Commentz Wal-
ter (CW) [15]. We will summarize the concept be-
hind selected algorithms and their implementation, de-
sign, and applicability for DPI. On the other hand,
most known HW based algorithms are the parallel
Bloom Filters [17], CAM (content addressable mem-
ory), TCAM, and finally FPGA implementations.

KMP Algorithm: the Knuth-Morris-Pratt
(KMP) algorithm [24] came as an enhancement for the
brute force algorithm which was we introduced before
as the early work for pattern matching. The improve-
ment of KMP over the BF is performed by skipping
characters when the mismatch occurs in the compar-
ison phase. This skipping for characters depends on
preprocessing phase of KMP to the patterns. The re-
sult of the KMP is somehow similar to the finite au-
tomata for patterns representation in which depending
on every match and mismatch a certain jump over the
input stream occurs. Additionally, KMP [24] and BM
[9] algorithms are designed for single pattern searching.

If the pattern length is m bytes, the complexity of
the matching algorithm will be of O(m + n) match-
ing this pattern in an n bytes stream. If there are
k patterns, the search time will be O(k(m + n)) ac-
cording to that the single search is performed k times.
In [7], Baker and Prasanna implemented a hardware
based DPI architecture for KMP algorithm to exploit
the HW parallelism and reduce the complexity of the
above bound.

4.2 Bloom Filter

The Bloom filter is a technique to generate a
structure that compresses the pattern string as s
hashed value. After that, the same hash function
that produced the patterns is used to make the de-
pendences from the input traffic. This method has
been applied firstly in intrusion detection system by
Dharamapurikar et al. [17] and his implementation
was on FPGA. The system implementation achieves a
throughput of 2.12Gbps. Bloom filters are very elegant
in representing set membership, but have two potential
drawbacks. First, they require multiple hash functions
and memories, and second, they give an approximate
match answer since they allow false positives.

4.3 Content Addressable Memory

Nowadays, the most popular HW techniques which
are used in commercial packet inspection products are
content addressable memory (CAM) [41]. The CAM is
a special memory that makes parallel comparison for
its contents against the input value and returns the ad-
dress of match entry. Hence, the CAM is considerably
fast and has many demanded properties such as high
access speed near 4 nano-second, the search time com-
plexity is O(1) and bounded by a single memory access.
However, CAM does not make longest prefix matching
which is essential for many DPI patterns that have the
same prefix. Therefore, it is suitable for deterministic
fixed-length matching.

Also, because of the above shortage of CAM, a new
HW component was developed by the name of Ternary
CAM (or simply, TCAM). TCAM memory stores the
data with three logical values (i.e., 0, 1, ? don’t care)
and its circuit diagram construct as illustrated in Fig-
ure 3(b) [41]. Furthermore, each entry stores the value
which is considered to be intruder signature and entries
arranged in descending index as illustrated in Figure
3(a) [41].

As a result of the previous properties, for CAM and
additionally to Longest-Prefix Matching, TCAM be-
came as backbone for many network devices that de-
pend on packet inspection. For example routers and
switches primarily use TCAMs to perform forwarding
lookups for Internet Protocol addresses. TCAMs can
be also used in devices that support packet classifi-
cation, network address translation, route lookups in
storage networks, layer 4 to layer 7 switching, server
load balancing, label switching, high performance fire-
wall functions and finally in network intrusion detec-
tion system (NIDS) and network prevention system
(NIPS) that depend on DPI techniques.

However, TCAM has some general disadvantages
which are as following [41]:

1. High cost per bit relative to other memory tech-
nologies, it’s about 30 times SRAM per bit.

2. Storage inefficiency.

3. High power consumption. It is about 180 times
than SRAM per bit and the power consumption
proportional with number of entities which has
been searched on memory lookup.

4. Limited scalability to long input keys.

The special disadvantages for DPI are as follows [29]:

1. Range Representation Problem: TCAM can repre-
sent prefix of patterns in easy way (e.g. ”atta XX”

catch any word start with atta and two letter after)
but rang signature which catch sub-word and after
arbitrary number of character catch the reminder
sub-word consumes more entries in TCAM.

