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Privacy Preserving Association Rule Mining Revisited: Privacy
Enhancement and Resources Efficiency∗

Abedelaziz MOHAISEN†a), Nonmember, Nam-Su JHO††b), Member, Dowon HONG††c), Nonmember,
and DaeHun NYANG†††d), Member

SUMMARY Privacy preserving association rule mining algorithms
have been designed for discovering the relations between variables in data
while maintaining the data privacy. In this article we revise one of the
recently introduced schemes for association rule mining using fake trans-
actions (FS). In particular, our analysis shows that the FS scheme has
exhaustive storage and high computation requirements for guaranteeing a
reasonable level of privacy. We introduce a realistic definition of privacy
that benefits from the average case privacy and motivates the study of a
weakness in the structure of FS by fake transactions filtering. In order to
overcome this problem, we improve the FS scheme by presenting a hybrid
scheme that considers both privacy and resources as two concurrent guide-
lines. Analytical and empirical results show the efficiency and applicability
of our proposed scheme.
key words: privacy preservation, association rule mining, data sharing,
resources efficiency, performance evaluation

1. Introduction

Data mining is a powerful tool for discovering knowledge,
such as hidden predictive information, pattens and correla-
tions, from large databases [1]. However, since the data it-
self may include information that lead to user identification,
the privacy preserving data mining (PPDM) has emerged
to become of a great interest [2]. In the PPDM settings,
not only the accuracy of the data mining algorithms but
also the privacy of data are considered essential [3]. Since
the first work on PPDM by Agrawal et al. [2], several al-
gorithms have been developed to treat the privacy in sev-
eral settings. These algorithms are classified into crypto-
graphic and non-cryptographic (randomization-based) al-
gorithms [4]. The cryptographic algorithms for PPDM are
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shown to provide an accurate result of mining and provable
privacy preservation guarantee [5], [6] at the expense of lim-
ited computational feasibility [6]–[9]. On the other hand,
non-cryptographic approaches which utilize data random-
ization are shown to be computationally light though they
provide low accuracy for achieving high privacy [7], [10]. In
spite of their lack of provable guarantee to privacy preserva-
tion, the randomization-based algorithms have been favored
over the cryptographic algorithms because of their computa-
tional feasibility merit. For that, several schemes are intro-
duced in the literature directed to preserving privacy in data
clustering [11]–[14], association rule mining [15]–[20], and
data classification [21], [22], among mant others.

One of the interesting, though challenging, data min-
ing applications is the association rule mining (ARM) [23],
[24]. ARM is a well researched method for discovering
interesting relations between variables in large databases.
When adding the privacy concern to ARM, the privacy pre-
serving association rule mining (PP-ARM) aims to discover
such relations between the variables in data while main-
taining its privacy. To do so, several algorithms have been
introduced including those previously cited in [15]–[20],
[25]. Among these works, Rizvi et al introduced MASK
for PP-ARM [15]. In MASK (referred as PS), each bit in
each transaction is altered into its binary complement with
a probability p or kept as it is with a probability 1 − p (see
Sect. 3 for details). Accordingly, the mining algorithm is
modified so that an approximation of support and confidence
are computed over the modified data given p. This algorithm
has two advantages: (1) the privacy is quantified based on a
sound mathematical definition and, (2) it does not require
any memory overhead. However, its shortcoming is that the
maximum achievable privacy is bounded (up to 0.89).

In another work (referred as FS), Lin et al used fake
transactions to anonymize original data transactions for PP-
ARM [18]. The FS has several advantages over other exist-
ing schemes. Particularly, (1) it uses an off-the-shelf min-
ing algorithm and, (2) it provides a high theoretical privacy
guarantee. However, its unmentioned drawback is the re-
quired high memory overhead for that privacy.

In this paper, we revise the FS scheme and show sev-
eral results. (1) We explore an average-case notion of the
privacy preservation in FS that expresses the real privacy
attained. (2) We analyze the requirements of FS and show
that, in order to provide a high privacy, the FS scheme re-
quires an exhaustive amount of storage higher than that re-
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quired by PS [15] (see Sect. 5). (3) In practice, we show
that the privacy provided by the FS can be breached given
that the original transactions are not modified and kept in
the released modified data. (4) To exploit the advantage of
the FS and reduce its memory requirements, we introduce
a hybrid scheme that utilizes both FS and PS schemes (see
Sect. 6). (5) We introduce thorough theoretical and experi-
mental analyses that demonstrate the achieved properties in
both the revised and original schemes.

1.1 Why Does Privacy Matter?

The privacy concern rises particularly due to two contradict-
ing goals from data which are utility and profit. In order to
illustrate the importance of the privacy in the context of data
mining, we provide several examples of real applications.
The first application comes from the health-care area. In this
application, a hospital would like to release patients’ data for
an external third party, who is typically not trusted, for re-
search purposes. However, insurance companies (who act
as an attacker on the private) have a great interest to know
health record of the patients and their parents. Particularly,
if a disease exist in the parents’ record, it is highly probable
that the children of this family will have the same disease. In
order to maximize the profit, the insurance companies may
increase the insurance on that family.

The second application is recalled from marketing and
market analysis. In this example, a retailing company would
like to know the pattern of customers’ choice and future di-
rections from a given marketing records that it already has.
One of the possible options for that company is to outsource
its own data to a third party that performs the mining task
and discover any interesting patterns and provide them back
to the company. While this data is not important for many
people, it would be important for other companies compet-
ing in the same market (the attacker). Therefore it is re-
quired to provide an image of the data for required task with-
out revealing additional information to the third party.

