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ABSTRACT
In this work we study social networks by measurements and verifi-
cation of assumption widely and blindly used for building security
and communication services on top of these networks. We mea-
sure the mixing time, the expansion, and the betweenness in social
graphs. Our initial findings show that some properties do not hold,
whereas others hold with less quality than assumed in the litera-
ture. From there, we propose to proceed to study these properties
in different settings. We propose to study one of these widely prop-
erties, the mixing time, under several conditions used widely as
practices for modifying social graphs: graph sampling and omis-
sion of graph directions. We explore reasons behind the quality of
the mixing time, and propose several heuristics to improve it.

Motivated by the lack of work on accounting for differential trust
in social network-based applications—Sybil defenses in particu-
lar, we develop four designs and use them to account for trust in
a benchmark technique of Sybil defense (SybilLimit). We show
empirically that our designs improve the security of this defense at
some reasonable cost. We propose to extend these algorithms to
other applications, Sybil defenses as well as other routing and in-
formation dissemination applications on top of social networks and
rely on trust and social graphs’ structure in their operation.

Finally, we propose to use social networks for building two types
of applications: a distributed computing service (called social cloud)
that does not make any direct use of a global property of social
graphs (such as the mixing time or the expansion), and an anony-
mous communication service that incorporates dynamics in the so-
cial graph to improve anonymity.
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1. INTRODUCTION
There have been many attempts in the past five years to build ap-

plications for distributed and peer-to-peer systems that exploit so-
cial networks properties. For example, social networks are used for
building censorship-resistant Internet storage, content sharing and
publishing, routing protocols, and Sybil defenses. In each of these
applications, social networks are assumed to be well-connected and
trusted. For instance, in social networks-based Sybil defenses a
high quality of trust reduces the attackers’ ability to produce mul-
tiple identities, thus, defending against the Sybil attack—caused
by nodes with multiple identities in distributed systems. For these
Sybil defenses to work, social networks are assumed to be trust
possessing and fast-mixing, a formal quality of high-connectivity
of these networks. Other applications require other properties, such
as betweenness, expansion, well-balance, etc. Despite their impor-
tance to these applications, there has been not much efforts spent
understanding the quality of these properties in social graphs and
how such quality affects the performance of these designs.

To make matters worse, some common practices in the field of
trustworthy computing on social networks lack rigor by claiming
authentic properties in social graphs after graph manipulation, thus
calling for further investigations. For example, to bring insight on
their designs of trustworthy computing—Sybil defenses in particu-
lar, many researchers alter social graphs by trimming lower degree
nodes, convert naturally directed graphs to undirected ones and thus
undermine directionality of edges in the underlying social graph, or
sample larger graphs to smaller ones that are easier to work with,
among many other practices. In all of these cases, researchers pay
no attention to the altered algorithmic property in the underlying
social graph and how this affects the operation of the trustworthy
computing systems.

To this end, and to enable trustworthy computing on social net-
works, this work is focused on measuring, analyzing, and improv-
ing properties used for building applications using social networks.
We proceed to this goal by large-scale measurements and analyses
to understand these properties in their natural contexts, and in set-
tings where they are altered as widely used in the literature. Mind-
ful of lessons learned from the measurement, we then proceed to
improving properties so as to improve the performance of systems
built on top of social networks. Finally, we investigate the use of
existing properties in social graphs, and to look at discovering other
properties that can be easily achieved in variety of social networks
to build trustworthy systems.

To motivate for our work and put it in the correct context, in
this section we elaborate on the context and problems in distributed
systems that other researchers in the community tried to solve using
social networks, how and why social networks are used, and our
take on these solutions. Then we proceed to describe our current
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Figure 1: Rating and voting services are widely used in online
marketplaces and content providers to rate their products by
users. (The snapshot here is for a product on Amazon.com).

findings and results, as well as our proposed work.

1.1 Context and Problems
Many of the social network-based computing designs proposed

in the literature address limitations in cyberspace system due to
the lack of trust in them. These designs rely on the trust in social
networks as the main driving factor and make use of some social
networks properties to enable efficient and reliable operation of cy-
berspace systems. In the following we review some of these sys-
tems, where social networks are heavily used in the literature to
improve certain aspects of systems opration.

1.1.1 Misuse in Content Voting Systems
Many systems and services utilize features to improve the ex-

perience of their users. For example, marketplaces like Amazon
and eBay, and online content providers like Youtube and Flickr,
make use of “rating” (or voting) on goods, contents, and individ-
uals (sellers) as means of determining their qualities—an example
is shown in Figure 1. These ratings are ideally provided by experi-
enced users to tell how they perceive such items, and they usually
influence other new users decisions. For example, an item that is
highly rated and sold by a highly rated seller on Amazon or eBay,
even when it is more expensive than the same item from other sell-
ers, is highly likely to be considered by users based on such ratings.
Also, highly rated videos on Youtube are more likely to be watched
based on these ratings. Likewise, items with low ratings are un-
likely to be considered by new users.

In the above scenarios, users put a good faith in these ratings.
They presume that such ratings come from other users who used
these systems—whether it is by watching a video on Youtube or by
purchasing an item on Amazon—and then casted votes to charac-
terize their experience. These rating systems are however prone to
misuse. For example, a single user may purposefully rate an item
several times, thus the rating of the item may become an inaccurate
representation of its quality as perceived by other users. Many of
these systems require users to log-in using authentication creden-
tials, such as an email, in order prevent them from casting multiple
votes. However, most of these systems do not bind such credentials
(or digital identity) with the real identity of users, thus an attacker
with the intention to misuse the system will be able to create mul-
tiple email addresses and use them to cast as many votes as she or
he wants.

While centralized systems, like Amazon and eBay, my prevent
the problem by requesting only users who bought an item to rate it,
the problem as described above is not limited to these systems. Rat-
ing (or voting) is ubiquitously used in many centralized systems—
where such misuse prevention techniques may not apply; examples
include aforementioned Youtube and Flickr services—and decen-
tralized systems. For example, ratings are used to determine the
quality of videos shared on distributed file-sharing systems, where
creating multiple identity to cast multiple votes or claim multiple
roles in the system has proven to be easy.

Figure 2: Censorship map of the world, where colors indi-
cate the level of censorship. �: No censorship, �: Some
censorship, �: Country under surveillance, �: Most heavily
censored nations (source: Reporters Without Borders http:
//en.rsf.org/)

The problem as described above, when a single user creates mul-
tiple identities and try to use them as she or he is multiple users, is
called in the literature the “Sybil attack”. Defending against the
Sybil attack remains challenging in many distributed computing
services.

1.1.2 Identity in Distributed Computing Systems
Many distributed systems rely in their functioning on the true

participation and collaboration of users. Examples where collab-
oration include the search functionality in distributed hash tables
(DHTs), routing in delay tolerant networks, content dissemination
in data delivery infrastructures, among many others. The distributed
nature of these systems make it hard to use a globally enforced
identity, and even if such identities were to be used, the lack of
centralized authority to bind these identities to real identities make
it easy for a single user to create multiple identities and perform a
Sybil attack, thus abuse the system.

For example, distributed hash tables (DHTs), which are widely
used in distributed data management and contents distribution (e.g.,
files sharing), require each user to store a subset of the identities of
contents or users in the system and answer queries concerning these
contents or users if needed by other users in the system. A typical
misuse scenario would include the creation of multiple identities
by a single node and making the search queries fail.

1.1.3 Censorship-resistant Communication
One of the main threats to freedom of the online speech is cen-

sorship. Governments in most countries in the world (as shown in
Figure 2) censor the contents on the Internet and determine before-
hand what contents people can access. To circumvent censorship
filters, there has been several systems but the most notable is Tor
(the onion router). Tor uses predetermined set of volunteer servers
(called relays) to mix traffic of clients so that it is hard for a traffic
analyzer to trace client’s activities. Two of the main limiting factors
of Tor are scalability, which is addressed in several recent works as
in [85] and [92], and relays blocking, which is addressed by hidden
relays; also called bridges [39].

Another solution to the problem has been using social networks
as a mixing medium to communications among people represented
in these networks (details are below).

1.1.4 Distributed Computing Services
Many distributed computing systems rely on resource donated by

volunteers, people who share similar interests for similar causes [134,

http://en.rsf.org/
http://en.rsf.org/


25, 77, 31, 8]. Compute task outsourcers put good faith in the
system; they trust other volunteers in the system to perform the
compute tasks as intended. Applications of such systems are par-
ticularly popular in the research community for scientific compu-
tations. One of the main issues that face this compute paradigm
is the recruitment of compute workers; in order for volunteers to
participate in the system, they should to convinced by the causes
for which these systems operate. This is likely to happen in aca-
demic institutes settings where institutes would be likely willing to
donate their compute idle cycles for other institutes projects, given
that other institutes wold do the same.

Another issue arises as the compute paradigm is made open to
the public. In many of these applications, the outcome of the in-
dividual outsourced computations is usually combined to produce
a result representing the different pieces of outcomes. To that end,
to marginalize how misbehavior affects the operation of such sys-
tems, classical techniques like “replication” of compute tasks on
different machines are used. In these systems, the same task is out-
sourced to different compute workers, and a voting mechanism is
used for admitting results based on the outcome of the majority of
the compute workers. Although that is likely to mitigate the impact
of misbehavior, that could potentially be caused by users not per-
forming computations, or generating multiple identities and taking
multiple tasks with the intention of abusing the system, in many
cases it is hard to reason about the trustworthiness of such systems
and computations delivered by them.

1.2 How Do Social Networks Help?
In most of the systems and applications we described above, the

origin of the problem is the lack of trust in the system. All individ-
uals are likely to be treated equally. In a voting system, like the one
used in Amazon and eBay, votes coming from supposedly different
users are treated equally and presented in the system in an aggre-
gate form to reflect qualities of products. In a distributed computing
system, any node that announces availability of resources is likely
to be used as a worker for any outsourced computations.

All methods proposed and used for defending against misuse and
misbehavior in distributed systems try to fix this aspect in the sys-
tem by bringing trust into these systems. In centralized solutions to
centralized or distributed computing systems, centralized trusted
authorities are used to confirm digital identities of users, match
them to real identity credentials, or maintain a record of users be-
havior and history that can be used further to decide whether to
accept or deny participation of users in the future.

Another solution to the problem looks at bringing trust from
other orthogonal contexts to the distributed system where users in
the distributed system are represented in that context. Accordingly,
decisions whether to accept participating of users in the distributed
system is tied to the trust value of these users in that orthogonal
system. One good example of such contexts is social networks.
Many social networks enjoy both trust characteristics and algorith-
mic properties, such as well-connectivity of nodes in the network
to each other, that support the operation of algorithms to limit mis-
behavior in distributed systems. Furthermore, ties among social
acquaintances in the social network can be used in a decentralized
manner, without a centralized authority, making them a good fit for
bringing trust into distributed and decentralized computing envi-
ronment where trust is a missing factor.

Indeed, this vision has been used intensively in the past five
years, where several designs are proposed in the literature to im-
prove the operation of distributed systems using trust and algorith-
mic properties of social networks. Solutions using social networks
included designs to defend against the Sybil attack in applications

like rating and voting algorithms that are used in variety of systems,
designs to improve routing in delay tolerant networks, designs to
improve routing in socially selfish networks, designs to improve
trustworthiness of online storage and back-up systems, designs to
provide anonymity for online communications, and others to pre-
serve user’s privacy in file sharing systems, among many other sys-
tems and designs.

Most of these designs have common design principles. A typi-
cal design among those proposed in the literature would rely on the
trust in the social network, and would support its operation for ef-
ficiency or security using theoretical arguments. These theoretical
arguments are based on the algorithmic properties claimed in the
social networks—properties that wide variety of social networks
would enjoy so that the operation of these designs is possible on
any of them. For example, many Sybil defenses built on top of
social networks to be trust-possessing and “fast-mixing”. Other
Sybil defenses require social graphs to have “good” expansion, be
well-balanced, or to have high betweenness of nodes so that such
characteristics can be used to determine the “goodness” of nodes
in the social graph and thus decide to admit or deny participations
originated by these nodes in the orthogonal distributed system.

Some of these qualitative properties are assumed with certain
quantities. For example, social network-based Sybil defenses us-
ing the “fast-mixing” property of social graphs assume that a short
random walk with a certain length will result into certain property
of the sampled nodes from the graph after a walk of that length.
This is, walking on the graph for a number of steps that is in the
logarithmic order of a graph size would result into sampling nodes
driven from a probability distribution that is “almost identical” to
the node degree distribution of the graph. Other systems assume
other properties, and require them to be in certain quantities so that
they work correctly in theory.

Despite the importance of these assumption for both theoretical
and practical guarantees of these designs, none of the works in the
literature tried to measure these properties directly in social graphs.
Typically, all works in the literature inferred these properties indi-
rectly by measuring the performance of these designs (Sybil de-
tection, routing, information dissemination, etc). Given the exper-
imental results of these designs on real-world social networks that
meet the theoretical arguments and formulations, authors of these
works have assumed that the algorithmic properties used for rea-
soning about the operation of these designs exist in social networks
with the assumed qualities.

1.3 Trustworthy Computing on Social Networks
Our work in this thesis is motivated by the above arguments. We

looking at bridging the gap between theory and reality in trustwor-
thy computing at social networks. Motivated by the lack of work on
measuring social networks properties used for trustworthy comput-
ing, we initiate this direction by measuring several social network
properties and relate these measurements to both theoretical and
practical guarantees of these designs.

Using outcomes of these measurements, we also ask and answer
several natural questions: a) Do social networks have the quality
of properties assumed and widely used in the literature for building
trustworthy computing systems? b) If not, do these designs operate
on top of social networks with the claimed guarantees even when
such properties do not hold? c) Can we characterize social network
properties and the reason behind their qualities? d) If so, can we
improve these properties? e) Do common practices used in the lit-
erature of graph sampling and omitting graph directions affect the
qualities of these properties and the operation of these systems on
top of social networks? f) Can we build new systems that either



improve on prior work using reasonable assumptions or utilize new
properties in social networks unused previously?

Although the main property we consider in our work is the mix-
ing time of social graphs, which is widely used as the corner stone
for building a wide variety of social network-based Sybil defenses,
we also measure other properties: the expansion of graphs and be-
tweenness of nodes that are also used for building Sybil defenses.
Betweenness also has been used for improving routing in delay tol-
erant networks, among others. The mixing time of the graph, which
is a measure of connectivity of the graph, is also used indirectly in
other systems to support the efficiency of information dissemina-
tion, routing, and anonymous communication. We touch upon how
these applications are affected by the qualities of these graphs.

To this end, we make two broad multifold contributions in this
thesis. First, we test the underlying properties in social networks
used for building trustworthy computing systems. Second, we pro-
pose several systems and protocols that either improve these prop-
erties or use new properties unseen in prior works.

1.4 Summary of Contributions
In this proposal, we make three multifold contributions. In the

following, we elaborate on each of these contributions.

1.4.1 Measuring Social Networks Properties
Mindful of the importance of certain social networks proper-

ties for the operation of social network-based applications, such as
Sybil defenses, information dissemination algorithms, and anony-
mous communication systems, we proceed to measure these prop-
erties in real-world social networks and graphs. Our main moti-
vation of doing this study is as follows. First, to the best of our
knowledge, some of these properties—such as the mixing time of
social graphs—is not studied before on large scale social graphs.
Second, it is not clear what quality of these properties is required
for the operation of these applications. Whereas theoretical guar-
antees of Sybil defenses on social networks, for example, require
certain quality of the mixing time, it is not clear if such quality
existed in social networks. Last, and as mentioned earlier, several
techniques are used to alter social graphs, and it is not clear how
such techniques affect the property used for building these appli-
cations. Furthermore, it is not clear how this alteration affects the
operation of these applications. To this end, in this work we make 1

the following contributions (and highlight the main interesting find-
ings in each contribution):

1. We investigate tools and use them to measure the mixing time
of undirected social graphs [106]. For that, we use two meth-
ods: the second largest eigenvalue modulus (SLEM) and the
mathematical definition of the mixing time. We use the defi-
nition to express the richer pattern of the mixing in the social
graphs. Unlike what has been claimed in the recent literature
of building social network-based Sybil defenses using the
“fast mixing” property, we find that many social graphs are
slower mixing than anticipated and needed by such defenses.
By experimenting with some of the literature defenses, we
discover that the quality of the mixing time required for op-
erating these defenses is weaker than claimed in the litera-
ture. As such, we made two firm conclusions. First, some
of the theoretical guarantees claimed in these defenses based
on the claimed property of the mixing time are inaccurate.
Second, some of the practical security guarantees of these

1In this proposal we use the present and past tenses though some of
these proposed works are ongoing works to be submitted (working
titles; initial results are reported).

defenses when operated on some social graphs are weaker
than claimed. Additional findings in this work show that the
mixing time is greatly improved in social graphs when lower
degree nodes are trimmed from the graph, a common practice
in the literature.