2. Multi-match Classification Problem: Return back
all the matching results of all matching entries
of TCAM, not just the highest priority entry of
TCAM.

Bitwise CAM: In [50], CAM hardware has been
implemented based on a tree-based content address-
able memory structure called “Bitwise CAM”, which
involves HW sharing at bit level in order to exploit
powerful logic optimizations for multiple strings repre-
sented as a Boolean expression. The design can run
at a rate of approximately 2.5 Gbps per second, and
is approximately 30% smaller in area when compared
with published results. Also, authors functionalized
the parallelism in the design of an extended system.

4.4 TCAM implementations

In literature of TCAM’s contribution in DPI, Yu et
al. [20] have been the first to design scheme that deals
with all types of intruder patterns which we will dis-
cuss later. In [20], they implement a scheme for IDS
that handles the intruder’s signatures with deeply anal-
ysis to intruder’s patterns. The scheme categorizes in-
truder patterns into two types: complex patterns such
as long patterns, patterns with negation (which means
no existence of specific patterns on traffic) and corre-
lated patterns (which means patterns separated with
specific number of arbitrary characters). Additionally,
there are another type which is a simple pattern.

The work by Yu et al. discusses scheme and algo-
rithms to deal with each type of pattern and how to
plug it into TCAM. The scheme uses SRAM memory
as partial hit list (PHL), which consider slow in access
comparing to TCAM, to store detection of partial cor-
related patterns encounter in traffic. Nonetheless, the
scheme has bottleneck when the intruder intentionally
send packet that make PHL access rate very high and
then effect the system throughput. That is due the
need of multi memory look up.

According to the simulation, this scheme can be op-
erated on 2 Gbps traffic. The implementation of Yu et
al. in [20] suggests lookup on TCAM entries for each
new character. Thus, the input of n character requires
the complexity of O(n) lookup over TCAM. On the
other hand, Jung et al. in [38] presented a scheme in
which jump are made over the input traffic by window
slide size m which is called jumping window scheme
and match the intruder signature over single packet.

It reduced the number of TCAM lookup over n input
character to O(n/m) and provided throughput of 10
Gbps using 2,394 SNORT rules. Also, Sung et al. in
[39] extended the jumping window scheme to work over
multi packets intruder signatures.

4.5 Multi-core Processors Implementa-
tions

Multi-core processors’ implementations are prefer-
able for designing IDS due to flexibility. However,
multi-core processors still have limitation in number
of processors and size of on-chip memory which affect
efficiency of IDS implementations on it. In the fol-
lowing, we will introduce a survey on a part of the
efforts been performed to implement IDS on network
processors (NP) which is a type of multi-core processor
implementation.

In [16], Bruijn et al. developed the SafeCard des-
gin which is a framework for network-based intrusion
prevention at the network edge which is able to cope
with all levels of abstraction and can be easily extended
with new techniques. Furthermore, it is capable of re-
constructing and scanning TCP streams at Gbps rates
while preventing polymorphic buffer-overflow attacks.

Additionally, the CardGuard by Bos et al. in [8]
uses IXP1200 network processor as IDS and achieved
few hundred Mbps Ethernet performances when scan-
ning payloads of TCP connection. In [34], Singh et al.
introduce Early-bird prototype which consists of sen-
sor to detect attacks and aggregator for administrative
reporting and control. Early-bird can cope with 200
Mbps without packet dropping.

In [12], new work has been introduced by Chris et
al. as a combination between IXP network processors
and Xilinx Virtex FPGAs to build IDS.

5 Finite State Machine

One of the most important tools for the design of
hardware implementation for the DPI is the finite state
machine (FSM). The FSM implementation is classified
into two categories which are the deterministic finite
automata (DFA) and nondeterministic finite automata
(NFA). In this section, we introduce a survey of the
research that has been performed on the FSM including
the two categories.

