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Abstract. Key pre-distribution in wireless sensor network is aimed at
delivering keys to sensor networks at the low expense of computation,
communication, and memory while providing a high degree of security ex-
pressed by network resiliency to node capture. In this paper, we introduce
a computationally efficient construction for the symmetric matrix-based
key distribution. Particularly, this work introduces an original modifica-
tion over the well known DDHV scheme (by Du et al.). Our modification
shows that using a specific structures for the public matrix instead of
fully random matrix with elements in Z, can reduce the computation
overhead for generating the key information and the key itself at the ex-
pense of small memory overhead. Our modification guarantees the same
level of security for restricted network size. We show an extensive secu-
rity analysis of the provided scheme in different settings and compare to
the relevant works in the literature to demonstrate its merit.

Keywords: wireless sensor network, key distribution, computation effi-
ciency, security.

1 Introduction

The security of wireless sensor network (WSN) is a challenging issue where both
asymmetric (public) and symmetric key based algorithms are considered as pos-
sible solutions. However, because the public key based algorithms on the typical
sensor nodes still require considerable amount of computation that is translated
into processing time, symmetric key based algorithms that utilize the same key
at the side of the sender and the receiver are favored for security the WSN. Par-
ticularly, these algorithms are shown to be computationally light and appropriate
for sensors nodes. To use such algorithms in WSN, symmetric keys need to be
distribution among the legitimate nodes in the network. However, because of the
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WSN’s frail infrastructure, traditional symmetric key distribution schemes that
utilize key distribution centers (KDC) or trust third part (TTP) are obviously
infeasible. To make the use of these algorithms in WSN possible, the concept of
key pre-distribution (KPD) has emerged. In KPD, set of keys or keying mate-
rials are assigned to each node and used at the running time of the network to
ensure secure communication. Several KPD schemes have been introduced in the
literature for securing WSN. These schemes range from the graph-based cryp-
tographic keys assignment such like the works by Eschenauer et al. in [I], Chan
et al in [2], Hwang et al. in [3], Camtepe et al. [4] and Mohaisen et al. in [5] to
the more sophisticated online key generation schemes such like works by Du et
al in [6], Liu et al. in [7] and [§], Mohaisen et al in [9] and [10], among others. In
this paper, we review some of these schemes and provide a construction based
on one of it to reduce its resources’ consumption while maintaining the same
level of security and connectivity.

Our original contribution in this article is a construction based on DDHV
scheme [6] to reduce the used computation overhead at the expense of small
communication and memory overhead. Our contributions therefore are summa-
rized as follows: (1) We introduce a special construction for the public matrix
used in [6] that reduces the computation overhead with a small additional com-
munication and memory overhead which are yet comparable to other schemes.
(2) We show a concrete evaluation for the soundness of the scheme, the secu-
rity achieved and the resources evaluation. (3) To show a comparison between
the modified DDHV scheme (OR-DDHV) and the original work, we introduce an
extensive study that compares both schemes along with a few others from the
literature with instantiated network scenarios and parameters.

The rest of this paper is organized as follows: section [ introduces an overview
of DDHV scheme followed by our scheme in section B section @ introduces the
analysis of both schemes where we show the overhead evaluation in terms of com-
munication, computation and memory followed by the security analysis. Finally,
section Bl draws a concluding remarks.

2 Overview of DDHV Scheme

The DDHV scheme in [6] utilizes Blom’s linear construction in [I1] with Es-
chenauer and Gligor’s random key assignment concept in [I]. Both DDHV and
Blom’s schemes are based on the symmetry property of matrices to provide sym-
metric pairwise keys for the pairs of communicating nodes. DDHV scheme differs
from the Blom scheme in that it utilizes multiple spaces for generating the key.
In this paper, we will explain the discuss the symmetric matrix-based compo-
nent of DDHVsince our modification is directly related to it. Also, modifications
applied on the core of DDHV scheme can be utilized for the multiple space case.