2. While many social graphs are directed by nature, many ap-
plications are often evaluated on undirected versions of them
by omitting edge directions. In this direction, we develop
tools to measure the mixing time of directed graphs and de-
velop its error bound. We then measure the mixing time of
several directed benchmarking graphs and their undirected
counterparts. Our initial measurements show that directed
graphs are slower mixing than undirected ones [98]. We use
two state-of-the-art applications to demonstrate the impact of
these findings on designs on top of social networks: Sybil-
Limit and “anonymity in the wild”. We found that evalua-
tion of applications on the undirected graphs always overes-
timates the security provided by these applications.

3. To understand why some graphs are fast-mixing and why
some others are not, we related the mixing time to degen-
eracy, which captures cohesiveness of the graph [103]. We
show that fast-mixing graphs have a larger single core, whereas
slow mixing graphs have smaller multiple cores. We build
on these observations by designing techniques to improve the
mixing time of slow mixing graphs using auxiliary links [103].
We also show that another property recently used for build-
ing a Sybil defense—namely graph expansion, relates to the
mixing time. While fast mixing graphs have good expansion,
slow mixing graphs have poor expansion.

4. Graph sampling is widely used to address infeasibility of
measurements in large graphs, or for crawling graphs when
accessing an entire social graph at once is infeasible. Many
sampling algorithms are used, and they aimed at maintaining
certain properties of original graphs in the sampled ones. We
studied sampling algorithms’ bias on the mixing time [99].
We show that some sampling algorithms, including those un-
biased to degree distribution, always produce biased estima-
tion of the mixing time. We further conclude that bias in
sampling algorithms is rather metric-dependent, and while
an algorithm may work nicely to one property, it may pro-
duce considerable bias in the mixing time.

1.4.2 Better Assumptions by Incorporating Trust
Social trust is the other main feature used—along with the prop-

erties examined above—for building trustworthy computing appli-
cations on social networks. While most applications in the litera-
ture required certain qualities of social trust so as to reason about
their operation and guarantees, the very same applications are ex-
perimented on online social graphs which are known for their weak
trust characteristics.

For example, social network-based Sybil defenses do not con-
sider the different amounts of trust represented by different graphs
nor the different levels of trust between different nodes, though
trust is a crucial requirement in these defenses. To address this
problem, we introduced two theoretical (lazy- and originator-based)
and two data-driven (similarity- and interaction-based) designs to
tune the performance of Sybil defenses by accounting for differen-
tial trust [97].

Each of these designs biases the random walks used for operating
these Sybil defenses. Interestingly, we find that the cost of operat-
ing Sybil defenses is greater in graphs with high trust than in graphs



with low trust values. We discovered that this behavior is due to the
community structure in high-trust graphs, requiring higher costs to
traverse multiple communities. Furthermore, we showed that our
proposed designs to account for trust—while they increase the cost
of operating Sybil defenses on graphs with low trust value—greatly
decrease the advantage of attacker.

1.4.3 Building New Applications On Social Networks
In parallel with other contributions, we explored the vein of so-

cial networks-based systems design. In this direction, we make
three independent contributions. We build SocialCloud, a new volunteer-
based time-sharing computing paradigm, DynaMix, a new anonymity
enabling communication system on social structure by exploiting
edge dynamics, and MeetUp, a secure encounter-based social net-
work.

1. SocialCloud. We explore a new computing paradigm, called
SocialCloud [100], in which computing nodes are governed
by social ties driven from a trust-possessing social graph.
We show that incentives to adopt this paradigm are intuitive
and natural, and security guarantees provided by it are solid.
We propose metrics for measuring the utility of this comput-
ing paradigm, and consider several design trade-offs for its
operation. Using real-world social traces, we run an event-
driven simulator of SocialCloud, and demonstrate the poten-
tial of this paradigm for ordinary users. Interestingly, we
find graphs known to perform poorly for Sybil defenses [106]
are good candidates for our SocialCloud for their “self load-
balancing” features.

2. DynaMix. Existing solutions for anonymous communication
on social structures undermine the impact of networks dy-
namics on anonymity guarantees. We propose DynaMix,
an anonymous communication system that exploits dynamic
structures in social networks [105]. We formally show an
intuitive connection between anonymity on dynamic graphs
and random walks on weighted graphs in which weights sum-
marize the history of edges and allow for future dynamics
to weight adjustment. We showed several measurements of
our proposed model on dynamic graphs extracted from real-
world social networks and compared it to static structures
driven from the same graphs, highlighting potential of our
proposed system enriching graph structure and improving
quantitative anonymity as both entropy and anonymity sets.

1.5 Roadmap
The rest of this proposal is organized is three main parts (sec-

tions). In section 2 we introduce the first major contribution (sum-
marized in section 1.4.1) in more details and articulate the ongoing
and proposed work on measuring, verifying, and understand sev-
eral social network properties used for building applications on top
of social networks. In section 3, we introduce the second major
contribution on accounting for trust in social network-based appli-
cations (summarized in section 1.4.2). In section 4 we review two
applications we propose to build on top of social networks (sum-
marized in section 1.4.3). Each section has a summary of the work
that serves as concluding remarks.

2. MEASURING SOCIAL NETWORKS
The Sybil attack is a well-known and powerful attack in dis-

tributed systems. In the basic form of this attack, a peer repre-
senting the attacker generates as many identities as she can and
acts as if she is multiple peers in the system. These “virtual” peers
are then utilized to influence the behavior of the system [43]. The

number of identities that an attacker can generate depends on the at-
tacker’s resources such as bandwidth, memory, and computational
power. With the sharp hardware growth—in terms of storage and
processing capacities—and the popularity of broadband Internet,
even attackers who use “commodity” hardware can cause a sub-
stantial harm to large systems. Classical solutions to the problem
are insufficient in many distributed systems contexts, for that they
assume the existence of centralized authorities in such systems [17,
43, 21, 5, 64, 41, 81, 137, 122, 139]. On the other hand, social
networks-based solutions to the problem [148, 147, 146, 145, 131,
132, 129, 130, 69, 71, 35] avoid any assumption on centralized au-
thorities, which are replaced by (social) peers participation in the
distributed system under certain assumptions

In these decentralized defenses, peers in the network are not
merely computational entities—the human users behind them are
tied to each other to construct a social network. The social net-
work is then used for creating designs (such as those in boot-
strapping the security and detecting Sybils under two assumptions:
algorithmic and sociological. The algorithmic assumption is the
existence of a “sparse cut between the Sybil and non-Sybil sub-
graphs” in the social network, which implies a limited number of
attacker edges; edges between Sybil and non-Sybil nodes. Fur-
thermore more, these defenses assume that honest region of the
social network is “fast-mixing”; a quantified quality of the connec-
tivity of the honest graph (the graph that contains the honest nodes
only). The sociological assumption is a constraint on the trust in
the underlying social graph: the social graph used in these defenses
needs to exhibit “strong trust” as evidenced, for example, by face-
to-face interaction demonstrating social actors’ knowledge of each
other [148, 147, 146, 145, 131, 132, 129, 130, 69, 71, 35]. De-
spite their essential role to the practicality of any potential design
on top of social network, these designs are blindly accepted with-
out rigorous verification of their validity. Other examples of sce-
narios of using social networks for building applications without
verifying properties being used include Sybil defenses in mobile
networks [115], the use of social networks for routing and social
search [82, 26, 36, 14, 32, 83], which all assume the features of
“well-balance”, “good expansion”, “good betweenness”, or “clus-
tering of graphs”, among others.

Until now (late of 2009; the time of starting this work) these
assumptions are not challenged. Although several social network
properties like clustering, betweenness, and connectivity proper-
ties, are widely studied and measured [22, 87, 118, 63, 6], none of
these works is directed towards these applications built on top of
social networks using these properties. To the best of our knowl-
edge, and before our work, no work tried to measure the mixing
time of social graphs and relate the quality of the mixing time in
these graphs to guarantees of Sybil defenses. The only work in the
literature addressing this issue is in [38], which does not address
these defenses.

Concurrent to work, the algorithmic assumption has been indi-
rectly questioned in [136], where it is shown that some Sybil de-
fenses are sensitive to the community structure in a selected set of
social graphs. However, the authors did not measure the mixing
time nor tried to relate its quality to these systems guarantees. On
the other hand, although there has been several works in the recent
literature on social network infiltration [15, 55, 18]—where authors
of these works have claimed that their findings would affect the op-
eration of Sybil defenses on top of social networks, none of these
works tried to quantify how these attacks would affect the opera-
tion of Sybil defenses. More importantly, none of these works tried
to provide fixes for these attacks to improve the operation of Sybil
defenses.



In the rest of this section, we investigate measuring these prop-
erties and relate that to the guarantees of these systems. In par-
ticular, we investigate tools and use them to measure the mixing
time of different social graphs and relate that to guarantees of the
Sybil defenses. We propose to measure how the mixing time is af-
fected by widely used practices, like omission of edge directions,
and sampling, and how that affects two classes of applications built
using this property, the Sybil defenses and anonymous communi-
cation systems. Then, we measure two other properties, namely
the expansion of the graph and the betweenness of nodes. While
the former is used for building a Sybil defense, the latter is used
for building a Sybil defense and a routing protocol. We relate these
measurements to the mixing time and applications built on top of
social networks. Finally, we explore a heuristic to improve the mix-
ing time by auxiliary links, given our understanding for the reasons
beyond its quality in different graphs.

2.1 How Graph Properties Are Used
To show how graph properties are used for building these sys-

tems, in this section describe two of them, a Sybil defense, called
SybilLimit, and an anonymous communication system, called “anonymity
in the wild”. Both systems rely on the mixing time for their opera-
tion, and certain qualities of the mixing time are assumed for their
theoretical and practical guarantees.

2.1.1 SybilLimit
In SybilLimit, each node samples r edges in the graph as “wit-

nesses”, where r = r0
√
m, by running r independent instances of

random walks each of length w = O(logn) and picking the last
edge in the walk in the sample. Under certain assumptions on the
graph’s mixing characteristics, there is an overwhelming probabil-
ity that two sampled subsets of honest nodes/edges in the social
graph will have a non-empty intersection, which would be used for
suspect verification. Formally, if the social graph is fast mixing—
i.e., has a mixing time of O(logn) so that the distance between
the stationary distribution of the graph and the walk graph after
O(logn) is Θ(1/n) 2—then probability of the last node/edge vis-
ited in a walk of lengthO(logn) drawn from the edge/node station-
ary distribution is at least 1− 1

n
(Theorem 1 in [146]). Accordingly,

by setting r0 properly, one can use the birthday paradox to make
sure that the intersection between two sampled subsets of edges (by
two honest nodes) is a non-empty set with an overwhelming prob-
ability. Furthermore, given that the social graph is fast mixing, and
the number of attack edges—edges that connect Sybil with honest
nodes—is limited, probability for random walks originated from
honest region to dishonest region are limited. The impact of such
“escaping tails” on the operation of the defense is further marginal-
ized using a “balance condition” which ensures that accepting a
suspect would not cause a spike of the number of accepted sus-
pects via a certain edge in the graph. Chances of dishonest nodes
being accepted by sampling honest edges is limited, and bounded
by the number of attack edges.

2.1.2 Anonymous Communication Systems
The idea of mixers over social links is very simple [109]. In

these systems [109, 34], users recruit their social acquaintance to
relay their traffic and to provide anonymity to them. In the nutshell,
each node (user) forwards her own traffic to her friends, and friends
forward that traffic to their friends, and so on, for a certain number
of hops, e.g. w. The number of hops w is a system-wide parame-
2This quantity is further assumed to be 1/n in many lemmas in
SybilLimit’s proof; see for example Lemma 7 and Theorem 3
in [146].

ter, which is determined by the security level desired in the system.
The anonymity is defined for two parties; the sender and the re-
ceiver of traffic (we follow the same model in [109] for defining
the anonymity of both parties).

For a sender, the anonymity defined in terms of the anonymity
set is n, thus the entropy of the probability distribution of any node
being the sender is log2(n)—same for both directed and undirected
graphs. On the other hand, the anonymity set for a node being the
receiver is determined by the probability distribution achieved after
the fixed number of hops w used in the system. Let the distribution
of the final node selected in a random walk after w hops be πwi =
πiP

w, where πwi = [πwi (j)]1×n (πi is an initial distribution). The
anonymity of the receiver of the traffic (the last hop in the walk) is
measured by the entropy Hw, which is given as

Hw = −
n∑
j=1

πwi (j) log2 π
w
i (j) (1)

Using the entropy in Eq. (1), we define the anonymity set Aw =
2Hw . The maximum entropy and anonymity set for a walk on a
graph are achieved with the probability distribution of that walk as
it approaches the stationary distribution.

We use Hd
w and Adw for the average entropy and anonymity sets

in a directed graph, while Hu
w and Auw are used for the average

entropy and anonymity sets in an undirected graph. We define the
average entropy and anonymity sets for 1000 random walks starting
from different sources (see below).

Unlike SybilLimit, where certain parameters are required for its
operation and is used for its security proof, “anonymity in the wild”
does not assume any qualities of the mixing time. It rather shows
that a short random walk on the graph is sufficient to reach close
enough to the stationary distribution so that the anonymity set of
the walk is a large proportion of the maximum anonymity set (i.e.,
the power of the entropy in the stationary distribution).

2.2 Tools to Measure the Mixing Time
Theoretical results that provide tools to measure graph properties

have been already studied intensively over the past decades in other
contexts, including graph and probability theories. Such results
can be applied directly, or with small modifications to the problem
in hand, and to understand the extent to which assumptions being
made about social networks exist in reality. In the following, we
review some of these results and using them to understand the al-
gorithmic properties of social graphs in real-world social networks,
an assumption that is being used for reasoning about the behavior
of social network based systems.

2.2.1 Social Networks: Directed vs. Undirected
Both directed and undirected social networks exist. Popular on-

line directed social networks include Twitter, Youtube, and Google+,
whereas undirected social networks include Facebook, Myspace,
and LinkedIn, to mention some. While most of the literature work
on using social networks to build trustworthy computing systems
assumes undirected social graphs, some others (like [19, 71, 146,
136, 91]) have used directed graphs and altered them by either
omitting edge directions entirely or by considering a connected
subgraph in which an edge is established between two nodes if it
is symmetric (i.e., an edge that exists in both directions). Accord-
ingly, in this section, we consider both types of graphs, directed
and undirected.

Formally, we refer to an undirected graph as G = (V,E), where
V (|V | = n) is the set of nodes in the G and E (|E| = m) is
the set of edges (relationships or interdependencies) between the



nodes. For G, we define the symmetric adjacency matrix A =
[aij ]

n×n. where the aij = 1 if an edge exists between vi and vj
in V . We define the degree of a node vi ∈ V as the number of
nodes in V adjacent to vi and denote it by deg(vi). For G, we
define P = [pij]

n×n as the transition matrix, where P = D−1A.
D is defined as a diagonal matrix where the ii−th element in D is
deg(vi).

For clarity, we refer to a directed graph on n vertices and m
edges as G. Similar to the undirected graph case, let A = [aij ]

n×n

be the adjacency matrix of G, where aij = 1 if there is an edge
from vi to vj in G (denoted by vi → vj), and 0 otherwise. Let
deg(vi)

− be the out-degree of node vi.
We define the transition probability matrix P = [pij ] where

pij = 1/deg(vi)
− iff vi → vj , and 0 otherwise. In a clean matrix

form, P = (D−)−1A, where D− is a diagonal matrix in which
the ii-th element is defined as

∑
j aij .

The stationary distribution, π, of random walks on G (G, respec-
tively), is defined as a probability distribution that is invariant to P
(i.e., π = πP). Formally, π is defined in Theorem 1 for undi-
rected graphs (with certain properties; see below—the same defini-
tion also applies to the case of strongly connected directed graphs
as well).

THEOREM 1. Let P be the probability transition matrix of a
Markov chain that is periodic and strongly connected, defined on a
graph G. Then,

lim
t→∞

Pt = P∞ (2)

where P∞ is an (n × n) matrix of identical rows, where each
row equals to π, the stationary distribution of every walk on G.

For an undirected graph, π = [deg(vi)/2m]1×n, whereas π in
directed graphs in general has no closed-form expression.