The third example shows how privacy research is be-
ing motivated by laws and regulations. According to sev-
eral regulations and laws, personal data is must be preserved
and cannot be stored permanently or used for making de-
cision by any party. Particularly, since the ultimate goal
of data mining algorithms is to build decisions on patterns
driven from data, it is hard to eliminate the bias of decision
based on gender or race. An example of such regulations in-
cludes HIPAA (Health Insurance Portability and Account-
ability Act) [26], PIPEDA (Canadian Personal Information
Protection Act) [27], Directive 95/45/EC on the protection
of personal data (of the European Union) [28] and ISO/TC
215 (an international standard) [29], among others.

1.2 Paper Organization

This paper is organized as follows. In Sect. 2 we introduce
the preliminaries, definitions and notations. In Sect. 3 and
Sect. 4 we summarize the PS and FS schemes for PP-ARM

respectively. In Sect. 5, we revise the FS scheme showing
its memory requirements for high privacy guarantee, aver-
age case privacy, fake transactions filtering, and further re-
marks for extension by comparing FS to PS. In Sect. 6 we
introduce our hybrid scheme and its advantages over PS and
FS apart in terms of privacy, resources, and error of mining
result (both analytically and empirically). Concluding re-
marks are made in Sect. 8.

2. Preliminaries and Definitions

2.1 Major Notation

The major notations used through this paper are shown in
Table 1. Also, other minor notations are defined where they
are used through the rest of the paper.

2.2 Data Model

The market basket model is used for the ARM †. In this data
model each user participates with a tuple (transaction) in
the database where data tuples are with a fixed length and
represented as sequences of 0’s and 1’s. The columns in
the database represent the items whereas existence of 1 in
a tuple indicates a purchase of the specified item and the
existence of 0 indicates no purchase. Since users normally
buy a smaller fraction of products than the whole number
of products in the market, the number of 1’s is much fewer
than the number of 0’s. The goal of the mining process is
to compute the set of association rules in the database that
meets a specific criterion. The data as a set of transactions
T is represented as T = {t1, t2, t3, . . . , tN} where t j ∈ T =
(a( j)

1 a( j)
2 a( j)

3 . . . a( j)
n ), a( j)

i ∈ t j = 1 if item i is purchased and

a( j)
i ∈ t j = 0 otherwise [30].

2.3 Definitions

Definition 1. association rule [16]: Let the whole itemset
be I = {a1, a2, a3 . . . , an} and T is a set of N transactions
where T = {t1, t2, . . . , tN} and each transaction ti is a subset
of I. The association rule is a statistical implication which

Table 1 Notation.

Notation Stands for
FS PP-ARM algorithm using fake transactions in [18].
PS PP-ARM algorithm using data masking in [15].
PPS

r reconstruction probability when using PS.
PFS

r reconstruction probability when using FS.
PPS

p quantification of preserved privacy in PS.

PFS
p quantification of preserved privacy in FS.

w the ratio of fake to real transactions in FS.
R1, R0 reconstruction probability of 1’s and 0’s in PS respectively.
a weight of 1’s over 0’s in PS scheme.
p probability of altering bits to their complement in PS.

†This model is figurative and any ARM application can be ex-
hibited according to this model.
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can be expressed as X ⇒ Y where X,Y ⊆ I and X ∩ Y = φ.
An association rule X ⇒ Y is said to have a support s if

X∪Y appears in s% of the transactions T [20]. Similarly, an
association rule is said to have c confidence if c% of the T
that satisfy X also satisfy Y . While the support is a measure
of the significance of an association rule, the confidence is
used as a measure of strength. An association rule is of in-
terest if both c and s are greater than some threshold values.
According to the Apriori mining algorith, finding the asso-
ciation rules in a dataset is equivlant to finding the frequent
itemsets in that associations rule. An itemset is frequent if
its support is greater than a threshold value.

Definition 2. Support of Itemset [18]: Let A be a set of
n items where I = {a1, a2, a3 . . . , an} and T is a set of N
transactions where T = {t1, t2, . . . , tN} and each transaction
ti is a subset of I. The support of A is defined as follows:

suppT (A) =
#{t ∈ T |A ⊆ t}

N
(1)

Example: Let the items be I ={m, c, p, b, j}, and the min-
imum support be smin = 3. Also, let the set of transactions
be t1 ∼ t8 shown as follows

t1={m, c, b} t2 = {m, p, j} t3 = {m, b}
t4 = {c, j} t5 = {m, p, b} t6 = {m, c, b, j}
t7 = {c, b, j} t8 = {b, c}

From the transactions, we can systematically derive the rep-
resentation matrix in terms of ones and zeros reflecting the
existence or absence of an item in each transaction, respec-
tively, as follows:

T = [(1 1 0 1 0), (1 0 1 0 1),

(1 0 0 1 0), (0 1 0 0 1),

(1 0 1 1 0), (1 1 0 1 1),

(0 1 0 1 1), (0 1 0 1 0)] (2)

By applying the support model in (1) on T , we obtain
the frequent itemsets {m}, {c}, {b}, {j}, {m, b}, {c, b}, and {j,
c} with supports 5

8 ,
5
8 ,

6
8 ,

4
8 ,

4
8 ,

3
8 , and 3

8 respectively.

Definition 3. Privacy measure [18]: The privacy is defined
as the probability according to which the distorted data can
be reconstructed.