5.1 Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA) is a di-
rected graph which has nodes called states and labeled
edges to connect the states. More specifically, the NFA

1 0 0 0

0 1 1 0

1 0 ? ?

Match
1 0 0 ?

Input

1

2

3

n

1st entry

nth entry

(a) TCAM

key key

a1 a2

match
logic

write enable

match line

a2
0
1
0
1

a1
0
0
1
1

value
Don’t Care

1
0

undefined

(b) Circuit diagram of a standard TCAM

Figure 3. (a) TCAM (b) TCAM cell value(0,1,?) encoded by two r egister a1,a2

has initial state and one or more final states. Moreover,
the edges can be labeled with single characters or null
(φ) which mean that multiple states can be active si-
multaneously in an NFA. The NFA is very useful in
parallel processing because it can process input char-
acter in multi branches of NFA and may output multi
acceptance state for input on the contrary of DFA [21].

For its usability, there are many efforts to construct
DPI systems which depend on NFA. In [33], Reetinder
et al. were the first how to use the NFA to construct
regular expressions in given text using FPGAs. To
match a regular expression of length n, a serial machine
requires O(2n) memory and takes the time complexity
of O(1) per text character. However, they proposed an
approach that requires the O(n2) space and still pro-
cess a text character in O(1) time (one clock cycle).
Additionally, they presented a simple and fast algo-
rithm that quickly constructs the NFA for the given
regular expression. Fast NFA construction is crucial
because the NFA structure depends on the regular ex-
pression, which is known only at runtime. Further-
more, in [13], Clark et al. implemented FPGA based
multi character decoder for DPI which based on NFA.

5.2 Deterministic Finite Automata

The Deterministic Finite Automata (DFA) consists
of a finite set of input symbols (which are denoted as∑

), a finite set of states, and a transition function to
move from one state to the other denoted as ∂. In
contrast of NFA, DFA has only one active state at any
given time [21].

Regular Expression: The regular expression is
required as a need for packet payload inspection to
different protocols packets. It introduces a limited
DPI system to deal with all packets structures. As
the result of this limitation, state-of-art systems have
been introduced to replace the string sets of intrusion
signature with more expressiveness regular expression
(regexp) systems. Therefore, there are several con-

tent inspection engine which have partially or fully mi-
grated to regexps including the those in Snort [35], Bro
[10], 3com’s TippingPoint X506 [42], SafeXcel [19], and
Cisco systems’ [23]. However, using the regexp to rep-
resent patterns includes converting this regexp to De-
terministic Finite Automata (DFA) [21]. This DFA is
represented in the DPI systems as table. This table
represents the states and transitions of DFA as records
which mean that the expansion of memory table of
DFA of regexp depends on the size of DFA.

Experimentally, DFA of regexp that contains hun-
dreds of pattern yields to tens of thousands of states
which mean memory consumptions in hundreds of
megabytes. As a solution of one of the common prob-
lems of HW based DPI solutions is the memory access
because the memory accesses for the contents of the
off chip memory are proportional with the number of
bytes in the packet.

In [26], Kumar et al. noted that the implementa-
tion for the regexps of intruder signatures consumes
much memory and there should be a way that reduces
the regexp memory consumption without increasing
the number of memory lookup to operate DPI system
which is considered an additional problem due to the
related lookup delay. To reduce the memory access,
they also introduced a delayed input DFA D2FA which
tries to compact the traditional DFA for regexp accord-
ing to that they note some states in DFA that had the
same outgoing transition. For example, if there are two
states s11, s2 that introduce transition to the same out-
going set of stats (S) for set of input characters C, this
transition can be eliminated from state s1 by default
transition DT to s2.