2.2.2 The Mixing Time: The Definition
Significant fraction of social network-based designs use the mix-

ing time as one of their assumption for operation and security guar-
antees. In these designs social graphs are assumed to be “fast-
mixing” for all Sybil defenses. For G defined in §2.2.1, recall that
P = [pij ]

n×n, where

pij =

{
1

deg(vi)
if vi is adjacent to vj ,

0 otherwise.
(3)

The “event” of moving from a node to another in the graph is
captured by the Markov chain which represents a random walk over
the graph G. A random walk R of length k over G is a sequence
of vertices in G beginning from an initial node vi and ending at
vt, the terminal node, following the transition probability defined
in Eq. (3). The Markov chain is said to be ergodic if it is irreducible
and aperiodic. In that case, it has a unique stationary distribution
π and the distribution after random walk of length k converges to
π as k → ∞ (Theorem 1). The mixing time of the Markov chain,
T is defined as the minimal length of the random walk in order to
reach the stationary distribution. More precisely, T (parameterized
by ε) of a Markov chain is defined as

T (ε) = max
i

min{t : |π − π(i)Pt|1 < ε}, (4)

where π is the stationary distribution, π(i) is the initial distribution
concentrated at vertex vi, Pt is the transition matrix after t steps,
and | · |1 is the total variation distance defined as 1

2

∑
j |π(j) −

πti(j)| (where πti = πiP
t).

The Second Largest Eigenvalue Modulus (SLEM). In addition to
the definition in Eq. (4), which can be used to compute the mixing
time of an undirected graph directly from its transition matrix, the
mixing time is bounded by the second largest eigenvalue of the
transition matrix P. This is, let P be the transition matrix ofGwith
ergodic random walk, and λi for 1 ≤ i ≤ n be the eigenvalues of
P. Then all of λi are real numbers. If we label them in decreasing
order, 1 = λ1 > λ2 ≥ · · · ≥ λn−1 ≥ λn > −1 holds. We define
the second largest eigenvalue µ as µ = max (|λ2|, |λn−1|). Then,
the mixing time T (ε) is bounded by

µ

2(1− µ)
log(

1

2ε
) ≤ T (ε) ≤

log(n) + log( 1
ε
)

1− µ . (5)

“Fast-Mixing” Social Graphs. We say that the Markov chain is
rapidly mixing if T (ε) = poly(logn, log 1

ε
). In literature [30,

123], the rapid mixing of the Markov chain is cited as “fast mixing”
for the graph [35, 71, 146, 147]. Here, we follow the tradition of re-
ferring to this bound as “fast mixing”. Also, again following these
previous work, we strengthen the definition by considering only
the case ε = Θ( 1

n
), and requiring T (ε) = O(logn) [35, 71, 146,

147]. For the mixing time definition in Eq. (4), and when consid-
ering an undirected unweighted graph, the stationary distribution
is π = [πvi ]

1×n = [deg(vi)
2m

]1×n for i = 1 . . . n. As mentioned
before, computing the exact stationary distribution for a directed
graph in a closed-form expression is not possible, although com-
puting an estimate and its error might be possible.
The Mixing Time and Other Properties. The mixing time is
tightly related to the connectivity of the graph, which is explicitly
assumed in many contexts of previous works [35, 69, 97, 129, 131,
145, 146, 147, 148, 91]. This is, strongly-connected graphs are
fast mixing and have small mixing time while weakly connected
graphs are slow mixing and have large mixing time [123]. Some
of the works cited (e.g., [131]) above informally refer to requiring
a well-connected graph by having a expansion factor [108], an-
other terms that is related to the mixing time [60]. Finally, the
second largest eigenvalue used for measuring the mixing time (in
Eq. (5)) bounds the graph conductance, a measure for the commu-
nity structure [136] in these graphs. In short, the conductance is
Φ ≥ 1− µ [58].
Average “Mixing Time”. Although the mixing time as defined
in Eq. (4) is defined overall random walks as the shortest walk from
the worst mixing source in the graph, there has been recent work in
the literature to define an average mixing time and the average con-
ductance [52], rather than the worst case. This measure is further
bounded by other graph properties; see definition 7.13 and Lemma
7.14 in [53]. In a fellow-up to our work, and agreeing with our
conclusions in [106], the author of [144] suggested that the average
mixing time might be in use for the Sybil defenses, rather than the
definition in Eq. (4).

2.3 Other Algorithmic Properties
Other basic properties used for building applications on top of

social networks include the betweenness centrality of nodes in the
social graph. The betweenness centrality [47] captures the signif-
icance of nodes to the flow between other nodes. Two types of
betweenness centrality are known in literature: shortest-path be-
tweenness [47, 140] and random walk-based betweenness [110].

The shortest path betweenness weighs the significance of nodes
as a result of their occurrence at the shortest path between other
nodes by normalizing the number of paths between every two nodes
in the network that pass through a particular node by the total num-
ber of such paths. While the shortest path betweenness requires a
global knowledge of the whole topology—an issue that raises a lot



of concerns in social network-based applications, the random walk
based betweenness can be implemented at fully decentralized set-
tings. Recall the random walk defined earlier and recall that the
random walk connecting nodes vi and vj , denoted as vi

pr
; vj , is

the set of nodes where each node on the random walk is selected
uniformly at random by its prior node.

We define the random walk-based betweenness for a node vi as
the normalized expected number of times it is hit by the random
walk. In short, the same model of the shortest path-based between-
ness is used to compute the random walk-based betweenness by
replacing the short path in the first one by the random walk in the
latter one.The betweenness is used in [115] for defending against
the Sybil attack and in [32, 33] to improve routing in DTNs.

The similarity is another property that is also used for build-
ing or improving the quality of applications that leverage social
networks [32, 33, 113, 50, 65, 51]. The similarity between two
nodes in social networks is used for measuring the strength of so-
cial links and potentially predicting future interactions [29, 74], or
even weighting the value and significance of future interactions be-
tween nodes in social graphs [50, 65, 84]. Intuitive simple meaning
of the similarity between two nodes in the context of a friend-to-
friend social network is the number of friends common to both of
them.A measure of similarity that reflects this intuitive meaning is
the “cosine similarity” which computes how vectors are close to
each other, each representing the row of a node in A [74].

Another measure of centrality in graphs is the closeness. The
shortest path closeness captures how close is a node to others in
the graph based on the expected length of the shortest pathes be-
tween that node and other nodes in the graph. Applications of such
measure include routing on top of social networks [11, 26].

The (vertex) expansion of the graph is used in proving theoret-
ical security guarantees of a Sybil defense. Let S ⊂ V , where
0 < |S| ≤ 1/2|V |, be any set of vertices in the graph. The (vertex)
expansion factor α is defined as

α = min
0<|S|≤n

2

|N(S)|
|S| (6)

Where the minimum is over all nonempty sets S of at most n/2
vertices—S need not be connected and thus the number of possible
configurations of S is exponential in n—and N(S) is the set of
vertices not in S but each of which is connected by an edge to
another node in S. In [130], where this property is used for building
a Sybil defense, the definition of S is further restricted so as S is
connected. Such restriction reduces the number configurations of S
to become linear in n. In the subsequent subsections, we elaborate
on how to measure α in the latter context.

2.4 Measuring the Mixing Time
Now we proceed to measure the mixing time of different social

graphs to see if the qualities assumed in the prior work in the liter-
ature exists in these graphs or not.

Although the mathematical tools for measuring the mixing time
are known in literature, measuring the mixing time—especially
of large graphs—is a computationally non-trivial task, requiring
O(tn3) computations for a walk length parameter t and network
size n, and that might be the reason why fewer efforts are made to
measure this essential property in large social graphs.

2.4.1 Datasets
The social graphs used in our experiments are in Table 5. These

graphs are selected to feature two models of knowledge between
nodes in the social networks. These networks are categorized as
follows. (1) social networks that exhibit knowledge between nodes

and are good for the trust assumptions of the Sybil defenses; e.g.,
physics co-authorships and DBLP. These are slow mixing, as we
will see later. (2) Graphs of networks that may not require face-to-
face knowledge but require interaction; e.g., Youtube and Livejour-
nal. Closely related to those is the set of graphs that may not require
prior knowledge between nodes or where the social links between
nodes are less meaningful to the context of the Sybil defenses; e.g.,
Facebook and wiki-vote, which are shown to be fast mixing.

2.4.2 Methodology
Equipped with the mathematical tools explained in section 2.2,

we measure the mixing time of the different social graphs shown in
Table 5. In order to apply the tools in section 2.2 for measuring the
mixing time, and to be consistent with other works in the literature
of using social networks for applications that exploit the mixing
time [136, 35, 71, 69, 132, 146, 147, 148], we first convert directed
graphs to undirected. Our conversion method connects two nodes
if an edge exists between them in either directions, or both. We
further compute the largest connected component in each graph and
use it as a representative social structure for measuring the mixing
time, as the mixing time is undefined for disconnected graphs. For
small to medium-sized graphs, we compute SLEM directly from
the transition matrix of the graph. On the other hand, for feasibility
reasons, we sample the representative subgraphs from each of the
four large data sets (Facebook A, B and Livejournal A, B) using
the breadth first search (BFS) algorithm beginning from a random
node in the graph as an initial point.3 We perform this sampling
process to obtain graphs of 10K, 100K and 1000K nodes out of 3 to
5 million nodes in each original social graph. Bearing the different
social graphs sizes in mind, as shown in Table 5, we proceed to
describe the results of our experiments.

2.4.3 Results
Figure 3 and Figure 4 plot the lower bound of the mixing time for

the different graphs in Table 5. We choose to use the lower-bound,
but not the upper bound, because it is more relevant to the context
of our study. In particular, as we observe that the lower-bound of
the mixing time to satisfy a given ε is large, it is obvious that the
mixing time for social graphs is slower than anticipated. As shown
in Figure 3, we also observe that the mixing time is very slow, in
particular for social graphs that require physical acquaintance of
the social actors, as can be seen in the general tendency of these
graphs. For example, physics co-authorship, Enron, and Epinion,
though the social network is small, a mixing time of 200 to 400 is
required to achieve ε = 0.1. Similarly for larger social graphs, as
shown in Figure 4, the mixing time to achieve ε = 0.1 is varying
and depends on the nature of the data set. For example, while it is
about 1500 to 2500 in case of Livejournal, it ranges from 100 to
about 400 in case of DBLP, Youtube, and Facebook.

To see how tight are these measurements we perform the follow-
ing experiment. We first compute the lower bound of the mixing
time for the physics co-authorship data sets, which are also reason-
ably small and feasible to do exhaustive computations. Then we
measure the mixing time using the model in (4) from every pos-
sible source in the graph; the CDFs of the raw measurements are
shown in Figure 6 for different t values. We aggregate these mea-
surements into Figure 5, by sorting ε at each t and averaging values
in various intervals as percentiles. We observe that while the mix-
ing time of most sources in social graphs is better than that of the
mixing time given by SLEM, the measurements using SLEM are

3Note that BFS algorithm may bias the sampled graph to have
faster mixing. Since our goal is to show that the mixing time is
slower than expected, this only strengthens our position.
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Figure 5: Lower-bound of the mixing time compared to the mixing time when measured using the sampling method for the entire
graphs brute-forcefully — different measurements meet the guarantees.
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Figure 6: The commutative distribution function (CDF) of mixing time for the three physics datasets in Table 5. The variation
distance is computed for every possible node in the graph, brute-forcefully.
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Figure 3: Lower bound of the mixing time for the different data
sets used in our experiments — the case of small data sets.

correct since the mixing time is by definition maximum of walk
lengths for given ε as shown in (4). However, even considering this
effect, still for most sources the mixing time is slower than used by
other papers (10 and 15 in SybilLimit).

In [70], Lesniewski-Laas has interpreted our results—stated in [106]
and shown in Figure 5—as that walks initiated by a few sources are
slow mixing while the overwhelming majority of sources have fast
mixing walks. However, we notice that the slower mixing sources
in some of these graphs are still large portion of nodes. For ex-
ample, based on the results shown in Figure 6(a), even though that
a random walk of length 40 yields ε < 0.3 for about 60% of the
sources in the network, the remaining sources have ε ≥ 0.3. For
about 10% among the total number of nodes in the graph (about
400 nodes), ε for the same length of a random walk of 40 steps is
about 0.5, making the statement about the quality of “fast mixing”
and “slow mixing” rather ambiguous. As we see latter, our obser-
vations in [106] are accurate when taken with further findings in the
same context. This is, given that the quality required for operating
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Figure 4: Lower bound of the mixing time for the different data
sets used in our experiments — the case of large data sets

these defenses might not be as strict as assumed, even those slower
mixing sources can be considered “fast mixing” for these applica-
tions. Notice that these findings are not limited to the dataset in
Figure 6(a) but also apply to those in Figure 6(b) and Figure 6(c).
Furthermore, notice that these measurements are not in line with
assumptions used in Sybil defenses, like SybilLimit, where ε is as-
sumed 1/n for a walk length of 10 to 15.

To understand the relationship between the network size and the
mixing time (of the same social graph) we use the different pre-
viously sampled subgraphs, using BFS, from Facebook and Live-
journal data sets (10K, 100K, and 1000K). We further measure the
mixing time using SLEM and the model in (4) for 1000 initial dis-
tributions. We further aggregate the top 10, median 20, and lowest
10 percentile of ε corresponding to the given random walk, and
plot them along with the mixing time derived using SLEM where
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Figure 7: Lower-bound vs. the top the average mixing time for
a sample of 1000 nodes in each data set, where DBLP x means
the minimum degree in that data set is x.

the results are shown in Figure 8. We observe that for a million
nodes graph, while the mixing time in the top 10% in the sample
we computed is 100 for an averaged ε = 10−5—an excellent value
to the “theoretical” guarantees of the Sybil defenses, the SLEM-
based mixing time results in only ε = 10−2 as shown in Figure 8(i).
We attribute this difference to similar scenario as in the physics co-
authorship graphs. Similar observations can be seen in each of the
different large social graphs. It is worth mentioning that Livejour-
nal (Figure 8(k) and Figure 8(l)) present poor mixing in relation
with Facebook data sets, which are shown to be fast mixing.

In Figure 9 we plot the average ε obtained when walking from
the 1000 initial distributions as we increase t. We find that average
ε is quite related to the underlying structure of graphs as well, as
shown earlier for the lower bound.
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Figure 9: The average mixing time of a sample of 1000 ini-
tial distributions in several social networks using the sampling
method for computing the mixing time using the definition.

Finally, to understand the methodology used for experimenting
in Sybilguard and SybilLimit, we perform the same trimming tech-
nique by iteratively removing lower degree nodes (for 1 up to 5)
from the DBLP data set and computed the mixing time of the re-
sulting graphs at each time (results shown in Figure 7). We observe
that the pruning of lower degree greatly improves the mixing time
of the social graph: for fixed mixing time of 100, by successive
trimming the variation distance is reduced from about 0.2 to 0.03
(Figure 7(a)), and from about 0.015 to 0.002 (Figure 7(b)). But
this improvement happens only with a huge reduction of the graph
size: while DBLP 1 has 614,981 nodes, DBLP 5 has only 145,497
nodes. This means that about 75% of nodes are removed out of the
social network, and could potentially be denied joining the service
outright in order to boost the mixing time.

2.4.4 Discussion
While the main finding in this study is that the mixing time of

social graphs is higher than has been used in literature, we also
conclude that different nodes approach the stationary distribution
at different rates. This is, while the majority of walks initiated
from different nodes reach closer to the stationary distribution at

“higher” rate than that of the mixing time, which is defined as the
maximum rate from any source, we still find—except in a few cases
of online social networks—that the mixing time of the majority
of nodes is larger than anticipated and used in the previous stud-
ies [146, 147, 71]. This has several implications and call for several
actions.

First, since most of the theoretical guarantees of social graphs
consider the model in (4), and since the majority of nodes in the
social graphs measured in this work have better mixing time than
the bound in that model, this calls for rigorous study by basing such
designs and analyses on the average case of the mixing, which is
relatively small, instead of the worst case of the mixing time.

Second, the obvious implication of our findings is that one has to
either give up some of the utility (service) guarantees—which are
implied by that almost all honest nodes admit other honest nodes—
by using relatively shorter walks, or give up part of the performance
and security by enabling longer random walks in order to reach
these isolated parts of the social graphs. Though this looks straight-
forward, going either way is not as simple as it seems. On the one
hand, if one uses longer random walks in order to reach such iso-
lated parts of the network it would be equally likely to escape to
the Sbyil region which has a cut similar in its nature to that of the
slower mixing part of the original social graph. On the other hand,
using random walks shorter than the mixing time of the majority of
nodes would also be at the expense of the utility; not only for the
isolated part but also the faster mixing part as well. The end detec-
tion guarantees of the design would work as long as g, the number
of attack edges is less than n

w
.