Definition 4. False positive σ+: An error that happens
when k−itemset with a support slightly less than smin is sup-
ported with more transactions than other k−itemsets in the
disguised data (i.e., these transactions are included in the
counting though not being frequent). Let R and F be the
reconstructed and real sets of frequent itemset, σ+ is then
defined as σ+ = |R−F|

|F|

Definition 5. False negative σ−: An error that happens
when k−itemset with a support slightly greater than or
equal smin is supported with less transactions than other
k−itemsets. In this scenario, these k−itemsets are not
counted as frequent though they are frequent. Similar to σ+,
σ− is defined as σ+ = |F−R|

|F| .

Definition 6. Theoretical privacy: privacy measured us-
ing straightforward mathematical formulation and consider
only an attacker who tries to find real transactions (fully) at
random without any further knowledge

Definition 7. Real privacy: privacy achieved in practice
when considering other circumstances beside random selec-
tion. E.g., an attacker has some knowledge about the pattern
of choice in the dataset, the attacker may apply filtering, etc.

3. MASK for PP-ARM

In this section we overview the distortion procedure of set
of transactions T represented according to the description in
Sect. 2.2. To preserve the privacy, the data owner performs
the following two steps

• Each tuple in the database is considered as a random
variable X = {Xi} where Xi = 0 or 1.
• The distortion follows the following procedure: Y =

distort(X) where Yi = Xi⊕ r̄i where r̄i is complement of
ri which is a realization of a random variable with the
probability distribution function f (r) = bernoulli(p)
for 0 ≤ p ≤ 1.

The technical implication of the randomization process is
that ri takes a value 1 with a probability p and 0 with a prob-
ability 1−p. When ri = 1, the original bit Xi in the data tuple
is kept same and when ri = 0 the original bit Xi is altered to
its complement. The privacy of the PS scheme is estimated
by the probability according to which the reconstruction of
zeros and ones is possible

1. Reconstruction of ones according to R1 = Pr{Yi =

1|Xi = 1}Pr{Xi = 1|Yi = 1} + Pr{Yi = 0|Xi = 1}Pr{Xi =

1|Yi = 0} = s0×p2

s0×p+(1−s0)×(1−p) +
s0×(1−p)2

s0×(1−p)+(1−s0)×p . Note
that s0 here is the average support of an item in the
database. For a general form where supports of items
are different, please see [15].

2. Reconstruction of zeros according to R0 = Pr{Yi =

1|Xi = 0}Pr{Xi = 0|Yi = 1} + Pr{Yi = 0|Xi = 0}Pr{Xi =

0|Yi = 0} = (1−s0)×p2

(1−s0)×p+s0×(1−p) +
(1−s0)×(1−p)2

s0×p+(1−s0)×(1−p) .

The probabilities in 1 and 2 capture the round trip proba-
bility by moving from the original dataset to the random-
ized dataset (i.e., randomization) and moving back from the
randomized dataset to the original dataset (i.e., reconstruc-
tion) for each bit [15]. From 1 and 2, the overall proba-
bility of successful reconstruction of 1’s and 0’s is PPS

r =

aR1 + (1 − a)R0 where a is a privacy parameter given to
weight 1’s over 0’s [15]. The privacy attained in the PS is
PPS

p = 1 − PPS
r = 1 − (aR1 + (1 − a)R0).

At the miner side, in order to compute the support for
a k-itemset, the following generic form is used

CX = M−1CY (3)

where CY is the column vector defined as

CY = [cY
2k−1, . . . , c

Y
1 , c

Y
0 ], (4)
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in which cY
k is the count of the tuple in Y that has the linear

form k and CX is defined as

CX = [cX
2k−1, . . . , c

X
1 , c

X
0 ], (5)

where cX
k is the count of the tuple in X that has the linear

form k, where X is the original data and Y is the distorted
data. M is a (2k − 1) × (2k − 1) with entries mi, j defined as
the probability that a tuple of the binary form cX

i in X goes
to the tuple of the form cY

j in Y . For instance, in transactions
with 2 items, m2,3 is the probability that (1 0) in X is mapped
to (1 1) in Y which is p(1 − p).

4. PP-ARM Using Fake Transactions

The PP-ARM using fake transactions (FS for brevity) is in-
troduced in by Lin et al in [18]. FS uses fake transactions
as noise in between of real transactions in the dataset. The
privacy in FS is determined by the quality and quantity of
the fake transactions. The quantity of fake transactions is
determined according to the parameter w which stands for
the ratio of fake transactions to real transactions and the pa-
rameter l which stands for the average length of a single fake
transaction. The parameter l is chosen to be same as the av-
erage length of the real transactions and the parameter w is
chosen based on the desirable privacy to be attained (PFS

p ).
Let the hardness of filtering the real transactions from the
fake transactions, PFS

r , be expressed as

PFS
r =

N
N + Nw

=
1

1 + w
. (6)

Then, PFS
p is, by definition, determined as PFS

p = 1 −
PFS

r = 1 − 1
w+1 .

The FS scheme consists of two phases which are data
anonymization phase and data mining phase. The data
anonymization phase consists of the following:

1. Determine li as a realization of uniformly distributed
random variable (UDRV) with mean l equal to the aver-
age length of the real transactions (i.e., 1 ≤ li ≤ 2l− 1).

2. Determine w(i) as the number of fake transactions to be
inserted between two real transactions with index i and
index i + 1 in the dataset. For a predefined w, w(i) is
determined as a realization of a UDRV with mean w
(i.e., 1 ≤ wi ≤ 2w − 1).

3. li number of items are selected from I to construct a
fake transaction.

4. The process is performed for w(i) times for the current
insertion.

5. The w(i) number of fake transactions generated in steps
3 and 4 are inserted in between of the real transactions
with indexes i and i + 1.