According to this assumption, the state s1 can main-
tain all the transition of state s2 via state s1 and
then passing to next state. D2FA constructs a com-
pact DFA which decreases the memory consumption
by DFA. However, compacting the memory represen-
tation by default transition leads to manipulation of
multiple default transition before going to the next

Table 1. Comparison between Existing Architectures
Algorithm / Component Implementation Device Throughput (Gbps)

Parallel Bloom Filters [17] FPGA XCV2000E 2.46
Aho-Corasick [3] FPGA 12.35
TCAM [20] TCAM 2
Aho-Corasick [44] – 8
TCAM/FPGA [43] Xilinx Virtex2 10
nnnnn/SRAM [2] – 14
Selective multi-character transitions /FPGA [37] Xilinx XC2V6000-6 14
B-FSM/(FPGA or ASIC) [45] Xilinx Virtex-4 10∼20
nnn/SRAM [3] FPGA/ASIC 1∼20
RTCAM [46] TCAM 12.35
Pre-Decoded CAM [36] Virtex 2-6000 9.7
Quad Bloom Filter/FPGA [6] Xilinx Virtex4 20.4
BITWISE CAM [50] FPGA Xilinx XC2V8000 2.5
FPGA [18] Virtex-4 10
UCLA Packet/FPGA [11] Xilinx Spartan 3-XC3S2000 3.2
NFA/(FPGA and IXP) [12] Xilinx Virtex2-6000&IXP 2400 1
GaTech Decoder Trees/FPGA [13] Virtex 2-8000 2
WashU Bloom/FPGA [5] Virtex 4-100 20.4
Hash Function [49] Xilinx Vertex-II Pro XC2VP70 2
Hash Function and CRC [30] Xilinx Vertex2 2.712 ∼ 4.560
TCAM/Network Processor [38] Network Processor IXDP28xx [22] 10

0

4

3

h

e

2

r

1

5

s
m

i

6

he

her

him
his

h

h

h

h

Figure 5. Aho-Corasick DFA for patterns
“he”, “she”, “his”, and “her”, we did not in-
clude all failure edges for simplicity.

state. Manipulating multiple DTs means that multiple
memory accesses are required which decrease the DPI
process throughput. However, the they (i.e., Kumar et
al.) found that applying D2FA can reduce the memory
usage dramatically about 95% which helps to imple-
ment DPI in an On-chip memory and that leads to high
bandwidth in memory access and decreases the effect of

multi-transition access by DTs to process input charac-
ter. The construction of D2FA from DFA is NP-hard.
Therefore, they introduce heuristic algorithms to find
D2FA with balancing between the depth of DTs and
the memory consumption for D2FA. D2FA construc-
tion heuristic based upon maximum weight spanning
tree creates long default paths [25].

In [27], which is also by Kumar et al., a new repre-
senting for regexp has been developed as an alternative
to D2FA which has the property of being compressed
from D2FA and improve the ability of processing multi
DTs to handle input characters by introducing more in-
formation in state identifiers. Content-addressed D2FA
CD2FA replaced state identifiers with content labels
that include part of information that would normally
be stored in table entry for the state. The main idea of
CD2FA is exploit the D2FA compaction to DFA but on
the other hand is to overcome the multi TDs travers-
ing to manipulate the input. Notwithstanding, CD2FA
need to increase the size of the states label to hold more
information about the next state and DTs. So that,
there are two objectives to satisfied: First, to ensure
that states have few labeled transitions. Second, to
ensure that default paths are as small as possible.

According to experimental evaluation, CD2FA go
beyond uncompressed DFA. Furthermore, CD2FA with

(a) Aho-Corasick finite state machine (b) Compressed AC

Figure 4. Compressed AC for high speed DPI

1KB cache achieves double throughput than uncom-
pressed DFA and with 10% of memory requirement.