Third, papers introducing SybilGuard, SybilLimit, and Whānau
all did experiments on their schemes. Despite the short mixing
time that these experiments use, their results seem to support that
their schemes work as expected. The explanation of this is two part.
First, the trimming of lower-degree nodes would shorten the mixing
time. Second, although they claim that the social networks are fast
mixing and as a part of the definition—which is also used in parts of
the proofs for the theoretical guarantees—they insist ε = Θ(1/n),
this is a very strong burden to achieve and perhaps somewhat larger
ε might also be good enough for these schemes to work. Also, we
suspect that the difference between the average mixing time and the
worst-case mixing time may have some effects on the discrepancy
between the analysis and the experiment. In practice, the majority
of nodes with “fast” mixing would be served and those few other
nodes with very slow mixing would be denied service, which then
will not be a problem for the probabilistic average-case guarantees.
This last observation has been confirmed by authors of SybilLimit
in [144] as a potential reason why Sybil defenses would still operate
reasonably although graphs are not as fast mixing as assumed.

Finally, one of the assumptions in Sybil defenses based on so-
cial networks is that the used trust model requires physical ac-
quaintance, which is the case in social networks such DBLP and
Physics co-authorship networks, for which we show slower mixing
time than other “online social networks” which are known to pos-
sess less strict trust models [44, 15], which by nature tolerate Sybil
nodes. This calls for considering the trust model resulting from the
underlying social network as a parameter, along with the mixing
time, in order to evaluate the effectiveness of the social network-
based defenses according to their real value. Our work in [96, 95]
is a preliminarily result in this direction.

2.4.5 Performance Implications—SybilLimit
In order to quantitively measure the impact of the findings of

slower mixing time on the performance of Sybil defenses, we im-
plement SybilLimit and operate it on some of the different social
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Figure 8: Sampling vs. lower-bound measurements of the mixing time for 10K, 100K and 1000K of four large-scale datasets.

networks with the following settings. Since we already know the
social graphs size—bothm and n, we select the proper r that guar-
antees high probability of intersection. We set r to r0

√
m, where

m is the number of undirected edges in the graph and r0 is com-
puted from the birthday paradox to guarantee a given intersection
probability. In this experiment, we consider the case without an at-
tacker, since SybilLimit bounds the number of the Sybil identities
introduced based on the number of the attacker edges. We increase
t until the number of accepted nodes by a trusted node (the verifier)
reaches almost all honest nodes in the social network. Then, with
this t, we find the (average) total variation distance required in each
graph, which is the necessary for the operation of these designs. It
is then easy to compute the number of accepted Sybil identities
which is t × g, where g is the number of attack edges. SybilLimit
works as long as t < n

w
.

The result of this experiment is in Figure 10. We find that in
some of these graphs the length of random walk is much longer
than assumed previously in order to accept the majority of honest
nodes. For example, even when the random walk length is 30 in
Physics 1, we find that only 95% of the honest nodes are accepted,
whereas the parameter r0 we used (= 4) would ensure more than
99% acceptance rate if the graph is fast mixing. This happens to be
the case for graphs like Facebook, where more 99% of the nodes
are accepted by other honest nodes for a walk length of 6.

2.5 Understanding the Mixing Time
A natural question following our measurements of the mixing

time would be: what make a fast mixing time graph, fast mixing.
Indeed graph measures, like conductance and modularity are very
related to the mixing time. Here we seek a simple method to com-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2  6  10  14  18  22  26  30  34  38

A
cc

ep
te

d 
ho

ne
st

 n
od

es
 (

%
)

Random walk length

Physics 1
Physics 2
Physics 3

Facebook A
Slashdot 1
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pute and indicate the mixing characteristics of these graphs.

2.5.1 The Mixing Time and k-Coreness
Among the measures of graph cohesiveness is k-coreness mea-

sure. For an undirected graph G = (V,E) as defined earlier,
and for any k, let Gk = (Vk, Ek) be a subgraph in G such that
|Vk| = nk, and with the constraint that for all vi ∈ V , the mini-
mum degree of any node vj ∈ Vk is k. Gk is said to be a k−core
of G if, in addition to the above condition, it is a maximal and
connected graph. By relaxing the connectivity condition, we get a
set of cores (potentially more than one) each of which satisfies the
degree condition. For such (potentially disconnected) k-core, we
define the normalized size as nk/n.

An efficient algorithm for decomposing a simple graph to its



Table 1: Datasets, their properties and their second largest eigenvalues of the transition matrix
Dataset Nodes Edges µ Dataset Nodes Edges µ

Wiki-vote [66] 7,066 100,736 0.899418 Enron [67] 33,696 180,811 0.996473
Physics 1 [67] 4,158 13,428 0.998133 DBLP [73] 614,981 1,155,148 0.997494
Physics 2 [67] 11,204 117,649 0.998221 Physics 3 [67] 8,638 24,827 0.996879

Facebook A [142] 1,000,000 20,353,734 0.982477 Facebook B [142] 1,000,000 15,807,563 0.992020
Livejournal A [87] 1,000,000 26,151,771 0.999387 Livejournal B [87] 1,000,000 27,562,349 0.999695

Youtube [87] 1,134,890 2,987,624 0.997972

k−cores by iteratively pruning nodes with degree less than k has
the complexity of O(m) [13]. The definition of k-core [76] is
equivalent to k-coloring [45]. For more details, see [104].

2.5.2 Measurements and Results
We use some of the datasets in Table 5 to demonstrate the re-

lationship between core structure and the mixing time of social
graphs. In short, the mixing characteristics of these graphs are
shown in Figure 9, for the average case of the mixing time.

For each of these graphs we use an off-the-shelf implementa-
tion of the linear-time algorithm in [13] to compute the k−core
by relaxing the connectivity assumption as described above. As k
increases to its ultimate value at which the graph disappears, we
compute the following: (1) the number of cores in each k-core, (2)
the normalized size of each k-core. The results of these measure-
ments are shown in Figure 11 and Figure 12 [106]. Notice that
graphs in Figure 11 are slow mixing and graphs in Figure 12 are
fast mixing, as demonstrated in Figure 9 for average mixing.

By comparing Figures 11 and Figure 12, we observe that slow
mixing graphs are less cohesive whereas fast mixing graphs are
more cohesive. This is reflected on the number of cores in the k-
core of each graph as we increase k till the graph is dissolved en-
tirely. Also, whereas slow mixing graphs—shown in Figure 11—
are decomposed into multiple cores as we increase k, fast mix-
ing graphs resist this decomposition and remain cohesive as we
increase k.
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Figure 11: Core structure (slow mixing social graphs).
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Figure 12: Core structure (fast mixing social graphs).
Second, despite that slow mixing graphs are decomposed into

multiple cores, these cores are relatively small in size and the dis-
appearance of the graph is very quick in many cases as we increase
k. Fast mixing graphs have on the other hand remain in a single
core, which is relatively larger in size than the counterpart core in

slow mixing graphs—see [104] for more findings on core structure
and experiments with other social graphs.

2.5.3 Improving the mixing time
Here, we propose several heuristics to improve the mixing time

of slow-mixing social graphs using their structural properties which
are discussed earlier in section 2.5.2.
Heuristics to Improve the Mixing Time. Each of the following
heuristics aims to prevent the creation of multiple cores as k in-
creases using auxiliary edges. We call the process “core wiring”.
We introduce these heuristics with Sybil defenses [146] in mind as
potential applications. We refer to the largest core as the major core
and any other core is a minor core.

[1] Heuristic X-1-C: wires a single node in each minor core X
with a node in the major core C using one edge. The end ver-
tices of added edges can be arbitrarily chosen. By doing so, we
can easily see that the graph will always have a single core at
any time while increasing k. The number of added edges is the
sum of the number of cores in each k-core, for all k, minus k.

[2] Heuristic X-A-C: wires each node in each of the minor cores
with a node in the major component, as we increase k. Same
as above, this would prevent producing multiple cores at time
and the number of auxiliary edges is bounded by the number of
nodes in the minor components.

[3] Heuristic X-A-A: wires all nodes in a minor core to other cores
in the graph, including both minor and major cores. The num-
ber of auxiliary edges is bounded by the order of the number
of nodes in each k-core.

For further discussions on the rational of this method, in relation
with prior literature work, see [104]. In short, auxiliary edges added
in our heuristics can be made part of the evolution of the social
graph through link recommendation. Alternatively, when central-
ized systems are built on top of social networks, these edges can be
virtually created among honest nodes if labels of nodes are given.
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Figure 13: Mixing time measurement of Physics 1 before/after
improving its mixing characteristics.

2.6 Measuring Other Properties
Here we outline our work on other properties used for trustwor-

thy computing, the betweenness of nodes, and graph expansion.
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Figure 14: Mixing time measurement of Physics 2 before/after
improving its mixing characteristics.

2.6.1 Betweenness and Sybil Attack
MobID [115], a social-network based Sybil defense has recently

attracted attention because it newly provides a robust defense for
mobile environments while existing defenses have largely been de-
signed for peer-to-peer networks. Furthermore, MobID introduces
betweenness, a graph-theoretic property in the social graph, as a
metric of the goodness of nodes in order to defend against the Sybil
attacks. By using this betweenness, MobID operates on two funda-
mental assumptions: i) highly enmeshed nodes in the social graphs
have a nonzero betweenness, and ii) verifiers and suspects in an
honest social graph have common friends. To understand the extent
to which assumptions about the betweenness in the social networks
is valid, we perform extensive experiments on several datasets. On
each of these graphs, mostly shown in Table 5, we use the shortest
path betweenness defined earlier. The betweenness of the nodes
(as a CDF) for some of these graphs is shown in Figure 15 (Fur-
ther details are in [93]). From these measurements, we observe
that big proportion (35% to 50%) of the nodes in the social graph
even without considering malicious nodes, have betweenness close
to zero). Such finding is striking, in the sense that the betweenness
alone cannot be used to build applications and make meaningful
judgment on nodes in social networks to identify honest and mali-
cious nodes.

2.6.2 Measurements of The Expansion
We estimate the expansion factor of a graph by constructing an

envelopeEnvd (the same terminology used in [130]) formed by all
nodes that are within a (shortest-path) distance i from a core node.
The expansionExpi of the envelope consists of all of its immediate
neighbors. We define the expansion factor asαi = |Expi|/|Envi|.
In our experiments, by letting each of the nodes in the graph to be
the core, we calculate the expansion factor αi, with 0 ≤ i ≤ d− 1,
where d is the diameter of the graph, by building a tree rooted at
the core that expands in the breadth-firth search manner. Let Li be
the number of nodes at level i in the tree, we have

αi =
Li+1∑i
j=0 Lj

(7)

To estimate the expansion characteristics of the social graphs, we
run our experiment by letting each node in the graph to be the core
and build a breadth-first search tree rooted at that core. We then
count the number of nodes in each level of the tree to calculate the
expansion factor as in Eq. (7).

To motivate for this measurement, consider the measurements
in Table 2. In this experiment, we run Gatekeeper [130] on four
different datasets with different characteristics. Unsurprisingly, we
observe that results of operating Gatekeeper on such graphs are
quite anticipated given that that such graphs are experimented on
other social network-based Sybil defenses (in [106] and [136]),
despite that other defenses require social graphs to be fast-mixing

Table 2: Numerical results of operating Gatekeeper [130] on
top of different social graphs with different characteristics. 10
Attackers are selected randomly and 99 distributers are sam-
pled in each case (attack edges are 131, 145, 277, and 344, re-
spectively). f is a security parameter, honest acceptance per-
cent is of the whole graph size and Sybil is per attach edge.

Dataset Accept. f = 0.1 f = 0.3 f = 0.5

Physics 1 Honest 89.90% 70.50% 54.40%
Sybil 8.4 1.7 0.7

Facebook Honest 98.40% 79.00% 51.30%
Sybil 10.1 1.8 0.7

LiveJournal Honest 97.00% 78.60% 53.20%
Sybil 3.7 0.7 0.3

Slashdot Honest 97.00% 81.10% 55.20%
Sybil 3.1 0.8 0.4

whereas GateKeeper requires the graphs to be expanders with good
expansion factor. Hence, we establish that the property in action is
closely related to the mixing time.

Following the model in (7), we construct a breadth first search
tree for each source and compute its expansion as we go down the
stream in the search tree. For all sources in the graph, where each
node is considered as a source of expansion, the running time of
a naive implementation of our algorithm takes O(nm), which is a
manageable overhead for small to medium sized social graphs.

We develop this algorithm to compute the expansion for all datasets
in Table 5. Each source node has d − 1 measurements of sets of
nodes and their neighbors, where d is the diameter of the graph.
To visualize the tendency of the expansion as the set size increases,
we aggregate the unique sizes of sets, and find the number of neigh-
bors to each of them. For each set of neighbors to a unique size of
nodes, we compute the maximum, minimum, and expected number
of neighbors. These statistics of measurements for a selected set of
datasets are shown in Fig. 16.

To further investigate the expansion of social graphs when com-
pared to each other, we use the model in (7). For all sets of nodes
with the same size, we compute the expected expansion as the aver-
age of all sizes of different neighbor sets. The result of the average
expansion is shown is shown in Figure 17. The reader should keep
in mind that these curves and α for each graph needs to be consider
in relation with the graph size. For example, where one would see
that slashdot’s curve is above the curve of Wiki-vote, suggesting
that expansion characteristics of Slashdot are better than wiki-vote,
the size of wiki-vote is one-tenth the size of Slashdot.
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Figure 17: Expected expansion for various set sizes of various
social graphs.

2.7 Proposed Work
To continue our earlier works measuring the mixing time and

other properties, we want to consider the impact of graph manipu-
lation and how it affects these properties. We will examine how
omitting directions and sampling graphs according to difference
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Figure 15: Preliminary measurements of the betweenness of nodes in different social graphs.
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Figure 16: A measured of the expansion of sets of nodes of different sizes beginning from every nodes in the given graphs as potential
core for the expansion.

sampling algorithms would both influence the mixing time and the
operation of Sybil defenses (and anonymous communications sys-
tems) when built on top of sampled (or modified by omission of
directions) graphs.

2.7.1 Social Graph Manipulation
To make matters worse, some of these works—e.g., [146, 91, 19,

147, 148, 71, 136]—have considered “manipulated” social graphs
among those mentioned above, which not only disguise the qual-
ity of the used trust assumption, but also manipulate the quality
of the algorithmic property these systems use, and are supposed to
find and use naturally in such graphs. Graph manipulation tech-
niques include: 1) Trimming lower degree nodes which we already
studied in [106] and studied in 2.4, 2) Omitting edge directions,
by converting directed graphs to undirected ones and 3) sampling
larger graphs to smaller ones and apply these designs on sampled
graphs to relate to the applicability of these designs on the larger
graphs.

2.7.2 The Mixing Time of Directed Graphs
Unfortunately, it is not clear how the process of altering social

graphs by omitting directions would affects the quality of their
mixing time. Although, the intuition is that directed social graphs
(for which the mixing time is well-defined) would have different—
and potentially slower—mixing time than undirected graphs. Mo-
tivated by the lack of prior work on this problem, we will investi-
gate mathematical tools for measuring the mixing time of directed
social graphs and its associated error bounds. We will use these
tools to measure the mixing time of several benchmarking directed
social graphs and to understand the difference in the mixing time
quality between directed graphs and their undirected counterparts.

We will then measure how this difference impacts two applications
built on top of social networks: a Sybil defense mechanism and
an anonymous communication system. Both applications are de-
scribed in section 2.1. Using these findings, we will then provide
several recommendations suitable for the design and experimenting
these systems on top of social networks.

Our initial investigation on the problem shows that one does not
need to compute an exact form of the stationary distribution of ran-
dom walks on directed graphs. Under certain conditions on di-
rected graphs—to make random walks on the graph both aperiodic
and ergodic—-any walk on these graph would converge to the (un-
known) stationary distribution. Allow very large walk length from
any arbitrary distribution on the graph would allow for such conver-
gence. The distribution of the walk after such large walk length can
be used as an estimate of the stationary distribution. The remaining
task would be to bound the error between the unknown stationary
distribution and the estimated one and make it arbitrarily small.

Our initial results on measuring the mixing time of directed graphs
using this method, without considering the error bounds which to
be considered in the future, show that indeed directed graphs are of-
ten slower mixing than undirected graphs. This has consequences,
as we anticipate such difference in the mixing time would affect the
operation of systems built on the modified graphs using the inflated
quality of the mixing time. Quantifying such overestimation of
security (in Sybil defenses) and privacy (in anonymous communi-
cations) remain a future work to consider in the upcoming months.

2.7.3 The Impact of Graph Sampling
Sampling of large social graphs is used for addressing infeasibil-

ity of measurements in large social graphs, or for crawling graphs
from online social network services where accessing an entire so-



cial graph at once is often impossible. Sampling algorithms aim at
maintaining certain properties of the original graphs in the sampled
(or crawled) ones. Several sampling algorithms, such as breadth-
first search (BFS), standard random walk (RW), and Metropolis-
Hastings (MH) random walk, among others, are widely used in
the literature for sampling graphs. Some of these sampling algo-
rithms are known for their bias, mainly towards high degree nodes,
while bias for other metrics is not well-studied. In this direction,
we propose to study these sampling algorithms and their bias when
sampling the mixing properties of graphs.