Basically, a symmetric matrix of size N x N can be used for storing the
different N2 keys used for securing communication within the entire network of
size N where each node s; can have a row in that matrix. If two nodes s; and
s; would like to communicate securely, they use the corresponding elements to
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their identifier in their rows for encrypting and decrypting the communication
traffic between them symmetrically. That is, in relation with the global matrix,
the element F;; is used by s; and the element Fj; is used by s; where both
elements are equal because of the symmetry of the main matrix. To reduce the
memory requirements, a linear algebraic-based construction is introduced where
the size of matrices is determined by A < N. Particularly, the following matrices
are defined: a public matrix G of size (A+1) X N and a private symmetric matrix
D of size (A + 1) x (A4 1) where elements of G and D are randomly generated
in the finite field Z,. Also, a matrix A is defined and computed as A = (DG)”
which is of size N x (A4 1). For any node s;, the corresponding row A,.(i) from
A and the corresponding column G.(i) from G are selected and loaded in the
node’s memory. When s; and s; need to communicate securely, they exchange
G.(7) and G.(j) respectively and then k;; = A, (i) X G¢(j) is computed in the
side of s; and kj; = A, (j) X G¢(i) is computed in the side of s;. Obviously, the
resulting keys are equal due to the symmetry property of the matrix D.

To reduce the communication overhead, DDHV scheme introduced the a con-
struction of G based on Vandermonde matriz which can be represented as in ()
where each node stores the corresponding field element in the matrix and gener-
ates the whole column from that value. To construct corresponding column from
the given value, A number of multiplications over Z, are required. Similarly, to
generate the key by multiplying A, by G, another A number of multiplications
over Zq are required

1 1 1 1
82 <822)2 (8332 SJifv )2

G= [ 6 6 ) W
S)\ (52)>\ (SS)A (SN)A

3 Modified Scheme DDHV Scheme (OR-DDHV)

Our modification for the DDHV scheme relies on reducing the computation over-
head at the expense of additional communication and memory overhead while
maintaining the same security level and connectivity. That is, we re-design the
public matrix G so that to maximize the number of zeros in it while maintaining
the linear independence between columns (or rows). Used columns or rows from
our design will require less computation overhead to perform the inner product
with a random row (or column) to generate a key.

Let the matrix in (@) be the typical GT in which each row has only two
nonzero values (a special type of orthogonal matrix in [I2]). According to the
DDHV scheme, each node has a column in G (i.e., row GT) in represented by

! Though a single seed can be used, an allotted memory space is still needed for storing
a full column at the running time. To generate a key from the corresponding column
and row costs same computation as of fully random column.
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two non-zero values. Given the structure of GT, we define the offline and online
phases in the following two sections.

(911 12 0 ... 0 0

0 go2 g23... O 0
GT _ : : . t. N . 2
0 0 0 e gaoao gaoa1 ( )

0 9410 0 ... 0 Gaya,

where ag =A—1,a1 =A—1,and ap = XA — 1.

3.1 Offline Phase

The offline phase of the OR-DDHV scheme resembles the offline phase of the
DDHV scheme to a great extent and consists of three steps shown in Fig. [

1. The administrator generates a symmetric matrix D of size A x A with elements
in Zq and the public matrix G of size A x N with elements in Z; where G
satisfies the above restrictions.

2. The administrator computes A = GTD. The resulting A is of size N x X and
therefore its elements are in Z,.

3. For each node s;, the administrator assigns the row with index i from the
matrix A (e.g., A (i)) and column with index ¢ from matrix G (i.e. G¢(2)).

Fig. 1. The offline phase of the OR-DDHV

3.2 Online Phase
The online phase of the OR-DDHYV scheme is depicted in Fig. 2

4 Analysis

In this section we analyze OR-DDHV scheme. We first introduce our insight on
the network size’s limitations. We then introduce a basic proof for the equivalence
of the used keys followed by resources overhead and security analysis. Finally,
we compare our scheme with other related works in literature.