Aho- Corasick Algorithm: Aho- Corasick Algo-
rithm (AC) [1] is one of the well known algorithms for
multi-string (patterns) matching by encoding intruder
patterns in FSM in a preprocessing phase. After that,
the generated FSM has root state which represent that
no string have been matched or even partially matched
and all patterns characters enumerated from root. If
any pattern has same prefix, it means that the pattern
shares a common prefix also with the corresponding
set of parent nodes in the tier. Figure 5 shows a ex-
ample of the AC FSM construction for patterns “he”,
“she”, “his”, and “her”. However, AC construction is
memory consumption as a result of the huge number of
failed transitions that proportional with the number of
patterns in FSM. Thus,classical AC takes more storage
than it is likely to fit in a on-chip SRAM or the cache
of a processor [44].

Additionally, In [3], Mansoor et al. constructed a
compressed finite state machine that encodes all the in-
trusion patterns and makes state transitions on multi-
ple (at most k) input characters. Therefore, they start
constructing Aho-Corasick DFA as in Figure 4(a), then
they create an equivalent state machine called the com-
pressed DFA as illustrated in Figure 4(b) where it has
transitions on multiple input characters by combining
k consecutive states of Aho-Corasick DFA. Conversely,
in [40], Lin et al. proposed a new construction for
AC by splitting the input character to bits and con-
structing small blocks that represent portion of rules
with portion of bits for each rule. This construction
exploits a speedy on-chip memory to upload the small
block of the system and speed up the overall system
throughput.

6 Comparison between Existing Mod-

ules and Implementations

In this section, we introduce a comparison between
recent applied IDS with different hardware implemen-
tations. Our comparison focuses on the algorithm, type
of hardware implementations which are used in design-
ing the DPI architecture and the resulting through-
put as illustrated in Table 1. However, other related
properties including the required memory and other
specifications might be referred in the corresponding
reference.

7 Conclusion

In this paper, we introduced a survey on some of
the existing and on-going research works on DPI. Our
survey included the challenges and ultimate goals be-
hind the design of the the DPI and its implementa-
tions. Also, we introduced an overview of the exist-
ing implementations including both the software and
hardware. As the finite state machine (or automata)
is an important component of the hardware design, we
considered the its different classified types and the on-
going research being performed on each type. Finally,
we introduced a concluding comparison between the
existing modules and hardware implementations and
relating this comparison to the achieved throughput.

We believe that this area of research is still active
and several works need to be performed on the different
sides of the implementation (hardware and software)
in addition to the design of fast matching algorithms
that fit to the increasing demanded throughputs. Our
survey is the first step for putting the readers into the
the DPI systems and the open research topics in the
field.

References

[1] Alfred V. Aho and Margaret J. Corasick. Efficient
string matching: An aid to bibliographic search.
Commun. ACM, 18(6):333–340, 1975.

[2] Monther Aldwairi, Thomas M. Conte, and Paul D.
Franzon. Configurable string matching hardware
for speeding up intrusion detection. SIGARCH
Computer Architecture News, 33(1):99–107, 2005.

[3] Mansoor Alicherry, M. Muthuprasanna, and Vijay
Kumar. High speed pattern matching for network
ids/ips. In ICNP), pages 187–196, 2006.

[4] Spyros Antonatos, Kostas G. Anagnostakis, and
Evangelos P. Markatos. Generating realistic work-
loads for network intrusion detection systems. In
WOSP, pages 207–215, 2004.

[5] Michael Attig, Sarang Dharmapurikar, and
John W. Lockwood. Implementation results of
bloom filters for string matching. In FCCM, pages
322–323, 2004.

[6] Michael Attig and John W. Lockwood. Sift: Snort
intrusion filter for tcp. In Hot Interconnects, pages
121–127. IEEE Computer Society, 2005.

[7] Zachary K. Baker and Viktor K. Prasanna. Au-
tomatic synthesis of efficient intrusion detection
systems on fpgas. In FPL, pages 311–321, 2004.

[8] Herbert Bos and Kaiming Huang. Towards
software-based signature detection for intrusion
prevention on the network card. In RAID, pages
102–123, 2005.

[9] Robert S. Boyer and J Strother Moore. A fast
string searching algorithm. Communications of
the ACM., 20(10):76–172, 1977.