The contribution of this work would be a comparative study on
the bias of sampling algorithms in estimating the mixing time of
social graphs. We want to consider several real-world social graphs
with different structures, and several sampling algorithms and com-
pare them according to their bias introduced on the measured mix-
ing time. Our initial findings show that some existing sampling
algorithms, even those which are unbiased to the degree distribu-
tion, always produce biased estimation of the mixing time of social
graphs. We found that, unlike degree distribution that is easy to
understand, and even possible to formally model for the amount of
bias introduced due to sampling, the bias on the mixing time due to
sampling has different patterns that are not captured in a single ten-
dency. Characterizing this bias and better understanding it would
be open question that we will try to understand in the upcoming
months.

2.8 Related Work
There has been a lot of works in the literature that try to leverage

properties of social networks for applications, that along with these
properties weigh the value of trust between nodes, and an algorith-
mic property in the social graph. In this subsection, we summarize
some of these works and the properties they use.
Sybil Defenses. It is probably unarguable that the most popular di-
rection of using social network has been for defending against the
Sybil defenses in a decentralized manner based on the fast mixing
assumption of social graphs, where every passing network or secu-
rity venue has a new result in this direction [136, 35, 69, 70, 106,
97, 95, 115, 96, 132, 129, 131, 145, 146, 147, 148, 72]. The di-
rection has been initiated by Yu et al. [147, 148], where they used
the fast mixing property of a graph to build a defense mechanism,
called SybilGuard, that limits the number of Sybil identities intro-
duced by attack edges (edges the connect malicious and honest
nodes). In [145, 146], Yu et al. extended SybilGuard by intro-
ducing SybilLimit which further improves on the previous bounds
of the number of Sybil identities per attack edges to near optimal.
An optimal solution that uses similar ingredients from SybilLimit
is introduced in [131, 129] by Tran et al. All of these systems use
social graphs and assume that these graphs are fast mixing accord-
ing to strict mixing definition mentioned in section 2.2. Danezis
and Mittal [35] used the fast mixing property to build an inference
(detection) mechanism for Sybil nodes in peer-to-peer Systems.
Lesniewski-Laas et al. [71, 69] introduced a routing protocol that
uses the fast mixing property of the social graph that builds a dis-
tributed hash table (DHT) system. Tran et al. introduced SumUp,
a Sybil-resilient online content voting [132]. Mislove et al. in [88]
introduced Ostra that leverages trust in social networks and thwart
unwanted communication, and indirectly mitigating the impact of
the Sybil attack. Kaustz et al. introduced ReferralWeb [61], a refer-
ral system that combines social networks and collaborative filtering
and assumes a well-connected social network graph, a property that
is very tied to the mixing time of the graph [58]. Similar filtering
systems proposed in [65, 113] as well. Despite their dependence
on the assumption for their performance, none of the papers men-

tioned above measured the mixing time from the social networks
to show that they are fast mixing, in order to meet the guarantees
being theoretical proven (for more exposition see [106]).
Anonymous communication. A very closely related set of designs
that also use the mixing time is the construction of anonymous
communication systems on top of social networks. Such studies
can be found in [90, 109, 114]. Other related work tries to exploit
social links for privacy preserving content sharing [56]
Betweenness to defend Sybil. Most recently, the betweenness has
been proposed by Quercia et al. in [115] as a measure for the
goodness of nodes: good nodes have a higher betweenness than a
threshold, when they are incorporated into their friends’ networks,
and bad (or Sybil) nodes have lower betweenness than a threshold.
However, whether this assumption hold in reality or not is not being
tested on real-world social graphs that exhibit value of trust. Our
work shows that this assumption does not hold in many online and
other social networks.
Routing. Another active field of applications that leverages social
networks is routing [36, 32, 80, 14, 26, 75, 82, 119, 86]. While they
are in principle similar, and most try to exploit the closeness fea-
tures of a small-world social graph, these works differ in the con-
texts they are proposed. For example, Davitz et al [36] introduces
iLink, a search and routing utility on social graphs that can fit into
“expert search” applications. Mabrouki et al. [80] exploit social
networks for routing in sensor networks. Bigwood et al. [14] ex-
ploit social networks for routing in delay tolerant network (DTN).
Chandrasekaran et al. [26] propose a solution for routing based on
social network in P2P VoIP networks. Liben-Nowell et al. [75]
study the potential of geographic routing in social networks. Marti
et al. [82] study constructing a DHT-like system on top of social
networks, and Sandberg [119] studies routing on top of social net-
work in general contexts. Gossiping-based routing and information
dissemination, on top of social networks, is studied in [46, 23, 4].

3. INCORPORATING DIFFERENTIAL TRUST
In most of the literature that considered social networks for build-

ing Sybil defenses, the simple uniform random walk highlighted
earlier in the context of measuring the mixing time is used. As
we have observed earlier, the mixing time of social graphs depends
greatly on the underlying social graphs and there is a negative as-
sociation between the strength of the social links and the mixing
time. In part of the project, we propose to investigate several de-
signs of modulated random walks that consider a “trust“ parameter
between nodes in order to tune the performance of the designs built
on top social network, which use the random walk theory. In all of
the proposed random walks, the purpose is to assign “trust-driven”
weights and thus deviate from uniform random walk. Supported
by initial preliminary results [97], we do this by either capturing
the random walk in the originator or current node, as the case of
originator-biased and lazy random walks, or by biasing the ran-
dom walk probability at each node, as the case of interaction and
similarity-biased random walks, or a combination of them. The in-
tuition of the lazy and originator-biased random walk is that nodes
trust “their own selves” and other nodes within their community
more than others. On the other hand, interaction and similarity-
biased trust assignments try to weigh the natural social aspect of
trust levels.

It is worth noting that while this direction is motivated by the
need for incorporating trust in social network-based Sybil defenses,
the designs below are not limited to these Sybil defenses but can
also be used without any modifications for any random walk based
algorithm on graphs, including random walk based community dis-
covery and random walk-based betweenness [112, 111]. Further-



more, these designs can be naturally and easily extended to other
applications that use social networks as bootstrapping graphs, with
minimal modifications. For example, the trust or distrust of nodes
among each other can be incorporated as a random process driven
from these models to identify decisions on collaboration among
nodes. This collaboration can be used to understand the implica-
tion on the behavior of the different designs built on top of social
networks. This latter direction is partly what we want to investigate
further as part of the proposed work in project.

3.1 Designs to Account for Trust
Given the motivation for these designs, we now briefly describe

them by deriving P and π required for characterizing them. We
omit the details for lack of space (see [96] for the complete proofs,
further experiments, and discussions).

3.1.1 Lazy Random Walks
To accommodate for the trust exhibited in the social graph, for

simplicity we assume a global single parameter α in the network
which is used to characterize this trust level. We use this param-
eter in the different schemes to enforce and apply the trust along
with other parameters used for ensuring the (e.g., driven from the
algorithmic property in the graph). The transition matrix

P′ = αI + (1− α)P (8)

which yields a transition according to pij defined as follows:

pij =


1−α

deg(vi)
vj ∈ N(vi)

α vj = vi

0 otherwise
(9)

We note that for the transition probability defined in ((8)), by
adding self loops it does not alter the final stationary distribution
from that in the uniform random walk. Further details on the proof
of this are in [96].

3.1.2 Originator-biased Random Walk
We incorporate the concept of biased random on the social graph

walks to characterize the bias introduced by the trust among differ-
ent social actors (nodes). At each time step, each node decides
to direct the random walk back towards the node that initiates the
random walk, i.e., node vr , with a fixed probability α or follow
the original simple random walk by uniformly selecting among its
neighbors with the total remaining probability 1−α. The transition
probability that captures the movement of the random walk, initi-
ated by a random node vr , and moving from node vi to node vj is
defined according to pij as follows

pij =


α j = r, vr 6∈ N(vi)

α+ 1−α
deg(vi)

j = r, vr ∈ N(vi)
1−α

deg(vi)
j 6= r, vj ∈ N(vi)

0 otherwise

(10)

We note that, unlike the lazy random walks, the transition proba-
bility here considers moving the state back to the originator of the
random walk, a state that may not be connected to the current state
in the social graph. This requires a virtual connection between each
node through the walk – every node in the graph – and each orig-
inator of a random walk. To mathematically model this transition
loop, for each node vr(1 ≤ r ≤ n), we define Ar as an all-zero
matrix with the exception of the rth row which is 1’s. Using Ar , we
further define the originator-biased transition matrix, for the walk
originated from vr , as

P′ = αAr + (1− α)P. (11)

We can show that P′ is stochastic since each row in it sums to
1. Furthermore, since P′ depends on the initial state vr , we ob-
serve that the “stationary” distribution is not unique among all ini-
tial states, and so we refer to it as the “bounding distribution” for
the walk initiated from vr . The bounding distribution in that case
is π(vr) = [πi]

1×n where πi is

πi =

{
(1− α)deg(vi)

2m
vi ∈ V \ {vr}

α+ deg(vi)
2m

vi = vr
(12)

We note also that the bounding distribution in ((12)) is a valid
probability distribution since it satisfies the distribution conditions
(sums to 1 and invariant to P′). Details on the proof are in [96].

3.1.3 Interaction-biased Random Walk
The interaction between nodes can be used to measure the strength

of the social links between nodes in the social network [142]. In
this model, high weights are assigned to edges between nodes with
high interaction and low weights are assigned to edges between
nodes with low interaction. Formally, let B be the raw interaction
measurements between nodes inG and D be a diagonal matrix rep-
resenting the row norm of B. The transition matrix P of the ran-
dom walk based on interaction is then computed as P′ = D−1B.
The stationary distribution of the random walk on G following to
the probability in P′ is π = [πi]

1×n where

πi = (

n∑
j=1

n∑
k=1

bjk)−1(

n∑
z=1

bzi). (13)

We observe that this distribution makes a valid probability distri-
bution since

∑n
i=1 πi = 1 and is a stationary distribution since

πP = π.
Wilson et al. [142] introduced a slightly different model to cap-

ture interaction between nodes in the social graph. The interaction
graph G′ = (V,E′) is defined for a social graph G = (V,E)
where E′ ⊆ E and eij ∈ E′ if I(vi, vj) ≥ δ, where I is an in-
teraction measure to assign weights on edges between vi and vj
for all i, j, and δ is a threshold parameter. The interaction measure
used in [142] is the number of interactions over a period of time.
This later model further simplifies the random walk where the P′

is defined over G′, as well as the stationary distribution. In our
measurements, we use this model and some of the datasets used in
Wilson et al.’s work, though we do not exclude to further investigate
the characteristics and potential of non-threshold based interaction
model (the one described above) in the near future.

3.1.4 Similarity-biased random walk
The similarity between social nodes in social networks is used

for measuring the strength of social links and predicting future in-
teractions [29, 74]. For two nodes vi and vj with sets of neigh-
bors N(vi) and N(vj), respectively, the similarity is N(vi)∩N(vj)

N(vi)∪N(vj)
.

For ai and aj , two rows in A corresponding to the entries of vi
and vj , we use the cosine similarity measure given as S(vi, vj) =

vi·vj

|vi|2|vj |2
, where | · |2 is the L2-Norm. To avoid disconnected

graphs resulting from edge cases, we augment the similarity by
adding 1 to the denominator to account for the edge between the
nodes. Also, we compute the similarity for adjacent nodes only,
so that S = [sij ] where sij = S(vi, vj) if vj ∈ N(vi) or 0 oth-
erwise. The transition matrix P of a random walk defined using
the similarity is given as P = D−1S where D is a diagonal ma-
trix with diagonal elements being the row norm of S. Accordingly,
the stationary distribution of random walks on G according to P is
π = [πi]

1×n where πi = (
∑n
z=1 szi)(

∑n
j=1

∑n
k=1 sjk)−1.



Table 3: Social graphs with their size, diameter, and radius.
Physics 1, 2, 3 are relativity, high energy and high energy theory
co-authorship respectively [67].

Social network Nodes Edges Diameter Radius
Physics 1 [67] 4,158 13,428 17 9

Sdot [68] 10,000 14,6469 6 3
Physics 2 [67] 11,204 117,649 13 7
Physics 3 [67] 8,638 24,827 18 10
Wiki-vote [66] 7,066 100,736 7 4

Enron [67] 10,000 108,373 4 2
Epinion [117] 10,000 210,173 4 2

DBLP [73] 10,000 20,684 8 4
Facebook [142] 10,000 81,460 4 2

Livejournal [87] 10,000 135,633 6 3
Youtube [87] 10,000 58,362 4 2

Rice-cs-grad [89] 501 3255 9 5
Rice-cs-ugrad [89] 1221 43153 6 3

3.1.5 Implication of the designs on the mixing time
Along with the simple random walk-based design, we implement

three of the proposed designs: lazy, originator, and similarity bi-
ased random walks. We use the simple random walk-based im-
plementation over the interaction graph of Wilson et al.’s [142] to
learn the performance of the interaction-based model. We exam-
ine the impact of each design on the mixing time on some graphs
from Table 3. The results are shown in Fig. 18 and Fig. 19. We
observe that, while they bound the mixing time of the different so-
cial graphs, the originator-biased random walk is too sensitive even
to a small α. For example, as in Fig. 19(a) for Facebook social
graph in Table 3, ε ≈ 1/4 is realizable at w = 6 with the simple
random walk, w > 10 for both lazy and originator-biased random
walk. However, this happens with α = 0.5 in the lazy against
α ≈ 0.1 in the originator-biased walk. This observation is made
clearer on Fig. 19 which compares the mixing time of four different
social graphs with different characteristics when using the simple
and modified random walks.

We also observe in Fig. 18 and Fig. 19 that the linear increments
in the parameters do not necessarily have linear effect on the mea-
sured mixing time. Furthermore, this behavior is made clearer in
the experiments performed on SybilLimit and shown in Fig. 20
and Fig. 21. This however is not surprising, at least with the originator-
biased random walk since the probability of intersection when sam-
pling from the stationary distribution is ≤ e−8(1−α)4 from which
one can see the exponential effect of α on the admission rate. While
this explains the general tendency in the admission rates of Sybil-
Limit, it does not answer some inconsistency shown in Fig. 21(b)
for the transition between α = 0.12, 0.16, and 0.20. One addi-
tional explanation for that is the community structure in this graph,
which is shown in [136] to be clear in Physics 1 and problematic
for Sybil defenses (results for the same graph are in Fig. 20(b) and
Fig. 21(b)). On the other hand, some graphs are less sensitive to
the same value of these parameters, e.g., Facebook with the results
shown in figures 18(a), 19(a), 20(d), and 21(d). One possible ex-
planation for this behavior is that this graph has less community
structure. Reasoning about this behavior and its quantification is to
be our future work.
Sybil defense performance over simple random walks To under-
stand the necessary mixing time quality required for the operation
of SybilLimit, we measure the performance of SybilLimit using
simple random walks, where the evaluation metric is the percent of

honest nodes accepted by other honest nodes. For each walk with
lengthw(0 ≤ w ≤ 30), we compute the number of accepted nodes
as a percent out of n(n − 1)—total verifier/suspect pairs. Since
SybilLimit accepts nodes on edges only, it works for w ≥ 2. The
results are shown in Fig. 22 and the variable mixing time shown
earlier is further highlighted by observing the percent of accepted
nodes when varying w. We observe that, unlike claims in Sybil-
Limit where one would expect 95% admission rate at w = 4, some
graphs require w = 30; where graphs which admit high percent of
nodes for small w are those with poor trust.

3.1.6 Defense Performance with Modified Walks
Now we study the impact of the modified random walks on the

performance of SybilLimit. We select four datasets with differ-
ent characteristics from Table 3: DBLP, Facebook, Facebook (Rice
grad), and Physics 1 (relativity theory). We implement modified
SybilLimit versions that consider changes introduced by the modi-
fied random walks and test the admission rate of honest nodes under
different values of α and w.
Performance over lazy random walk we measure the performance
of SybilLimit operating with the lazy random walks – results are
shown in Fig. 20. We vary w from 0 to 30 with steps of 2. We
further vary α associated with the lazy random walk from 0 to 0.80
with steps of 0.16—α = 0 means simple random walk. While the
performance of SybilLimit is generally degraded when increasing
α, we observe that the amount of degradation varies and depends on
the initial quality of the graph. For example, by comparing DBLP
(Fig. 20(c)) to Facebook (Fig. 20(d)) we observe that for w = 10,
DBLP and Facebook admit about 97% and 100% of the honest
nodes respectively for α = 0. For the same w and α = 0.64, the
accepted nodes in Facebook are still close to 100% while the ac-
cepted nodes in DBLP are only 50% suggesting variable sensitivity
of different graphs to same α. Once we raise α to 0.80, the number
of accepted nodes in Facebook decreases to 80% while giving only
25% in DBLP. One explanation of this behavior is what we have
discussed in section 3.1.5. Also, since the ultimiate goal of this
model is to characterize trust, which already differs in these graphs,
we know that α should not necessarily be equal in both cases. For
instance, if one is concerned about achieving same admission rate
for the same w in both cases, one may choose α = 0.48 in DBLP
and α = 0.80 in Facebook where w = 10 in both cases which
yields 80% admission rate in both cases.
Performance over originator-biased random walk The same set-
tings in section 3.1.6 are used in this experiment but here we vary
α from 0 to 0.2 with 0.02 steps since the originator-biased walk
is more sensitive to smaller α than the lazy-random walk. Similar
to the lazy walk, the originator-biased walk, as shown in Fig. 21,
influences the performance of SybilLimit on different graphs dif-
ferently, and depending on the underlying graph. However, two
differences are specific to the originator-biased walk over the lazy
random walk.