4.1 Limitations on the Network Size

The maximum supported network size in our scheme is merely dependent on
the parameters N and A. In order to avoid a possible collision and maintain A
vectors (i.e., rows or columns) of G linearly independent, maximum network size
is determined to N = 2 x \ for safety. Though, careful assignment for higher
network size might satisfy collision-free criteria.
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1. Firstly, two nodes s; and s; exchange their public columns Gc(i) and Ge(7)
which can be represented as two non-zero values in Z, and denoted as

91i, 92i, 91i, 925 -
2. In a vector G.(j) with zero elements, the node s; sets the received g1; and g2;
from the node s; with the identifier j into following positions in G.(j):

Ge(f)lj mod A] « g1j. (3a)
G:(H[(G+1) mod A « ga;. (3b)

3. Similarly, the node s; reconstruct G.(¢) by plugging the received values g1, g2:
in the following positions:

Gc(i)[i mod A] «— g1 (4a)
Ge()[(i+1) mod A] « g2 (4b)

4. The node s; computes ki; = A, (1)Ge(4)-
5. The node s; computes kj; = Ar(5)Ge(7).

Fig. 2. The online phase of the OR-DDHV

4.2 Equivalence of Keys

We can simply show that the generated key are equal. That is equivalent to
showing that if D symmetric then B = GTDG is also symmetric and therefore
the resulting keys are equal at both sides of s; and s;. To show the symmetry
of B, it is enough to demonstrate that B = B”. That is, BT = (GTAG)T =
GT (GTA)T = GTATG = GTATG = B. Since both k;; and kj; are elements
in B which is symmetric, both keys are equal.

Let a;j,d;; and g;; be the (i,j) elements in the matrices A,D and G re-
spectively. Also, let A = (DG)?. From which we would like to show that
kij = A (1)Ge(j) and kj; = Ar(§)Gc(4) are equal.

We can write a;; with corresponding to its multipliers as follows: a;; =
(22:1 dirgri)T = (22:1 dir.gr:) From which we can write

A A
A (i) = lari, ag;, .. ] = [Z dlkgki;Zkogki7o~o1 (5)
h=1 h=1

Since G¢(j) = [(91j, g2, - - - )], we can write A, (i) x G¢(j) as follows:

A
A (1)Ge(j) = Z ( de91<¢> guj (6)
=1

=1

Similarly, we can show that A,.(j)G.(i) = 2?21(22:1 dikgk;)g1i- Now, we would
like to check whether A, (j)G.(i) = A, (i)Gc(j) for any i # j. That is, we would
like to show the following equality.
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A /A LA
> ( dem) 9= ( dlekj) ui (7)
k=1 k=1

=1 = =1 =

By Taking the right side in (@) and change the index of the summa-
tions we get the that: Zl)‘:l(zz:l dikgrj)g = 22:1(21)\:1 drigii)gr =
A A
Zk:1(21:1 dikgii) G-

Because D is symmetric, g;; = ¢4, therefore the above can be rewritten as:

Zi\:l dingijgii+ Z?:l di2gijg2i + -+ = (d1191;91; + d2192 91 + d3193591i + - . ) +
(d1291j92i + d2292;92; + d3293592i + ... ) + (d1391;93; + d23g2j93i + d3393593: +
..)+.... By resuming and arranging the terms we get the following:
A A A A A /A
915 Y dikgri + 923 > dongri =Y _g;; Y dikgri = » < dleki) guj
k=1 k=1 =1 k=1 =1 \k=1

(®)

From (@) and (8), we get that () always holds. O

4.3 Resources Overhead

Communication overhead: The communication overhead required in the OR-
DDHYV scheme is 2log, 29 = 2 x ¢ while it is ¢ bits in the DDHV scheme when
transferring a single field value from which the corresponding column in A is
generated.