[10] Bro. Intrusion detection system. http://www.bro-
ids.org/.

[11] Young H. Cho and William H. Mangione-Smith.
Deep packet filter with dedicated logic and read
only memories. FCCM, 00:125–134, 2004.

[12] Chris Clark, Wenke Lee, David Schimmel, Didier
Contis, Mohamed Kon, and Ashley Thomas. A
hardware platform for network intrusion detection
and prevention. In Third Workshop on Network
Processors and Applications,Madrid, Spain, 2004.

[13] Christopher R. Clark and David E. Schim-
mel. Scalable pattern matching for high
speed networks. In IEEE Symposium on
Field-Programmable Custom Computing Ma-
chines,(FCCM), pages 249–257, 2004.

[14] C.J. Coit, S. Staniford, and J. McAlerney. To-
wards faster string matching for intrusion detec-
tion or exceeding the speed of snort. In DARPA
Information Survivability Conference & Exposi-
tion II, pages 367–373, 2001.

[15] B. Commentz-Walter. A string matching algo-
rithm fast on the average. In Proceedings of
ICALP, page 118132, 1979.

[16] Willem de Bruijn, Asia Slowinska, Kees van
Reeuwijk, Tomas Hruby, Li Xu, and Herbert Bos.
Safecard: A gigabit ips on the network card. In
RAID, pages 311–330, 2006.

[17] Sarang Dharmapurikar, Praveen Krishnamurthy,
Todd S. Sproull, and John W. Lockwood. Deep
packet inspection using parallel bloom filters.
IEEE Micro, 24(1):52–61, 2004.

[18] Sarang Dharmapurikar and John Lockwood. Fast
and scalable pattern matching for content filter-
ing. In Proceedings of the 2005 symposium on
Architecture for networking and communications
systems, pages 183 – 192. ACM Press, 2005.

[19] SafeXcel Content Inspection En-
gine. Hardware regex acceleration ip.
http://safenet-inc.com/Library/3/SafeXcel-
4850 ProductBrief.pdf.

[20] Yu Fang, Randy H. Katz, and T. V. Lakshman.
Gigabit rate packet pattern-matching using tcam.
In ICNP, pages 174–183, 2004.

[21] John E. Hopcroft, Jeffrey D. Ullman, and Rajeev
Motwani. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 2001.

[22] Intel. Intel 2800 network processor, hardware ref-
erence manual. Jan. 2004.

[23] Cisco IOS. Intrusion prevention systems deploy-
ment guide. http://www.cisco.com/.

[24] Donald Knuth. The Art of Computer Program-
ming: Semi-numerical Algorithms, volume Vol.2,
third edition. Addison-Wesley, ISBN: 0-201-89684-
2, 1997.

[25] J.B. Kruskal. On the shortest spanning subtree
of a graph and traveling salesman problem. The
American Mathematical Society, 7:45–50, 1956.

[26] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu,
Patrick Crowley, and Jonathan S. Turner. Algo-
rithms to accelerate multiple regular expressions
matching for deep packet inspection. In SIG-
COMM, pages 339–350, 2006.

[27] Sailesh Kumar, Jonathan S. Turner, and John
Williams. Advanced algorithms for fast and scal-
able deep packet inspection. In ANCS, pages 81–
92, 2006.

[28] L7-filter. Application layer packet classifier.
http://l7-filter.sourceforge.net/.

[29] Karthik Lakshminarayanan, Anand Rangarajan,
and Srinivasan Venkatachary. Algorithms for ad-
vanced packet classification with ternary cams. In
SIGCOMM, pages 193–204, 2005.

[30] Giorgos Papadopoulos and Dionisios N. Pnev-
matikatos. Hashing + memory = low cost, exact
pattern matching. In FPL, pages 39–44, 2005.

[31] Michael Rash, Angela D. Orebaugh, Graham
Clark, Becky Pinkard, and Jake Babbin. Intru-
sion Prevention and Active Response: Deploying
Network and Host IPS. Syngress, 2005.