First, the insensitivity shown earlier is even clearer in the originator-
biased model. Second, while the end result of SybilLimit operating
with lazy random walk is identical to the simple random walk if
one allows long enough walk to compensate for the laziness, the
behavior of the originator-biased walk is different. The indirect
implication of the originator-assigned probability to herself is “dis-
continuity” in the graph (with respect to each node), where each
node gives up some of the network by not trusting nodes in it. To
cover the whole graph with that same α, w needs to be exponen-
tially large. To challenge the insensitivity of the fast mixing social
graphs, we extend α beyond the values used in Fig. 21 with Face-
book from Table 3 and use α(0 ≤ α ≤ 0.5) with 0.1 steps and
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(b) Livejournal A
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(c) Facebook A
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(d) Livejournal A

Figure 18: The impact of the originator and lazy walks on the mixing time—(a) and (b) are for originator-biased while (c) and (d)
are for lazy random walks.

   
  0

.0
22   

  0
.0

36   
  0

.0
57   

  0
.0

92   
  0

.1
49   

  0
.2

39   
  0

.3
86   

  0
.6

21   
  1

.0
00

 0  5  10  15  20  25  30

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Mixing time (walk length)

Originator walk (α = 0.05)
Lazy walk (α = 0.5)

Similairty walk
Simple walk

(a) Facebook A

   
  0

.0
36

   
  0

.0
57

   
  0

.0
92

   
  0

.1
49

   
  0

.2
39

   
  0

.3
86

   
  0

.6
21

   
  1

.0
00

 0  5  10  15  20  25  30

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Mixing time (walk length)

Originator walk (α = 0.05)
Lazy walk (α = 0.5)

Similairty walk
Simple walk

(b) Livejournal A

   
  0

.3
86   

  0
.4

24   
  0

.4
67   

  0
.5

13   
  0

.5
64   

  0
.6

21   
  0

.6
83   

  0
.7

51   
  0

.8
26   

  0
.9

09   
  1

.0
00

 0  5  10  15  20  25  30

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Mixing time (walk length)

Originator walk (α = 0.05)
Lazy walk (α = 0.5)

Similairty walk
Simple walk

(c) Physics 1

   
  0

.2
18   

  0
.2

63   
  0

.3
19   

  0
.3

86   
  0

.4
67   

  0
.5

64   
  0

.6
83   

  0
.8

26   
  1

.0
00

 0  5  10  15  20  25  30

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Mixing time (walk length)

Originator walk (α = 0.05)
Lazy walk (α = 0.5)

Similairty walk
Simple walk

(d) DBLP

Figure 19: The mixing time of four different social graphs when using simple vs. lazy, originator, and similarity-biased random
walks, for each graph. While they are similar in size, a mixing time (parameterized by the same ε) is variable.
compute the admission rate. The result shows (not included here)
that the originator-biased walk limits the number of accepted nodes,
even in fast mixing graphs, but for larger α.
Performance over similarity and interaction-biased walk The
similarity and interaction-biased random walks as used in this work
are unparameterized. We compute the similarity for Facebook in Ta-
ble 3, as explained in ??. The similarity is then used to assign
weights to edges between nodes, and bias the transition matrix. We
run SybilLimit with similarity-biased random walks on Facebook
in Table 3, where the result is shown in Fig. 23. In short, the simi-
larity – while expected to capture some truth about the underlying
graph – has less influence on the behavior of SybilLimit. It is how-
ever worth noting that the impact of the similarity-biased random
walk is clearer on other social graphs, such as DBLP and Physics,
which have clearer community structures.

For the interaction-biased design, we borrow the interaction graph
of Wilson et al. [142] on Facebook. The interaction model intro-
duces a richer model than the mere connections between nodes: it
shows how strong are the links between nodes in the graph. With
the same settings as earlier, we run SybilLimit – as a simple random
walks – over the interaction graph. The results are shown in Fig. 23.

3.2 All designs: comparative study
Finally, we consider all designs at the same time. Because we

only have interaction measurements for the Facebook dataset, we
limit ourselves to that dataset. The result is shown in Fig. 23. While
the performance of the similarity-biased random walk produces
almost same results as the simple random-walk, the interaction-
biased walk affects the number of the accepted nodes. Further-
more, the lazy random walk captures the behavior of model when
deviated from the simple random-walk. As shown for this dataset,
the interaction model behavior is characterized by the behavior of
the lazy random walk for two given parameters (α = 0.48 and
α = 0.64) suggesting that the interaction model can be further
modeled as a lazy random walk where the problem is to find the
proper parameters to match its behavior. Note that the value of α
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Figure 22: Accepted honest nodes in SybilLimit versus random
walk length – with simple random walk. Different graphs have
different quality of the algorithmic property though being with
same size.

works for this dataset in particular. However, other datasets may be
characterized by other values. We also find that the number of es-
caping tails per node is also decreased using our design, as shown
in Fig. 24. In this last experiment, we compute the average escaping
tails per 100 honest node samples, and by running the experiment
5 times, independently with a the given attackers edges for which
nodes are selected uniformly at random from the honest region. In
the experiment of Fig. 24, and for the interaction model, we assume
that the attacker may infiltrate the social graph but cannot produce
meaningful interactions, and thus the number of escaping tails to
the attacker is always zero. It would be interesting in the future
to generalize this model to an attacker with limited budget of in-
teractions, and see how this changes the number of escaping tails
with varying budgets. Finally to understand the impact of the dif-
ferent random walks on the accepted Sybil nodes per attack edge,
we experiment with the same dataset (Facebook) and for varying g.
The results are shown in Figure 25. Similar to above, our designs
outperform the uniform design.

3.2.1 Implications of Findings
To sum up, we find in this study that one can control the behavior
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Figure 20: The performance of SybilLimit measured for accepted honest nodes when using different lengths of lazy random walk for
different social graphs.
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Figure 21: The performance of SybilLimit depends on the underlying social graph, where different graphs require different walk
lengths to ensure the same number of accepted nodes. The originator-biased random walk can further influence the number of nodes
accepted in each graph.
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Figure 24: Expected escaping walks per node (among 100
nodes, r = 850) in Facebook dataset (in Table 3) where w = 6
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Figure 25: Accepted Sybil nodes over tainted tails when vary-
ing gin Facebook dataset (in Table 3) where w = 6 and α = 0.4
for both of the originator and lazy random walks.

of the social network-based Sybil defenses by incorporating param-
eters for trust. For this purpose, we introduced and experimented
the behavior of four designs. In graphs that are empirically-proven
to be fast mixing and well-performing for the utility of the Sybil
defense – though having poor value of trust – we have shown that
one can select the necessary parameters to account for trust and
make the performance of the defense on that graph equivalent to
stronger and richer version of the same graph – e.g., the case of the
interaction-based model versus the mere connections on the Face-
book dataset. With these designs being intuitive in characterizing
trust, the results being in agreement one another, and with this work
being the first of its own type in this direction, we believe that this
study is a first step in the direction of bringing well-received theo-
retical results into practice. The implications of our findings can be
summarized as follows.

First, the mixing time and utility of the Sybil defense depend
on the underlying graph. Through measurements, we supported
our hypothesis that the quality of the social graph depends on the
characteristic of the social links between the nodes. On one hand,



social links that are easier to make result in well-enmeshed graphs
but are bad in principle for the Sybil defense since they already
tolerate bad edges. However, these are shown to provide good hon-
est nodes acceptance rate even with shorter random walks. On the
other hand, social links that are harder to make result in graphs
with more community structure, which are bad for the detection (as
shown in [136]) and require longer walks to operate for the honest
nodes.

Second, it is now possible for the Sybil defense operator, when
given multiple options of social graphs, to further derive the utility
of the Sybil defense using several criteria. Our study empowers the
operators by an additional dimension that influences the behavior
of the Sybil defense: trust.

Third, our findings answer a recently called for question in [136]
of studying the behavior of Sbyil defenses when operated on the
interaction-based model rather than the mere social connections,
which are sometimes less meaningful. In short, our study shows
that the interaction model can influence the behavior of the Sybil
defense, by requiring longer random walk for the defense to work
for honest nodes. However, this finding also suggests that a more
community-structure is in the interaction model than in the mere
social graph. This implies that, while the original social graph does
not possess clear community structure, the use of the interaction
model would add sensitivity for the detection part of the defense
and result in weaker detection. However, the underlying graphs in
both cases are different and the interpretation of the results should
also consider the trust value in the interaction model, which is a
better fit to the trust required in the Sybil defense.

Finally, online social graphs are known to possess weaker value
of trust [44]. However, their potential for being used for Sybil de-
fenses is very high since alternatives are limited, too expensive,
and may not fit into the Sybil defense settings. For example, co-
authorship social graphs which are known for their trust value may
not necessarily include most users of a particular online system that
tries to deploy the Sybil defense. On the other hand, given the pop-
ularity of online social networks, Sybil defenses may benefit from
them, across systems and networks. To this end, the main find-
ing of the work is to open the door wide for investigating trust, its
modeling, and quantification for these systems.

3.3 Proposed work
In this part of the project, we propose to investigate three direc-

tions as follows

• The potential of the designs above of capturing further prop-
erties of the social graphs in the context of applications built
on top of these graphs. While these primitives affect the
quality of the social networks properties (such as the mixing
time), it is unclear how they affect other properties that can
be also used for building applications on top of social net-
works. For example, on a graph that uses interactions rather
than social connections, one would expect more clear com-
munity structure that corresponds to different betweenness,
closeness, and clustering coefficient characteristics than that
of the original social graph that considers social links only.
This hypothesis is particularly supported by our preliminary
findings that interaction graphs have a lower mixing than that
of the original social graphs using social links. We would like
to investigate this direction emphasizing on the properties
previously measured and how these designs affect them. Fur-
ther, we propose to investigate how the change in the quality
of the properties affect the applications on top of the social
graphs.

• In both of the parameterized design that we have suggested in
our prior work (the originator-biased and the lazy), we have
considered some assumptions to simplify the operation of the
designs. For example, we considered that each design uses a
globally fixed parameter (α) that is used by each node in the
graph. While this simplifies the analysis and make it possible
to derive a clean model for the transition probability and the
bounding (or stationary) distribution of the random walk of
the graph, it is natural to consider different random walks
with mixed values for the same parameter – assigned locally
by each node depending on its perception of the overall graph
and trust in it. Providing clean formulation for this node-wise
(as opposed to graph-wise) parameters stay an open question
that we would like to investigate further. This particularly
will be more meaningful in designs that do not use random
walks for their operation, and would be more challenging in
designs that operate on other measures, such as centralities.
Indeed, investigating how a node-wise parameter, as opposed
to network-wise parameter is an area worth of investigation
in its own right.

• We want to extend these results and findings by applying
these designs to other Sybil defenses, other routing algo-
rithms (initial results that tested how a simple variation of
these designs impacts shortest path and random walk rout-
ing, as well as gossiping, is to appear in [94]).

4. NEW APPLICATIONS
In this part of the thesis, I intend to study new applications on

top of social networks that rely on new assumptions that are easy
to achieve. Two applications are proposed: 1) SocialCloud – a dis-
tributed computing service on top of social networks, and 2) Dy-
namix – an anonymous communication system that uses dynamic
social networks as a bootstrapping structure for source/destination
anonynmity in low-latency systems

4.1 Distributed Computing on Social Networks
In this direction, we oversee a new type of computing paradigm,

called SOCIALCLOUD, that enjoys parts of the merits provided
by the conventional cloud. Imagine the scenario of a computing
paradigm where users who collectively construct a pool of resources
perform computational tasks on behalf of their social acquaintance.
Our paradigm and model are similar in many aspects to the conven-
tional grid-computing paradigm. It exhibits such similarities in that
users can outsource their computational tasks to peers, complemen-
tarily to using friends for storage, which is extensively studied in
literature. Our paradigm is, however, very unique in many aspects
as well. Most importantly, our paradigm exploits the trust exhib-
ited in social networks as a guarantee for the good behavior of other
“workers in the system”. Accordingly, the most important ingredi-
ent to our paradigm is the social bootstrapping graph, a graph that
is used for recruiting workers for a social network.

This popularity of social networks has opened the door wide
for investigating the potential of these networks for many appli-
cations. Problems that are unsolvable in the cyberspace are easily
solvable using social networks, for that they possess both algorith-
mic properties—such as connectivity—and trust, which are used
to reason about the behavior of honest users in the social network,
and limit the misbehavior introduced by other malicious users sup-
ported by efficiency features. Most important to the context of our
paradigm is the aggregate computational power of nodes in the so-
cial network. Indeed, beyond the nodes and social links, the social
networks consist of users with computing machines that are idle for



most of the time [12]. Furthermore, owners of these computing ma-
chines might be willing to share their computing resources for their
friends, and for a different economical model than in the conven-
tional cloud computing paradigm—fully altruistic one. This behav-
ior makes our work share commonalities with an existing stream of
work on creating computing services through volunteers [141, 25].
Our results hence highlight technical aspects of this direction and
pose challenges for designs options when using social networks for
recruiting such workers and enabling trust.

4.1.1 Contributions
To this end, our contribution in this direction is mainly:

• First, we investigate the potential of the social cloud comput-
ing paradigm by introducing a design that bootstraps from
social graphs to construct distributing computing services.
We advocate the merits of this paradigm over existing ones
such as the grid computing paradigm.

• Second, we verify the potential of our paradigm using simu-
lation set-up and real-world social graphs with varying social
characteristics that reflect different, and possibly contradict-
ing, trust models. Both graphs and the simulator are made
public [102] to the community to make use of them, and im-
prove by additional features.

4.1.2 The Case for SOCIALCLOUD

In this work, we look at the potential of using unstructured social
graphs for building distributed computing systems. These systems
are proposed with several anticipated benefits in mind. First, such
systems would exploit locality of data based on the applications
they are intended for, under the assumption that the data would be
stored at multiple locations and shared among users represented in
the social network—see §4.1.5 and [141] for concrete examples of
such applications. This is in fact not a far-fetched assumption. For
example, consider a co-authorship social graph, like the one used
in our experiments, where the SOCIALCLOUD is proposed for de-
ployment. In that scenario, data on which computations are to be
performed is likely to be at multiple locations; on machines of re-
search collaborators, co-authors, or previous co-authors. Even for
some online social networks, the assumption and achieved benefits
are not far-fetched as well, considering that friends would have sim-
ilar interests, and likely to have contents replicated across different
machines, which could be potentially of interest to use in our com-
puting paradigm. Examples of such settings include photos taken at
parties, videos—for image processing applications, among others.

The second advantage of this paradigm is its trustworthiness.
In the recent literature, there has been a lot of interest in the dis-
tributed computing community for exploiting social networks to
perform trustworthy computations. Examples of these literature
works include exploiting social networks for cryptographic sign-
ing services [143], Sybil defenses [147, 35, 146], and routing in
many settings including the delay tolerant networks [14, 32]. In all
of these cases, along with the algorithmic property in these social
networks, the built designs exploit the trust in social networks. The
trust in these networks rationalizes the assumption of collaboration
in these built system, and the tendency of nodes in the network to
act according to the intended protocol with the theorized guaran-
tees. Same as in all of these applications, SOCIALCLOUD tries to
exploit the trust aspect of the social network, and thus it is easy to
reason about the behavior of nodes in this paradigm (c.f. §4.1.4).

Related to trust exhibited in the social fabric utilized in our paradigm,
the third advantage is that it is also easy to reason about the recruit-
ment of workers. In this context, workers are nodes that are will-

ing to perform computing tasks for other nodes (tasks outsourcers).
This feature, when associated with the aforementioned trust, is quite
advantageous when compared to the challenge of performing trust-
worthy computing on dedicated workers in the conventional grid-
computing paradigm, where it is hard to recruit such workers.