The procedure in steps 1 through 5 is performed for the
whole set of pairs of tuples in the database (i.e., N−1 pairs).

To learn the association rules from the anonymized

data, the data mining phase is performed as follows.

1. The new minimum support for a transaction of k-
itemset in the anonymized transactions T

′
is computed.

2. Using any off-the-shelf algorithm, the association rules
are driven according to the new minimum support.

The procedure of computing the new minimum support is as
follows. Given a fake transaction t of length lt and k-itemset
A, the probability that t supports A is

pk =
Cn−k

lt−k

Cn
lt

=
Clt

k

Cn
k

, (when lt ≥ k and 0 otherwise). (7)

Note that Clt
k stand for the overall number of itemsets in t

with length k. The number of fake transactions that support
k-itemset is approximately

2l−1∑
lt=k

Clt
k

Cn
k

× w × N
2l − 1

=
wN

Cn
k (2l − 1)

2l−1∑
lt=k

Clt
k . (8)

Note that the approximation in Eq. (8) assumes that every
length is support with w×N

2l−1 fake transactions in the disguised
data at average. This approximation is the main reason for
the resulting error (σ+ and σ−) as some lengths can be sup-
ported with more or less than the average number. Assume
the support of A ∈ T

′
is s

′
(i.e., suppT

′
(A) = s

′
), then the

number of transactions in T
′

that support A is s
′
(1 + w)N.

Therefore, the number of real transactions that support A in
T
′

is

s
′
(1 + w)N − wN

Cn
k (2l − 1)

2l−1∑
lt=k

Clt
k . (9)

Let the real support be s, then we can write Eq. (9) as s =
s
′
(1 + w) − w

Cn
k (2l−1)

∑2l−1
lt=k Clt

k . Therefore, the new minimum

support s
′

is driven as

s
′

k =
smin +

w
Cn

k (2l−1)

∑2l−1
lt=k Clt

k

1 + w
(10)

Since all parameters in the right-hand side of Eq. (10) are
known, we can learn the association rules in T

′
given only

the minimum support smin in T . For further details on the
FS scheme and its optimization, refer to [18].

5. PP-ARM Revisited

In this section, we revisit the FS scheme and introduce three
main results which are: (i) we show that the FS scheme is
resources exhaustive in terms of high memory in order to
provide a reasonable level of privacy, (ii) we show that the
theoretical quantification of the privacy in the FS follows
the worst-case study while the average-case can be more re-
alistic descriptor for the privacy attained, and (iii) we show
that using two round attack where the first attack is done by
applying common filters on the data and the second by the
random selection, we show that the privacy can be less than
the above two cases.
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5.1 Requirements Analysis of the FS Scheme

The privacy of the FS scheme depends on the parameters l
and w which both determine the quality and quantity of fake
transactions. While l does not have any effect on the re-
quired memory since each transaction has a fixed length, w,
which is the determining factor of the privacy (as shown in
(6)), has a great effect. The privacy attained by FS is defined
as PFS

p = 1 − PFS
r = 1 − 1

w+1 . In order to attain a relatively
high privacy, w need to be large enough. For instance, to
achieve a privacy of 90% (0.9 on the 1-scale), w needs to
be at least 11. That is, the required additional memory for
representing and storing the fake transactions in T

′
will be

11 times the original database size. To illustrate the growth
of such functions, Fig. 1 shows different growth regions of
w. In Fig. 1 (a), the growth is shown for 0 ≤ w ≤ 1 which
reflexes the fast growth region attaining 0.5 privacy. Fig-
ure 1 (b), shows the range of 0 ≤ w ≤ 10 from which we
observe that an increment of 9 in w leads to only 0.4 addi-
tional privacy preservation over the case w = 1. Finally, for
10 ≤ w ≤ 100, Fig. 1 (c) shows that the variation of w by
90 would add a preserve the privacy 0.04 more than the case
of w = 10 to accumulate 0.99 for w = 100. This problem
is particularly critical when we aim to achieve a high pri-
vacy. On the other hand, the required computation linearly

Fig. 1 The attained privacy versus the required w that reflex the required
overhead in terms of memory and computation.

depends on the size of the dataset in which the association
rules to be learned. That is, the increment of the database
size in T

′
will require w times computational power more

than the computation required for the association rules dis-
covery in T only.

5.2 Average-Case for Privacy Quantification

The privacy attained in the FS scheme according to the de-
scription in [18] and summarized in Sect. 4 is indicated as
the worst-case privacy. The worst privacy is driven by as-
suming that the reconstruction probability of any tuple in
the anonymized database T

′
is equal to the reconstruction

probability of the first tuple. In other words, the probabil-
ity of all tuples is assumed to be equal. However, since the
attacker is assumed to reconstruct tuples successively with-
out replacement, there is a necessity for defining an average
case privacy that considers the privacy attained at any time
through the life of the data. In the following (Claim 1), we
define the average-case privacy and show its relation to the
worst-case privacy in [18].

Claim 1. average-case privacy The quantification of pri-
vacy in [18] considers the best reconstruction probability of
a single record (i.e., worst case privacy measure) while the
real privacy preserved (at average) is greater than the worst
case quantification.
Proof. Let an adversary A interested in recovering the
whole set of real transactions by applying a random selec-
tion process. For the sequence of trials to obtain the transac-
tions t1 . . . tN ∈ T

′
, the following is the probability for suc-

cessful reconstruction of the N real transactions anonymized
in the set of w × N fake transactions.

Pr =
1
N

[
N

wN + N
+

N − 1
wN + N − 1

+ . . .