[32] Shai Rubin, Somesh Jha, and Barton P. Miller.
Protomatching network traffic for high through-
put network intrusion detection. In ACM Confer-
ence on Computer and Communications Security,
pages 47–58, 2006.

[33] Reetinder Sidhu and Prasanna V. K. Fast regular
expression matching using fpgas. In FPL, pages
484–493, 2004.

[34] Sumeet Singh, Cristian Estan, George Varghese,
and Stefan Savage. Automated worm fingerprint-
ing. In OSDI, pages 45–60, 2004.

[35] SNORT. Network intrusion detection system.
http://www.snort.org/.

[36] Ioannis Sourdis and Dionisios Pnevmatikatos.
Pre-decoded cams for efficient and high-speed nids
pattern matching. In FCCM, pages 258–267, 2004.

[37] Yutaka Sugawara, Mary Inaba, and Kei Hiraki.
Over 10gbps string matching mechanism for multi-
stream packet scanning systems. In FCCM,IEEE,
pages 227–238, 2001.

[38] Jung-Sik Sung, eok Min Kang, Youngseok Lee,
Taeck-Geun Kwon, and Bong-Tae Kim. A multi-
gigabit rate deep packet inspection algorithm us-
ing tcam. In GLOCOM), pages 453–457, 2005.

[39] Jung-Sik Sung, Seok-Min Kang, and Taeck-Geun
Kwon. A fast pattern-matching algorithm for net-
work intrusion detection system. In Networking,
pages 1157–1162, 2006.

[40] Lin Tan, Brett Brotherton, and Timothy Sher-
wood. Bit-split string-matching engines for in-
trusion detection and prevention. TACO,ACM,
3(1):3–34, 2006.

[41] David E. Taylor. Survey and taxonomy of packet
classification techniques. ACM Comput. Surv.,
37(3):238–275, 2005.

[42] TippingPointX0506. Tipping-
point intrusion prevention systems.
http://www.tippingpoint.com/products ips.html.

[43] Gerald Tripp. A finite-state-machine based string
matching system for intrusion detection on high-
speed networks. In EICAR 2005 Conference Pro-
ceedings, pages 26–40, May 2005.

[44] Nathan Tuck, Timothy Sherwood, Brad Calder,
and George Varghese. Deterministic memory-
efficient string matching algorithms for intrusion
detection. In INFOCOM, 2004.

[45] Jan van Lunteren. High-performance pattern-
matching for intrusion detection. In INFOCOM,
2006.

[46] Yaron Weinsberg, Shimrit Tzur-David, Danny
Dolev, and Tal Anker. High performance string
matching algorithm for a network intrusion pre-
vention system (nips). In HPSR, pages 7–pp, 2006.

[47] Patrick Wheeler and Errin W. Fulp. A taxonomy
of parallel techniques for intrusion detection. In
ACM Southeast Regional Conference, pages 278–
282, 2007.

[48] Sun Wu and Udi Manber. A fast algorithm for
multi-pattern searching. Department of Computer
Science, University of Arizona, 1994.

[49] Seungyong Yoon, Byoungkoo Kim, and Jintae Oh.
High-performance stateful intrusion detection sys-
tem. In IEEE,Computational Intelligence and Se-
curity, volume 01, pages 574–579, 2006.

[50] Sherif Yusuf and Wayne Luk. Bitwise optimised
cam for network intrusion detection systems. In
FPL, pages 444–449, 2005.

	Introduction
	Challenges and Goals
	Deep Packet Inspection Challenges
	DPI Design Objectives

	Software Deep packet Inspection systems
	SNORT Intrusion Detection System

	Hardware Implementation
	Matching Algorithms
	Bloom Filter
	Content Addressable Memory
	TCAM implementations
	Multi-core Processors Implementations

	Finite State Machine
	Nondeterministic Finite Automata
	Deterministic Finite Automata

	Comparison between Existing Modules and Implementations
	Conclusion