Finally, our design oversees an altruistic model of SOCIALCLOUD,
where nodes participate in the system and do not expect in return.
Further details on this model are in §4.1.4.
Grid Computing. While the SOCIALCLOUD uses a similar paradigm
to that of the grid computing paradigm—in the sense that both try
to outsource computations and use high aggregate computational
resources, the SOCIALCLOUD is slightly different. In particular, in
the SOCIALCLOUD, there is a pre-defined relationship between the
task outsourcer and the computing worker, which does not exist in
the grid-computing paradigm. We limit the computations to 1−hop
neighbors, which further improve trustworthiness of computations
in our model.

4.1.3 Social Networks and Systems Bootstrapping
Social networks are so popular. Nine of the twenty most popular

sites on the web are for social networking [1]. The top ten online
social networking websites have more than 650 million of unique
visitors per month in total. The most popular social network, Face-
book [2] alone serves 250 million unique visitors per month, with
more than 96 unique visitors per second. Such popularity of so-
cial networks has motivated so many designs, protocols, and appli-
cations on top of social networks. Examples include routing [14,
32, 36, 82], social gossip [4, 46, 23], and Sybil defenses [147]
(c.f. §4.1.14). While they are different in the details of their oper-
ation, all of these designs and protocols weigh algorithmic proper-
ties (connectivity), trust, and collaboration in the underlying social
networks, which are used for bootstrapping such systems.

4.1.4 Economics of SocialCloud
In our design we assume an altruistic model, which simplifies

the behavior of users and arguments on the attacker model. In this
altruistic model, users in the social network donate their comput-
ing resources—while not using them—to other users in the social
network to use them for specific computational tasks. In return,
the same users who donated their resources for others would an-
ticipate others as well to perform their computations on behalf of
them when needed.

One can further improve this model. Social networks are rich
of trust characteristics that capture additional features, and can be
used to rationalize this model in several ways. For example, trust in
social networks, a well studied vein of research in this context [97],
can be used to adjust this model so as users would bind their par-
ticipation in computations to trust values that they assign to other
users. In this work, in order to make use of and confirm this model,
we limit outsourced computations at 1-hop.

While we do not consider that in this work (and would be a po-
tential proposed work over the current findings), another model us-
ing interests and groups is worth mentioning for its popularity and
potential as a future work. The incentives model can be further
relaxed by enabling “interest” based model of computation where
workers do computation to other nodes in the graph that only share
some interest with them. This interest can be publicly identified by
the membership of a node in a group. Investigating this model is
left as a future work.

4.1.5 Use Model and Applications
For our paradigm, we envision compute intensive applications,

for which other systems have been developed in the past using dif-



ferent design principles, but lacking trust features; where trust is
needed in such applications and provided by our paradigm. These
systems include ones with resources provided by volunteers, as
well as grid-like systems, like in Condor [79], MOON [77], Neb-
ula [25, 141], and SETI@Home [8].

Specific examples of applications built on top of these systems,
that would as well fit to our use model, include blog analysis [141],
web crawling and social-network applications (collaborative filter-
ing, image processing, etc) [20], scientific computing [138], among
others.

Notice that each of these applications requires certain levels of
trust for which social ties are best suited as a trust bootstrapping and
enabling tool. Especially, reasoning about the behavior of systems
and expected outcomes (in a computing system in particular) would
be well-served by this trust model. We notice that this social trust
has been previously used as an enabler for privacy in file-sharing
systems [56], anonymity in communications systems [109], and
collaboration in sybil defenses [69, 146, 97], among others. In this
work, we use the same insight to propose a computing paradigm
that relies on such trust and volunteered resources, in the form of
shared computing time. With that in mind, in the following section
we elaborate on the attacker used in our system and trust models
provided by our design, thus highlight its advantage and distancing
our work from prior works in the literature.

4.1.6 Attacker Model
In this work, as it is the case in many other systems built on top

of social networks [146, 147, 132], we assume that the attacker is
restricted in many aspects. For example, the attacker has a limited
capability of creating arbitrarily many edges between himself and
other nodes in the social graph.

While this restriction may contradict some recent results in the
literature [15]—where it is shown that some legitimate users be-
friend random users in the social network who are potentially at-
tackers, it can be relaxed to achieved the intended trust and attack
model by considering an overlay of subset of friends of each users.
This overlay expresses the trust value of the social graph well and
eliminates the influence introduced by the attacker who infiltrated
the social graph [97]. For example, since each user decides on to
which node among his adjacent nodes to outsource computations
to, each user is aware of other users he knows well and those who
are just social encounters that could be potential attackers. Accord-
ingly, the user himself decides whether to include a given node in
his overlay or not, thus minimizing or eliminating harm and achiev-
ing the required trust and attack model.

The description of the above attacker model might be at odds
with the rest of the work, especially that we use some online social
networks that do not reflect characteristics of trust required in our
paradigm. However, such networks, when used, are used for two
reasons. First, to derive insight on the potential of such social net-
works, and others that share similar topological characteristics, for
performing computational tasks according to the method devised
in this work. Second, we use them to illustrate that some of these
social networks might be less effective than the trust-possessing so-
cial graphs, which we strongly advocate for our computing paradigm.
Comparison with Trust in Grid Computing Systems. While
there has been a lot of research on characterizing and improving
trust in the conventional grid computing paradigm [9, 10, 124,
59]—which is the closest paradigm to compare to ours, trust guar-
antees in such paradigm are less strict than what is expressed by
social trust. For that, it is easy to see that some nodes in the grid
computing paradigm may act maliciously by, for example, giving
wrong computations, or refusing to collaborate; which is even eas-

ier to detect and tolerate, as opposed to acting maliciously [24].

4.1.7 The Design of SocialCloud
The main design of SOCIALCLOUD is very simple, where com-

plexities are hidden in design choices and options. In SOCIAL-
CLOUD, the computing overlay is bootstrapped by the underlying
social structure. Accordingly, nodes in the social graph act as work-
ers to their adjacent nodes (i.e., nodes which are one hop away from
the outsourcer of computations). An illustration of this design is
depicted in Figure 26. In this design, nodes in the social graph, and
those in the SOCIALCLOUD overlay, use their neighbors to out-
source computational tasks to them. For that purpose, they utilize
local information to decide on the way they schedule the amount
of computations they want each and every one of their neighbors
to take care of. Accordingly, each node has a scheduler which
she uses for deciding the proportion of tasks that a node wants
to outsource to any given worker among her neighbors. Once a
task is outsourced to the given worker, and assuming that both data
and code for processing the task are transferred to the worker, the
worker is left to decide how to schedule the task locally to compute
it. Upon completion of a task, the worker sends back the computa-
tions result to the outsourcer.
Design Options: Scheduling Entity In the SOCIALCLOUD, two
schedulers are used. The first scheduler is used for determining
the proportion of task outsourced to each worker and the second
scheduler is used at each worker to determine how tasks outsourced
by outsourcers are computed and in which order. While the latter
scheduler can be easily implemented locally without impacting the
system complexity, the decision used for whether to centralize or
decentralize the former scheduler impacts the complexity and op-
eration of the entire system. In the following, we elaborate on both
design decisions, their characteristics, and compare them.

• Decentralized scheduler. In our paradigm, we limit selec-
tion of workers to 1-hop from the outsourcer. This makes
it possible, and perhaps plausible, to incorporate scheduling
of outsourcing tasks at the side of the outsourcer in a decen-
tralized manner—thus each node takes care of scheduling its
tasks. On the one hand, this could reduce the complexity
of the design by eliminating the scheduling server in a cen-
tralized alternative. However, on the other hand, this could
increase the complexity of the used protocols and the cost
associated with them for exchanging states—such as avail-
ability of resources, online and offline time, among others.
All of such states are exchanged between workers and out-
sourcers in our paradigm. These states are essential for build-
ing basic primitives in any distributed computing system to
improve efficiency (see below for further details). An illus-
tration of this design option is shown in Figure 26. In this
scenario, each outsourcer, as well as worker, has its own sep-
arate scheduling component.

• Centralized Scheduler. Despite the fact that nodes may only
require their neighbors to perform the computational tasks on
behalf of them and that may require only local information—
which could be available to these nodes in advance, the use
of a centralized scheduler might be necessitated to reduce
communication overhead at the protocol level. For exam-
ple, in order to decide upon the best set of nodes to which to
outsource computations, a node needs to know which of its
neighbors are available, among other statistics. For that pur-
pose, and given that the underlying communication network
topology may not necessarily have the same proximity of the
social network topology, the protocol among nodes needs to
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Figure 26: A depiction of the main SOCIALCLOUD paradigm as
viewed by an outsourcer of computations. The different nodes
in the social network act as workers for their friends, who act
as potential jobs/tasks outsourcers. The links between social
nodes are ideally governed by a strong trust relationship, which
is the main source of trust for the constructed computing over-
lay. Both job outsourcers and workers have their own, and po-
tentially different, schedulers.

incur back and forth communication cost. One possible so-
lution to the problem is to use a centralized server that main-
tains states of the different nodes. Instead of communicating
directly with neighbor nodes, an outsourcer would request
the best set of candidates among its neighbors to the cen-
tralized scheduling server. In response, the server will pro-
duce a set of candidates, based on the locally stored states.
Such candidates would typically be those that would have
the most available resources to handle the outsourced com-
putation task.

An illustration of this design option is shown in Figure 27. In
this design, each node in SOCIALCLOUD would periodically
send states to a centralized server. When needed, an out-
sourcer node contacts the centralized server to return to it the
best set of candidates for outsourcing computations, which
the server would return based on the states of these candi-
dates. Notice that only states are returned to the outsourcer,
upon which the outsourcer would send tasks to these nodes
on its own—Thus, the server involvement is limited to the
control protocol.
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Figure 27: The decentralized model of task scheduling in SO-
CIALCLOUD.

The communication overhead of this design option to transfer
states between a set of d nodes is 2d, where d messages are re-
quired to deliver all nodes’ states and d messages are required to
deliver states of all other nodes to each node in the set. On the other

hand, d(d − 1) messages are required in the decentralized option
(which requires pairwise communication of states update). When
outsourcing of computations is possible among all nodes in the
graph, this translates into O(n) for the centralized versus O(n2)
communication overhead for the decentralized option. To sum up,
Table 4 shows a comparison between both options.

Table 4: A comparison between the centralized and decen-
tralized scheduler options. Compared features are resistance
to failure, communication overhead, required additional hard-
ware, and required additional trust.

Option Failure Communication Hardware Trust

Centralized 6 O(n) 6 6

Decentralized 4 O(n2) 4 4

4.1.8 Tasks Scheduling Policy
While the use of distributed or centralized scheduling entity re-

solves the issue of scheduling at the outsourcer side, two decisions
remain unsolved: how much computation to outsource to each node
(worker), and how much time a node among these workers should
spend on a given task for a certain outsourcer. We handle these two
issues separately.

As mentioned earlier, any off-the-shelf scheduling algorithm can
be utilized to decide the right scheduling policy at the side of the
outsourcer, which can be further improved by incorporating trust
characterization models for weighted job scheduling [97]. On the
other hand, for workers scheduling, we consider several scheduling
options as follows (notice that all of these policies are applied with
respect to “computing time”. This further requires estimating the
time required for each task as a first step for using these policies).

• Round Robin (RR) Scheduling Policy. This is the sim-
plest policy to implement, in which a worker spends an equal
share of time on each outsourced task in a round robin fash-
ion among all tasks he has.

• Shortest First (SF) Scheduling Policy. The worker per-
forms shortest task first.

• Longest First (LF) Scheduling Policy. The worker per-
forms longest task first.

Notice that we omit a lot of details about the underlying computing
infrastructure, and abstract such infrastructure to “time sharing ma-
chines”, which further simplifies much of the analysis in this work.
In the results, we experiment with the three scheduling policies.

4.1.9 Handling Outliers
The main performance criterion used for evaluating SOCIAL-

CLOUD is the time required to finish computing tasks for all nodes
with tasks in the system. Accordingly, an outlier (also called a com-
puting straggler) is a node with computational tasks that take a long
time to finish, thus increasing the overall time to finish and decreas-
ing the performance of the overall system. Detecting outliers in our
system is simple: since the total time is given in advance, outliers
are nodes with computing tasks that have longer time to finish when
other nodes participating in the same outsourced computation are
idle. Our method for handling outliers is simple too: when an out-
lier is detected, we outsource the remaining part of computations
on all idle nodes neighboring the original outsourcer. For that, we



use the same scheduling policy used by the outsourcer when she
first outsourced this task. In the simulation part, we consider both
scenarios of handled and unhandled outliers, and observe how they
affect the performance of the system.

4.1.10 Deciding Workers Based on Resources
In real-world deployment of a system like SOCIALCLOUD, we

expect heterogeneity of resources, such as bandwidth, storage, and
computing power, in workers. This heterogeneity would result in
different results and utilization statistics of a system like SOCIAL-
CLOUD, depending on which nodes are used for what tasks. While
our work does not address this issue, and leaves it as a future work.
We further believe that simple decisions can be made in this re-
gard so as to meet the design goals and achieve the good perfor-
mance. For example, we expect that nodes would select workers
among their social neighbors that have resources and link capaci-
ties exceeding a threshold, thus meeting an expected performance
outcome.

4.1.11 Simulator of SOCIALCLOUD

To demonstrate the potential of SOCIALCLOUD as a computing
paradigm, we implement a batch-based simulator [102] that consid-
ers a variety of scheduling algorithms, an outlier handling mecha-
nism, job generation handling, and failure simulation. A flow dia-
gram of the simulator is in Figure 28.

The flow of the simulator, which represents the flow of the sys-
tem, is depicted in Figure 28. First, the node factory uses the boot-
strapping social graph to create nodes and their workers. Each node
then decides on whether she has a task or not, and if she has a task
she schedule the task according to her scheduling algorithm. If
needed, each node then transfers code on which computations are
to be performed to the worker along with the splits of the data for
these codes to run on. Each worker then performs the computation
according to the scheduling algorithm of the worker and returns the
results of the computations to the outsourcer.
Timing. In SOCIALCLOUD, we use virtual time to simulate com-
putations and resources sharing. We scale down the simulated time
by 3 orders of magnitude of that in reality. This is, for every sec-
ond worth of computations in real-world, we use one millisecond
in the simulation environment. Thus, units of times in the rest of
this work are in virtual seconds.
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Figure 28: The flow diagram of SOCIALCLOUD: social graph is
used for bootstrapping the computing service and recruit work-
ers, nodes are responsible for scheduling their tasks by deter-
mining the amount of work each of its neighbors would process,
and each worker (node) uses its local scheduler to determine
how much time is allowed for each sub-task by its neighbors.

4.1.12 Settings
In this section, in order to derive insight on the potential of SO-

CIALCLOUD, we experiment with the simulator described above.

Before getting into the details of the experiments, we describe the
data and evaluation metric used in this section.
Evaluation Metric To demonstrate the potential of operating SO-
CIALCLOUD, we use the “normalized finishing time” of a task out-
sourced by a user to other nodes in the SOCIALCLOUD as the per-
formance metric. We consider the same metric over the different
graphs used in the simulation. To demonstrate the performance for
the population of all nodes that have tasks to be computed in the
system, we use the empirical CDF (commutative distribution func-
tion) as an aggregate measure. For a random variable X , the CDF
is defined as FX(x) = Pr(X ≤ x). In our experiments, the CDF
measures the fraction (or percent) of nodes that finish their tasks
before a point in time x, as part of the overall number of tasks. We
define x as the factors of time of normal operation per dedicated
machines, if they were to be used instead of outsourcing computa-
tions. This is, suppose that the overall time of a task is Ttot and the
time it takes to compute the subtask by the slowest worker is Tlast,
then x for that node is defined as Tlast/Ttot.
Tasks Generation Also for demonstrating the operation of our
simulator, and the trade-off that such operation provides, we con-
sider two different approaches for the tasks generated by each user.
The size of each generated task is measured by virtual units of time,
and for our demonstration we use two different scenarios:

• Constant task weight. each outsourcer generates tasks with
an equal size. These tasks are divided into equal shares and
distributed among different workers in the computing sys-
tem. The size of each task is T̄ .

• Variable task weight. each outsourcer has a different task
size. We model the size of tasks as a uniformly distributed
random variable in the range of [T̄ − `, T̄ + `] for some T̄ >
`. Each worker receives an equal share of the task from the
outsourcer.