+
N − (N − 1)

wN + N − (N − 1)

]

=
1
N
× (p0 + p1 + · · · + pN−1) (11)

Then, we verify that pi > pi+1 for 1 < i < N − 1. Let i = 1
then N

wN+N >
N−1

wN+N−1 . By multiplying both sides by wN+N−1
N ,

we get that wN+N−1
wN+N > N−1

N which is valid for any w > 0
and N > 2 (note that both conditions are always rationally
satisfied under the real data assumptions). We can similarly
extend the above result to i > 1 and state that c × pi >∑c

j=0 pi+ j for any i ≥ 1 and c ≥ 1. That is, by substituting

i = 1 and j = N − 1, we get that N × p1 >
∑N−1

i=0 pi which
means p1 >

1
N

∑N−1
i=0 pi. However, 1

N

∑N−1
i=0 pi = Pr and p1 =

PFS
r . Therefore, PFS

r > Pr. From this final result we get that

1 − PFS
r < 1 − Pr which means that PFS

p < PFS
p

′
where PFS

p

and PFS
p

′
are the quantification of privacy preserved in the

FS scheme in [18] and the average case introduced by us,
respectively. �

Note that the last result of the average-case privacy
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Fig. 2 The average versus the worst case privacy preservation.

quantification is more general in expressing the attained pri-
vacy according to the privacy preservation procedure intro-
duced in [18]. Also, this measure is more suitable for ob-
serving the attack below. A comparison between the average
case privacy and the worst privacy is shown in Fig. 2.

5.3 On fake Transactions Filtering

The main concern in [18] has been the filtering and recon-
struction of real transactions inserted in between of the fake
transactions. However, an adversary A might be interested
in removing some of the fake transactions which are obvi-
ous in order to maximize the chances of obtaining the real
transactions in the remaining set of transactions according
to the aforementioned privacy quantification model.

The above scenario is possible because it is hard, if
not impossible, to generate fake transaction that are typi-
cally indistinguishable from the real transactions. This is
particularly obvious when the distribution of the dataset is
unknown or biased. In the settings of FS, this shortcoming
introduce a great chance for filtering weak fake transactions
using many off-the-shelf statistical filters. Moreover, given
additional information on the distribution of the user choice
in the original data, it is further possible to filter high amount
of fake transactions. Generally, the filtering may take one,
or even both, of the following forms:

1. Random filtering: since the number of the fake trans-
actions in T

′
is greater than the number of real transac-

tions, specially when w > 1, it is more likely to select a
transaction at random such that the selected transaction
belongs to the set of fake transactions.

2. Guided filtering: given enough information to A
about the distribution of the real transactions represent-
ing the choice of users, A can with a high certainty
filter a large amount of the fake transactions.

Let the efficiency of the filter applied on T
′

be γ where
0 ≤ γ ≤ 1. Then, the model in Eq. (11) can be extended
to contain the filtering impact as:

Table 2 Quantified privacy preservation under several filtering efficiency
factors (γ = 0.0 to γ = 0.7) and for w = 1 to w = 5.

w = 1 w = 2 w = 3 w = 4 w = 5
γ = 0.0 0.6929 0.8108 0.8629 0.8925 0.9115
γ = 0.1 0.6722 0.7951 0.8506 0.8823 0.9029
γ = 0.2 0.6485 0.7766 0.8358 0.8701 0.8925
γ = 0.3 0.6208 0.7544 0.8177 0.8549 0.8795
γ = 0.4 0.5882 0.7271 0.7951 0.8358 0.8629
γ = 0.5 0.5490 0.6929 0.7660 0.8108 0.8410
γ = 0.6 0.5007 0.6485 0.7271 0.7766 0.8108
γ = 0.7 0.4395 0.5882 0.6722 0.7271 0.7660

Table 3 Quantified privacy preservation under several filtering efficiency
factors (γ = 0.0 to γ = 0.7) and for w = 6 to w = 10.

w = 6 w = 7 w = 8 w = 9 w = 10
γ = 0.0 0.9248 0.9347 0.9422 0.9482 0.9531
γ = 0.1 0.9174 0.9281 0.9363 0.9429 0.9482
γ = 0.2 0.9083 0.9200 0.9291 0.9363 0.9422
γ = 0.3 0.8969 0.9099 0.9200 0.9281 0.9347
γ = 0.4 0.8823 0.8969 0.9083 0.9174 0.9248
γ = 0.5 0.8629 0.8795 0.8925 0.9029 0.9115
γ = 0.6 0.8358 0.8549 0.8701 0.8823 0.8925
γ = 0.7 0.7951 0.8177 0.8358 0.8506 0.8629

P(γ)
r =

1
N

[
N

(1 − γ)wN + N
+

N − 1
(1 − γ)wN + N − 1

+ . . .

+
N − (N − 1)

(1 − γ)wN + N − (N − 1)

]
. (12)

Similarly, we derive the average-case privacy as

PFS
p

′ (γ)
= 1 − P(γ)

r = 1 −
N−1∑
i=0

N − i
(1 − γ)wN + N − i

. (13)

To illustrate the impact of the filtering on the privacy preser-
vation, Table 2 and Table 3 show the quantified privacy
preservation for different filtering efficiency parameters γ
according to different values of w.

5.4 Remarks and Extensions

We compare the FS versus PS schemes and point out their
strength and shortcomings. The PS scheme requires no
memory overhead except from that required for representing
the data itself while the FS scheme requires memory space
for the additional wN number of fake transactions used to
disguise the real transactions. Such memory can be tens of
gigabytes for large datasets limiting the later schemes’ fea-
sibility and applicability.