Computation overhead: The computation overhead in DDHV and OR-
DDHYV is two parts. The first part is required for reconstructing the public in-
formation from the field element and the second part is required for computing
the inner product to generate the symmetric key.

— Column’s reconstruction computation: The computation required in
OR-DDHV scheme to reconstruct the corresponding column is negligible
while it is A number of multiplications in the field Z, in DDHV scheme. That
is, when A is large, the number of computations over ¢ will be also large. To
illustrate how the reconstruction works for the case of DDHV scheme, given
s*, any element in the column is the result of multiplying the two previous
elements. That is, s* = 1 x 5%, (s%)2 = s* x s* and so on.

— Computation for inner product: The computation for the inner product
between the column from G and the row from A to obtain the symmetric
key is 2 multiplications in our scheme since only two values are non-zero in
G’s corresponding column. On contrast, A\ number of multiplications in the
field Z, are required in the case of DDHV scheme.

To sum up, the required computation overhead in term of multiplications in Z,
is 2 multiplications for OR-DDHV and 2\ multiplications for DDHV.
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Table 1. Comparison between DDHV and OR-DDHV in term of the used resources
where communication and memory are in bit per node and computation is in term of
multiplications in the finite field Z4

Scheme  Communication Computation Memory
DDHV log, ¢ 2 (A+1)log, g
OR-DDHV 2log, q 2 (A+2)log, g

Memory overhead: Memory overhead is required for storing private and pub-
lic information at each sensor. For storing the corresponding row in A for the
node s;, A X g bits are required (for both of DDHV and OR-DDHV). However,
our scheme requires 2¢ bit for storing its public information per node while
DDHYV scheme requires on g bits. Here we should emphasize on the fact the A
elements are to be stored for DDHV scheme at the running time of the algorithm
after column reconstruction while our scheme requires space for 2 elements only.

A summary of the comparison in terms of the required resources is shown in
Table [[l Note that though the communication overhead in OR-DDHV is higher
than in DDHV, it is still constant since ¢ is fixed to accumulate the proper length
of key. On the contrary, the computation in the OR-DDHV is constant while it
increase linearly according to the security parameter A in DDHV.

4.4 Security Analysis

The security analysis follows the analysis shown in DDHV and Blom works. That
is, the system is A-secure which means that an adversary needs to know A number
of different and linearly independent vectors (i.e., rows or columns) from the key
generation construction to be able to know the keys between uncompromised
nodes. Recall G in (@), A, and D defined above. Also recall that a;; and d;;
are the (4,7) elements of A and D respectively. Now we can define A,.(i) as

T
AT(Z) = [ail a2 ... CLM] Where aij = (22:1 dikai) = (22:1 dikgm‘). The
above A can be rewritten as:

(g11d11 + g12d21) (g11d12 + g12da2) - ..
A — | (922d21 + g23d31) (gozdaa + gozdsz) . .. )

An adversary who would like to attack the above linear system must first
reconstruct the proper D. Since D is in Z***, A2 number of linear equations are
required for reconstructing it. That is, given that G, the systematic structure
of A and G, and the symmetric property of D is publicly known information to
the adversary, the adversary can obtain A different linear equations by attacking
a single node and reconstructing the different equations representing the row
A.,.(7). For instance, by attacking the nodes with an identifier 1, the attacker will
have the a11 = gi11d11 + g12d21, a12 = gr1di2+g12da2, a13 = gr1di3+giadas, . ...
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Communication Overhead

GBS 3D-GBS  Plat-based HGBS DDHV ~ OR-DDHV GBS 3D-GBS  Plat-based HGBS DDHV ~ OR-DDHV
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Fig. 3. Comparison between our scheme and set of the related schemes: GBS, 3D-
GBS, Plat-based, HGBS, and DDHV. For all of the above comparisons, a = 1, ¢ = 10,
N = 1000.