The PS scheme has an upper bound for the quanti-
fied privacy. That is, for the maximum possible p, the at-
tained privacy is equal to 89% [15]. This quantified privacy
is possibly sufficient for some applications but can be a great
breach for privacy-critical applications [17]. On the otherh
and, the privacy resulting from the FS scheme is merely de-
pendent upon the allowed amount of overhead.

Both schemes’ excessive privacy lead to a relatively
higher error of the mining algorithm. Also, while the
PS scheme requires modification in the mining algorithm
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Table 4 Comparison between the FS and PS schemes.

Feature PS scheme FS scheme
Memory Overhead 0 O(wN).
Computation ∼ N ∼ wN
Mining Algorithm Modified off-the-shelf

to maintain a reasonable computation overhead, the FS
scheme can use any off-the-shelf algorithm for mining. Ta-
ble 4 summarizes a concluding comparison between the two
schemes.

6. Hybrid Scheme for Association Rules

The FS scheme introduces some great properties at the ex-
pense of drawbacks which are summarized as follows: (1)
The FS scheme introduces theoretically high privacy at the
expense of high resources in term of memory and computa-
tion and, (2) The FS uses any off-the-shelf mining algorithm
though the presence of the bare real transactions within the
disguised data enables fake transactions filtering that leads
to reducing the originally attained privacy. Based on that,
there is a great chance to utilize and extended FS scheme
that maintains the advantages and mitigates the drawbacks.
Here, we recall the PS explained in Sect. 3 and explain how
a hybrid scheme of both the PS and FS (referred as HS) will
support the aforementioned goals. Our scheme utilizes the
two introduced schemes above to have their advantages to-
gether and reduce from their disadvantages specially related
to the memory overhead and limited privacy.

6.1 HS for PP-ARM

Our hybrid scheme (HS for brevity) works as follows: first
fake transactions are produced using the same way of the
FS scheme and inserted in between of the real transactions
for the whole set of transactions in the database then the
modified database is distorted using the procedure of the PS
scheme. The details of the data distortion part of the scheme
are shown in Fig. 3.

On the other hand, the mining algorithm for checking
whether a k-itemset is frequent or not is made as a combina-
tion of both schemes. Figure 4 shows the procedure of the
mining algorithm.

To study the characteristics of the HS scheme, we use
the following three criteria (1) Privacy measure (Lemma 1),
(2) Error measure, (3) Overhead measures in terms of com-
putation and memory (Lemma 2).

6.2 Privacy of HS

By definition, the successful reconstruction probability of a
single tuple in the HS scheme is given as the probability that
a selected tuple from the disguised data at random belongs
to the original dataset and that each bit in this tuple is recon-
structed correctly. That is, reconstruction probability in HS
is defined as

Fig. 3 The data disguising process of the HS scheme. UDRV stands for
uniformly distributed random variable with a mean μ.

Fig. 4 Itemset discovery in the HS scheme. This algorithm is performed
for every k-itemset to determine if it is frequent or not.

PHS
r
Δ
= PFS

r PPS
r =

PPS
r

1 + w
. (14)

Accordingly, we define the attained privacy as

PHS
p
Δ
= 1 − PHS

r = 1 −
PPS

r

1 + w
. (15)

Particularly, since both PFS
r and PPS

r are less than one, the
resulting probability PHS

r is always less than the smallest of
them. That is, 1−PFS

r > max{1−PFS
r , 1−PPS

r } which means
that PHS

p > max(PFS
p , P

PS
p ) by definition.

Lemma 1: The quantified privacy preserved using our hy-
brid scheme HS is higher than the privacy preserved using
PS or FS alone.
Proof (sketch). Given that 0 ≤ PFS

r ≤ 1 and 0 ≤ PPS
r ≤ 1

then it is straightforward to show that PFS
r PPS

r ≤ PFS
r and

PFS
r PPS

r ≤ PPS
r . That is, 1 − PFS

r PPS
r ≥ 1 − PFS

r and 1 −
PFS

r PPS
r ≥ 1 − PPS

r which yield PHS
p ≥ PFS

p and PHS
p ≥ PPS

p
respectively. �

As a special case, it can be easily shown that our
schemes’ attained privacy is higher than PS scheme when
PPS

p equals to its maximum value (i.e., minimum PPS
r ).

Beside the attained theoretical privacy which is shown
to be higher than the in the FS scheme, the HS scheme pro-
vides better resistance to fake transactions filtering than FS
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scheme in practice (i.e., results in a higher real privacy than
the one estimated theoretically). Given that the order of
transactions is shuffled and the set of fake transactions along
with the real transaction is disguised, chances for applying
meaningful filtering based on patterns are very low. For in-
stance, one possible method of filtering is to choose trans-
actions at random and assert that they are real transactions.
However, even if the attacker succeed in distinguishing the
real transactions, the attacker will have to go through the re-
construction procedure of the PS scheme with low success
probability. On the contrary, once the attacker succeed in
the first stage of the attack on FS, all filtered transactions
are immediately used to breach the privacy.

6.3 Resources Consumption of HS

Unlike the FS scheme, the HS scheme requires less memory
for the same level of privacy given that p > 0.

Lemma 2: For same privacy level, our HS scheme requires
less storage than FS scheme.
Proof. Let w1 and w2 be two parameters defined for FS
and HS schemes respectively. The privacy attained by each

scheme is given as PFS
p = 1 − 1

1+w1
and PHS

p = 1 − PPS
r

1+w2
.

By setting PFS
p = PHS

p (i.e., attained privacy is equal in both
schemes) we get that:

PPS
r =

1 + w2

1 + w1
(16)

However since PPS
r is less than 1 (more specifically, maxi-

mum PPS
r is equal to 0.89), the above equality is only possi-

ble when w2 ≤ w1. �

Example: to attain a privacy PFS
p = PHS

p = 0.95 when PPS
r =

0.3, it is enough to set w2 = 5 while w1 must be at least 19.

6.4 Error Measurement

To study the impact of using both schemes in one hybrid
scheme on the resulting error represented by the false neg-
ative and false positive in Definition 4 and Definition 5
we developed and used the ppAR-Discovery. The ppAR-
Discovery incorporates the Apriori algorithm for associ-
ation rules discovery [31], the modified Apriori algorithm
for discovering association rules in MASK [15], the distor-
tion scenario of FS shown in Sect. 4, the distortion part of
PS scheme explained in Sect. 3, and the hybrid scheme de-
scribed in Fig. 3 and Fig. 4.

We conduct the experiment to evaluate the error rate
on the dataset BMS-WebView-1 [24]. The used dataset con-
sists of 59, 602 transactions where each transaction consists
of 497 items and the length of transaction at average (i.e.,
l) is equal to 2. We further set w with two values: 2 and
4 to generate fake transactions according to the procedure
in 4 and set p = 0.499 according to which the privacy of
PS scheme is determined. The measurements for the error
is shown in Table 5 for different minimum support values.

Table 5 Error of mining in terms of false positive σ+ and false negative
σ− for HS versus FS considering different parameters w and for p = 0.5
and different minimum support values.

smin = 0.005 smin = 0.0025 smin = 0.001
scheme w (privacy) σ+ σ− σ+ σ− σ+ σ−

HS 2 (0.833) 4.013 2.728 2.341 2.340 2.172 1.503
FS 2 (0.667) 2.985 1.493 1.607 1.607 1.102 0.701
HS 4 (0.900) 6.731 4.275 4.762 3.698 1.591 1.620
FS 4 (0.800) 4.975 2.985 3.214 2.501 1.027 1.152

Fig. 5 Computation overhead (without privacy consideration).

Note that the correctness of the mining results depend on
both of the desired privacy to be attained and the minimum
support smin. Particularly, higher percents of errors (both σ+

and σ−) occur when higher privacy is demanded and higher
minimum support is assigned (as shown in Table 5). The in-
tuition beyond the increase of error is that when larger num-
ber of fake transactions are added to the real transactions,
it is more likely that some itemsets with some lengths will
have more or less support by fake transactions than other
itemsets.

6.5 Computation and Memory Comparison

In order to measure the computation requirements of
HS, PS, and FS schemes, we use our implementa-
tion of ppARM-Discovery and the IBM Almaden dataset
T10I8D100k which contains 100, 000 transactions each of
which has 10 items at average [32]. T10I8D100k requires
4.4 Megabytes of storage. We measure the time required
for discovery association rules that dataset for different sup-
port values and using different algorithms. Namely, we use
the Apriori algorithm, MMASK (modified version of Mask)
and MASK. First, we apply each of these algorithms on
the dataset without privacy consideration, where possible,
and the time measurements are shown in Fig. 5 (MMASK
and MASK are applied on disguised data with parameters
used to for Table 6). We observe that the running time of
MASK scheme (PS) is greater in magnitude than that re-
quired for Apriori and MMASK for small supports in par-
ticular. Because the Apriori algorithm does not use any un-
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Table 6 A comparison of the running time between several association
rule mining algorithms using several PP-ARM schemes for different w val-
ues. Shaded rows are measurements for HS scheme, unshaded rows are
readings of FS scheme. PS occurs in the HS scheme when w = 0 and smin,
ARM without privacy consideration occurs in PS scheme when w = 0.

smin w = 0 w = 1 w = 2 w = 3 w = 4 w = 5
0.004 1902.538 3810.154 5707.420 7614.436 9518.382 11416.41
0.004 1915.518 3840.444 5757.377 7666.508 9565.712 11493.32
0.006 1006.857 2030.639 3020.090 4036.387 5031.731 6044.294
0.006 1020.402 2030.883 3059.891 4072.110 5079.988 6112.374
0.008 0819.317 1644.548 2457.953 3284.580 4092.814 4930.341
0.008 0918.858 1839.837 2760.474 3683.245 4604.156 5503.679
0.010 0710.765 1415.095 2129.118 2848.841 3550.869 4261.084
0.010 0793.155 1588.689 2380.345 3178.311 3960.590 4755.187
0.012 0583.790 1171.383 1762.320 2335.563 2904.199 3508.973
0.012 0643.195 1276.313 1923.231 2564.564 3219.250 3847.313
0.014 0412.355 0814.620 1218.326 1656.193 2059.438 2482.124
0.014 0479.880 952.340 1434.044 1916.864 2401.741 2868.722

certain counts, unlike the MMASK which use these counts
to mitigate the impact of data disguising process, the Apri-
ori scheme still outperforms the MMASK. However, the
MMASK greatly outperforms the MASK since MMASK
uses a constant number of counts in order to determine
whether an association rule is frequent or not.

To demonstrate the time required for computing associ-
ation rules within the same data with privacy consideration
and different privacy parameters, we run our simulator for
different values of w and smin. Particularly, we use the sup-
port values from 0.004 to 0.014 with increments of 0.002
and w from 0 to 5 with increments of 1. Table 6 shows the
required time of computation in second where shaded mea-
surements represent the time required for commutating as-
sociation rules when using HS and unshaded measurements
represent the time required for computing association rules
in PS scheme. The FS scheme’s reading are taken when
setting p = 0.5 and a = 0.9.