By repeating the physical attack to A different nodes, the adversary can con-
struct A? linear equation with A% variables that can be solved to recover the
whole private matrix D and construct any pairwise key between any pair of
uncompromised nodes by just observing their public information. Note that the
existence of multiple zeros in the G will not reduce the hardness of solving the
above linear system since the different elements of the matrix D always exist in
the resulting linear construction in A. In DDHV scheme, however, all variables
(represented by the different d’s) appear in each equation rather than the two
variables that appear in each equation in our construction.

4.5 Comparison with Related Works

In addition to the brief comparison between the OR-DDHV and the
DDHV scheme shown in Table [Il we introduce a detailed comparison between
the DDHV and a set of selected related works from the literature. Particularly,
we compare the OR-DDHV to the grid-based scheme [], 3D-GBS [§], Plat-
based [10], HGBS [9], and DDHV [6]. The compared features are the communi-
cation (bit overhead), memory (bit storage), computation (multiplications over
Zg), and connectivity. In DDHV and OR-DDHV, we set A = aN to enable a fair
comparison with other schemes. Also, for the connectivity alpha is made large
enough so that the maximum possible connectivity is realized. Table [2] shows the
detailed comparison.
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Table 2. Comparison between our scheme and other schemes from the literature in
terms of computation, communication, and memory

Comm. Memory Computation Connectivity
GBS 3logy N 3logy N+ (aN +1)log, q 2aN +1 N1/2271
3D-GBS  2log, N 2log, N + 3(aN'/? +1)log, ¢ 2aN'? +1 N2/ a1/5 11
Plat-based 3 log, N 3 log, N + 3(aN?*? + 1)log, ¢ 2aN?/3 +1 e
HGBS logy N logy N +2(aN +1)log, g 2aN +1 1
DDHV log, q (aN +1)log, q 2aN 1
OR-DDHV 2log, g (aN + 2)log, q 2 1

To instantiate the above general comparison on a typical sensor network in
order to measure the sensible merit of each scheme, we consider a network of size
N = 1000, a field size ¢ = 1d§, security parameter = 1, space for representing
node identifier is log, 1000 ~ 10. Fig. Blshows a comparison between the different
schemes in the above features (i.e. communication, computation, memory, and
connectivity). Particularly, Fig. shows the comparison of communication
overhead, Fig. shows the comparison of computation overhead, Fig.
shows the comparison of memory overhead, and Fig. shows the comparison
of connectivity overhead. In these figures, we observe the following:

— While the advantage of the HGBS, DDHV, and OR-DDHYV is the perfect con-
nectivity at the expense of high memory consumption, the OR-DDHV scheme
is the only one that provides such connectivity at the lower required
computation.

— The computations provided in Fig. are on the scale of log;o. That
is, other schemes require hundreds of time computation more than OR-
DDHYV scheme.

— Though the communication overhead of the OR-DDHV scheme is more than
the required by the DDHV, this overhead is comparable to that of the HGBS
at lower computations and memory overheads for same connectivity.

5 Conclusion

In this paper we introduced a construction for the matrix-based key pre-
distribution scheme which is utilized in DDHV [6] and Blom’s work [1I]. We
demonstrated that using an orthogonal matrix instead of fully random matrix
with elements in Z, as a public keying material will lead to a great reduction in
the overhead represented by computation required for generating the key mate-
rial and the key itself. While providing high connectivity, the introduced scheme
has a comparable memory overhead to other schemes in the literature. In the

2 Strictly stated, ¢ must be large enough to accumulate reasonable key size. However,
in this experiment ¢ = 10 for all schemes to demonstrate relative advantage while
not taking the key size into account.
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near future, we will study the construction of other public matrices that maintain
security of the system while being at resources feasible (memory, computation,
and communication). As the introduced scheme limits the maximum number of
nodes possible in the network to 2\, we will investigate the cost of scalablity
using the provided constructions.
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