To compute the memory overhead in each scheme at
the same level of resulting privacy, we use w as a weighted
memory overhead factor. Results that demonstrate the mem-
ory overhead in terms of the parameter w are shown in Ta-
ble 7. Because it does not use any kind of overhead, w = 0 in
the PS scheme. For FS scheme, w is computed from Eq. (6)
as w = 1

1−PFS
p
− 1. We also compute w in case of HS scheme

according to Eq. (15) as w = PPS
r

1−PHS
p
− 1. For FS, the PPS

r

values are realized by setting p = 0.5, p = 0.7, p = 0.8,
p = 0.9, p = 0.95 and a = 0.9 [15]. The memory overhead
is substituted from Table 7 by multiplying the correspond-
ing w value by the original dataset size. For instance, Ta-
ble 8 shows the required memory overhead for the dataset
T10I8D100k considering different privacy parameters.

Note that the minimal memory in FS is achieved at
PPS

r = 11
100 which reflects a privacy preservation in PS

scheme of 0.89. Because the privacy in PS requires no
memory overhead but rather a variation of used parameters
a and p, we can always make sure to meet such condition.

Table 7 A comparison between FS, PS, and HS in terms of required w
that determines the required memory for each scheme. Note that the values
in parenthesis indicate PPS

r used to compute w in PHS
p model which are

realized at p = 0.5, p = 0.7, p = 0.8, p = 0.9, p = 0.95 and a = 0.9.

Pp FS PS ( 11
100 ) ( 12

100 ) ( 13
100 ) ( 17

100 ) ( 23
100 )

0.91 10 1
9 0 2

9
3
9

4
9

8
9 1 5

9

0.92 11 1
2 0 3

8
1
2

5
8 1 1

8 1 7
8

0.93 13 2
7 0 4

7
5
7

6
7 1 3

7 2 2
7

0.94 15 2
3 0 5

6 1 1. 16 1 5
6 2 5

6

0.95 19 0 1 1
5 1 2

5 1 3
5 2 2

5 3 3
5

0.96 24 0 1 3
4 2 2 1

4 3 1
4 4 3

4

0.97 32 1
3 0 2 2

3 3 3 1
3 4 2

3 6 2
3

0.98 49 0 4 1
2 5 5 1

2 7 1
2 10 1

2
0.99 99 0 10 11 12 16 22

Table 8 Numerical results for the memory requirements in megabytes
for storing the dataset T10I8D100k according to the settings in Table 7 for
different achievable privacy levels in the different schemes and scenarios.

Pp FS PS ( 11
100 ) ( 12

100 ) ( 13
100 ) ( 17

100 ) ( 23
100 )

0.91 44.489 0 0.978 1.4667 1.956 3.911 2.444
0.92 50.600 0 1.650 2.200 2.750 4.950 8.250
0.93 58.457 0 2.514 3.1429 3.771 6.286 10.06
0.94 68.933 0 3.667 4.400 5.133 8.067 12.47
0.95 83.600 0 5.280 6.160 7.040 10.56 15.84
0.96 105.60 0 7.700 8.800 9.900 14.30 20.90
0.97 142.27 0 11.73 13.20 14.67 20.53 29.33
0.98 215.60 0 19.80 22.00 24.20 33.00 46.20
0.99 435.60 0 44.00 48.40 52.80 70.40 96.80

7. Related Works

There have been constant efforts in literature to provide
mechanisms that aim at providing PP-ARM in addition to
the works discussed in Sect. 3 and Sect. 4. In this section,
we touch upon some of these related works.

In [17] a per-transaction noise addition method is in-
troduced for PP-ARM where, given the randomization pa-
rameters, a miner can estimate the support and confidence
of an association rule over the disguised data. In [16], [33],
and [34], selective-hiding methods for 1’s and 0’s by replac-
ing them with unknowns signs are introduced. Particularly,
these works are mostly based on heuristics for estimating
the privacy attained by slightly modifying the set of frequent
itemsets so that an attacker has less information about sen-
sitive rules. In [25], a cryptographic method is introduced
for preserving privacy in horizontally partitioned and dis-
tributed databases. Similarly, a solution for PP-ARM in a
vertically distributed database model is introduced in [14].
In [19], a sanitization method is introduced to sanitize re-
strictive rules while blocking inference. In [35] a method for
mining association rules is introduced in a distributed set-
tings where collusion resistance is provided up to a thresh-
old. A method for blocking anonymity threats raised in fre-
quent itemset mining by limiting inference is introduced in
[36]. Finally, in [37], an optimization technique for improv-
ing the counting technique in MASK is introduced. Un-
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like MASK, the introduced optimization technique limits
the complexity of counting to 2c where c is a predefined
constant.

8. Conclusion

Privacy preservation in association rule mining (PP-ARM)
is a critical issue of research where several works have been
proposed for computing the support of itemset in a random-
ized dataset considering different randomization techniques.
In this paper, we revisited the PP-ARM using fake transac-
tions and showed three major results. We first redefined the
privacy to include the average case consideration. We then
pointed out the exhaustive requirements of the FS in terms
of memory and computation. We further pointed out a draw-
back of the FS in practice by showing its weakness against
fake transactions filtering. In order to avoid such limitations
of the FS, we extend it to a hybrid scheme with by combin-
ing it with the PS scheme and show by both analytical and
experimental results the attained properties.
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