Deciding Tasks Outsourcers Not all nodes in the system are likely
to have tasks to outsource for computation at the same time. Ac-
cordingly, we denote the fraction of nodes that have tasks to com-
pute by p, where 0 < p < 1. In our experiments we use p from
0.1 to 0.5 with increments of 0.1. We further consider that each
node in the network has a task to compute with probability p, and
has no task with probability 1 − p—thus, whether a node has a
task to distribute among its neighbors and compute or not follows
a binomial distribution with a parameter p. Once a node is deter-
mined to be among nodes with tasks at the current round of run of
the simulator, we fix the task length. For tasks length, we use both
scenarios mentioned in §4.1.12; with fixed or constant and variable
tasks weights.
Social Graphs To derive insight on the potential of SOCIALCLOUD,
we run our simulator on several social graphs with different size
and density, as shown in Table ?? (part of those used in Table 5).
The graphs used in these experiments represent three co-authorship
social structures (DBLP, Physics 1, and Physics 2), one voting net-
work (of Wiki-vote for wikipedia administrators election), and one
friendship network (of the consumer review website, Epinion). All
of these graphs are made undirected, if they are not already, which
rationalizes their use in our system. Notice the varying density of
these graphs, which also reflects on varying topological character-
istics. Also, notice the nature of these social graphs, where they
are built in different social contexts and possess varying qualities
of trust [97].

4.1.13 Main Results
In this section we demonstrate our paradigm and discuss the

main results of this work. Due to the lack of space, we delegate
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(a) Physics 1.
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(b) Physics 2.
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(c) DBLP.
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(d) Epinion.

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(e) Wiki-vote.

Figure 29: The normalized time it takes to perform outsourced computations in SOCIALCLOUD. Different graphs with different
social characteristics have different performance results, where those with well-defined social structures have self-load-balancing
features, in general. These measurements are taken with round-robin scheduling algorithm that uses the outlier handling policy in
§4.1.9 for a fixed task size (of 1000 simulation time units).

Table 5: Social graphs used in our experiments.
Dataset # nodes # edges Description

DBLP 614981 1155148 CS Co-authorship
Epinion 75877 405739 Friendship network
Physics 2 11204 117649 Co-authorship
Wiki-vote 7066 100736 Voting network
Physics 1 4158 13428 Co-authorship

additional results to the technical report in [101]. For all measure-
ments, our metric of performance and comparison is the normalized
time to finish metric, explained in section 4.1.12.
Performance When Varying the Number of Outsourcers In the
first experiment, we run our SOCIALCLOUD simulator on the dif-
ferent social graphs discussed earlier to measure the evaluation
metric when the number of the outsourcers of tasks increases. We
consider p = 0.1 to 0.5 with increments of 0.1 at each time. The
results of this experiment are in Figure 29. On the results of this
experiment we make several observations.

First, we observe the potential of SOCIALCLOUD, even when
the number of outsourcers of computations in the social network
is as high as 50% of the total number of nodes, which translates
into a small normalized time to finish even in the worst perform-
ing social graphs (about 60% of all nodes with tasks would finish
in 2 normalized time units). However, this advantage varies for
different graphs: we observe that sparse graphs, like co-authorship
graphs, generally outperform other graphs used in the experiments
(by observing the tendency in the performance in figures 30(b)
through 29(c) versus figures 29(d) and 29(e)). In the aforemen-
tioned graphs, for example, we see that when 10% of nodes in
each case is used, and by fixing x, the normalized time, to 1, the
difference of performance is about 30%. This difference of per-

formance is observed between the Physics co-authorship graphs—
where 95% of nodes finish their computations—and the Epinion
graph—where only about 65% of nodes finish their computations.

Second, we observe that the impact of p, the fraction of nodes
with tasks in the system, would depend on the graph rather than
p alone. For example, in Figure 30(b), we observe that moving
from p = 0.1 to p = 0.5 (when x = 1) leads to a decrease in the
fraction of nodes that finish their computations from 95% to about
75%. On the other hand, for the same settings, this would lead to
a decrease from about 80% to 40%, a decrease from about 65%
to 30%, and a decrease from 70% to 30% in DBLP, Epinion, and
Wiki-vote, respectively. This suggests that the decreases in the per-
formance are due to an inherit property of each graph. The inherit
property of each graph and how it affects the performance of SO-
CIALCLOUD is further illustrated in Figure 30. Interestingly, we
find that even if DBLP is almost two orders of magnitude the size
of Wiki-vote, for example, it outperforms Wiki-vote when not us-
ing outlier handling, and gives almost the same performance when
using outliers handling.
Performance with different scheduling policies Now, we turn our
attention to understanding the impact of the different scheduling
policies discussed in §4.1.8 on the performance of SOCIALCLOUD.
We consider the different datasets, and use p = 0.1 to 0.5 with
0.2 increments (the results are shown in Figure 31). The observed
consistent pattern in almost all figures in this experiment tells that
shortest first policy always outperforms the round robin scheduling
policy, whereas the round robin scheduling policy outperforms the
longest first. This pattern is consistent regardless of p and the out-
lier handling policy. The difference in the performance when using
different policies can be as low as 2% (when p = 0.1 in physics co-
authorship; shown in figure 32(b)) and as high as 70% (when using
p = 0.5 and outlier handling as in wiki-vote (figure 31(l))). The
patterns are made clearer in Figure 31 by observing combinations
of parameters and policies.
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(a) Physics 1 (p = 0.1).
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(b) DBLP (p = 0.1).
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(c) Epinion (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(d) Wiki-vote (p = 0.1).
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(e) Physics 1 (p = 0.3).
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(f) DBLP (p = 0.3).
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(g) Epinion (p = 0.3).
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(h) Wiki-vote (p = 0.3).
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(i) Physics 1 (p = 0.5).
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(j) DBLP (p = 0.5).
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(k) Epinion (p = 0.5).
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(l) Wiki-vote (p = 0.5).

Figure 31: The normalized time it takes to perform outsourced computations in SOCIALCLOUD for different scheduling policies.
Naming convention: U stands for unhandled outlier and B stands for handled outliers (Balanced). RRS, SFS, and LFS stand for
round-robin, shortest first, and longest first scheduling.
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Figure 30: The performance of SOCIALCLOUD on the differ-
ent social graphs used for our experiments, demonstrating the
inherent differences in the different social graphs. Both figures
use p = 0.3 and the round robin scheduling algorithm. Left fig-
ure is when handling outliers, whereas the right figure without
handling the outliers.

Performance with Outliers Handling Outliers, as defined in §4.1.9,
drag the performance of the entire system down. However, as
pointed out earlier, handling outliers is quite simple in SOCIAL-
CLOUD if accurate timing is used in the system. Here we consider
the impact of the outlier handling policy explained in §4.1.9. The
impact of using the outlier handling policy can be also seen on fig-
ure 31, which is used for demonstrating the impact of using dif-
ferent scheduling policies as well. In this figure, we see that the
simple handling policy we proposed improves the performance of
the system greatly in all cases. The improvement differs depending
on other parameters, such as p, and the scheduling policy. As with
the scheduling policy, the improvement can be as low as 2% and as
high as more than 60%. When p is large, the potential for improve-
ment is high—see, for example, p = 5 in Physics 2 with the round

robin scheduling policy where almost 65% improvement is due to
outlier handling when x = 1.
Performance with Variable Task Size In all of the above exper-
iments, we considered computational tasks of fixed size; 1000 of
virtual time units in each of them. Whether the same pattern would
be observed in tasks with variable size is unclear. Here we exper-
imentally address this concern by using variable duty size that is
uniformly distributed in the interval of [500, 1500] time units. The
results are shown in Figure 32. Comparing these results to the mid-
dle row of Figure 31 (for the fixed size tasks), we make two obser-
vations. (i) While the average task size in both scenarios is same,
we observe that the performance with variable task size is worse.
This performance is anticipated as our measure of performance is
the time to finish that would be definitely increased as some tasks
with longer time to finish are added. (ii) The same patterns advan-
taging a given scheduling policy on another are maintained as in
earlier with fixed task length.
Relationship Between Structure and Performance It is worth
noting that the performance of SOCIALCLOUD is quite related to
the underlying structure of the social graph. For example, sparse
graphs such as co-authorship graphs—which are pointed out in [97]
to be slow mixing graphs—are the graphs with performance advan-
tage in SOCIALCLOUD. These graphs, in particular, are shown to
possess a nice trust value that can be further utilized for SOCIAL-
CLOUD. Furthermore, this trust value is unlikely to be found in
online social networks which are prone to infiltration, making the
case for trust-possessing graphs even stronger, as they achieve per-
formance guarantees as well. This, indeed, is an interesting finding
by itself, since it shows opposite outcomes to what is known in the
literature on the usefulness of these graphs.
Additional Features and Limitations of Experiments Our sim-
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(a) Physics 1 (p = 0.3).
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(b) Physics 2 (p = 0.3).
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(c) DBLP (p = 0.3).
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(d) Epinion (p = 0.3).
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Figure 32: The normalized time it takes to perform outsourced computations in SOCIALCLOUD, for variable task size.

ulator of SOCIALCLOUD omits a few details concerning the way
a distributed system behaves in reality. In particular, our measure-
ments do not report on or experiment with failure. However, our
simulator is equipped with functionality for handling failure in the
same way used for handling outliers (c.f. §4.1.9). Furthermore, our
simulator considers a simplistic scenario of study by abstracting the
hardware infrastructure, and does not consider additional resources
consumed, such as memory and I/O resources. In the future, we
will consider equipping our simulator with such functionalities and
see how this affects the behavior and benefits of SOCIALCLOUD.

One last concern related to our demonstration of our paradigm
is that we do not consider the heterogeneity of resources, such as
bandwidth and resources, in nodes acting as workers in the sys-
tem. Furthermore, we did not consider how this affects the us-
ability of our system and what decision choices this particular as-
pect of distributed computing systems would have on the utility of
our paradigm. While this would be mainly a future work to con-
sider, we expect that nodes would select workers among their so-
cial neighbors that have resources and link capacities exceeding a
threshold, thus meeting an expected performance outcome.

4.1.14 Related Work
There have been many works on the use of social networks for

building communication and security systems, studying the perfor-
mance of such designs on top of social networks, and analyzing the
assumptions used in these designs as well. Below we highlight a
few examples of these efforts and works.

Systems built on top of social networks include file sharing sys-
tems [56], anonymous communication systems [133, 109] Sybil de-
fenses [35, 69, 145, 147], referral and filtering systems [61, 116],
and live streaming [78]. Most of these applications weigh the trust
in social graph, and an algorithmic property that makes the opera-
tion of these systems on top of social network effective. Another set
of applications that exploit social networks’ trust is routing [14, 32,
36, 82]—in several settings, where it has been shown that connec-
tivity in social graphs can be of benefit in disconnected networks.
Finally, assumptions of social network-based systems are explored

recently, where Sybil defenses and their assumptions are studied
in [107], and trust is challenged in [97].

Perhaps the closest vein of related work in the literature to our
work is on the use of social networks for building computing ser-
vices. Until the time of writing this work, most of the prior research
work has been solely focused on providing storage services, but
not a platform of computations. All of these systems share similar
motivations as in our systems; they bring trust from an orthogonal
context to empower a distributed computing system. In many cases,
such storage services use slightly different economical model than
the one used in SOCIALCLOUD, where payment per Megabyte per
month rates are used as opposed to our eco-system. Examples of
such efforts are reported by Tran et al. [128]), Chard et al. [28], and
Sato [120]. Xu et al. [143] have further explored a first step in the
direction of building cloud computing platforms on top of social
networks by considering the access control model in this domain
with preferred access control guarantees. The results of this work
can be used as a building block in our work to improve the quality
of access control and authorization.

Concurrent to our work, and following their work in [28], Chard
et al. [27] suggested the use of social networks to build a resource
sharing system. Whereas their main realization was still a social
storage system as in [28], they also suggested that the same vision
can be used to build a distributed computing service as we advocate
in this work. Recent realizations of this vision have been reported
in [126] and [62]. In [126], Thaufeeg et al. devised an architecture
where “individuals or institutions contribute the capacity of their
computing resources by means of virtual machines leased through
the social network”. In [62] Koshy et al. further explored the mo-
tivations of users to enable social cloud systems for scientific com-
puting.

With similar flavor of distributed computing services design, there
has been prior works in literature on using volunteers’ resources for
computations exploiting locality of data [25, 141], examination of
programing paradigms, like MapReduce [37] on such paradigm [77,
20]. Finally, our work shares several commonalities with the grid
and volunteer computing systems [79, 77, 25, 141, 8], of which



many aspects are explored in the literature. Trust of grid comput-
ing and volunteer-based systems is explored in [9, 10, 124, 59, 42].
Applications built on top of these systems, that would fit to our use
model, are reported in [141, 20, 138], among others.

4.1.15 Proposed Work
In the near future we will look at two directions (one is long term

direction that goes beyond this work) as follows.

• In the first direction, we aim to complete the missing ingredi-
ent of the simulator and enrich it by further scenarios of de-
ployment of our design, under failure, with different schedul-
ing algorithms at both sides of the outsourcer and workers
(in addition to those discussed in this work), and to consider
other overhead characteristics that might not be in line with
topological characteristics in the social graph. These char-
acteristics may include the uptime, downtime, communica-
tion overhead, and I/O overhead consumption, among others.
One interesting feature that we will consider is trust-based
scheduling, benefiting from the prior work in [97].

• In the second direction, and probably beyond this thesis work
as a long term goal, we will turn our attention from the sim-
ulation settings to real-world deployment settings, thus ad-
dressing options discussed in §4.1.13, and to implement a
proof-of-concept application, among those discussed in §4.1.5,
by utilizing design options discussed in this work. We antic-
ipate a lot of hidden complexities in the design to arise, and
significant findings to come out of the deployment that we
will report on in the future work.

• An additional proposed work, depending on whether the time
permits or not, would be to investigate other usage models for
this paradigm, beyond scientific computing where recruit-
ment of workers and trust are issues for performing compu-
tations.

4.2 Anonymity on Dynamic Social Networks
All of the prior works which use social networks for building

applications to solve real-world problems by exploiting these net-
works’ structure and trust make certain assumptions. Some of these
assumptions are rational and others are irrational in light of our un-
derstanding of the evolving settings of social networks. For exam-
ple, the aforementioned social network-based Sybil defenses as-
sume relatively simple trust model of binary relationships among
nodes: a node either knows other nodes in the social graph or does
not know them at all [146, 147, 35]. While simple and easy to im-
plement, this model turns problematic when it does not represent
reality by not characterizing the richer nature of social graphs that
involves “differential trust” [97]. The idea has been recently used,
and several designs have been considered to characterize trust for
the problem in hand, and shown that differential trust can improve
the security of Sybil defenses, despite degradation of algorithmic
properties imposed by the differential trust [97].

Another simplifying assumption is the nature of associations among
nodes; graphs are assumed to be static [146, 147, 35, 109, 32]. In-
sight is brought on the potential of these designs by experimenting
with static social graphs, and by ignoring the dynamic nature of
social graphs. Ignoring this nature might be due to unavailability
of tools to capture the dynamic nature of social graphs, or unavail-
ability of measures to quantify the performance of these designs
on such dynamic social graphs. However, the limited nature of the
static social graphs prohibits us from getting insight of these de-
signs in reality when applied to real-world deployment settings for

which social graphs are well-known for their dynamic behavior [63,
49, 125]. Such behavior greatly alters graphs structure, which is an
essential determining part of the performance of these designs.

In this work we propose to proceed further to understand dy-
namic social graphs for another family of applications, anonymous
communication systems. On the one hand, we would like to extend
and utilize earlier findings in [109] and [34] of using social graphs
as good mixers for anonymity. On the other hand, we want to im-
prove on these results by formalizing the use of dynamic social
structures for anonymity, and establishing a relationship between
dynamic and weighted graphs. We want to show how our new
paradigm enables anonymous communication and stands against
possible attacks by empowering a richer social structure. We vali-
date our model using empirical studies on two dynamic social struc-
tures driven from real-world social networks. To this end, our con-
tributions are as follows:

• We formally define the problem of anonymously communi-
cating on dynamic social structures that are natural in many
contexts. We provide tools to quantify anonymity when such
structures are used. In particular, we show an interesting the-
oretical connection between dynamic graphs and unweighted
graphs representing history of associations among nodes and
influencing the way these nodes are selected by their neigh-
bors for anonymity.

• Using our model of dynamic structures, we provide detailed
and extensive experiments to show the usefulness of our pro-
posed model in reality considering two real-world network
traces that exhibit dynamic structures.

4.2.1 Initial Model and Formulation
In this section we review the preliminaries of known literature

on the problem, which are required for understanding the rest of
this work. This known literature assumes a static graph. Unless
otherwise is mentioned, this formalism follows from [109], which
is to the best of our knowledge the only work that directly touches
upon the problem.
System Settings and Application Scenario The idea of mixers
over social links is very simple: users recruit their social acquain-
tance to provide anonymity to their traffic. In the nutshell, each
node (user) forwards her own traffic to her friends, and friends for-
ward that traffic to their friends, and so on, for a certain number of
hops, say `. The number of hops ` used for forwarding the traffic is
a system-wide parameter, which is determined by the security level
desired in the system. For simplicity, and without losing general-
ity, let n be the number of users in the system. Accordingly, the
anonymity is defined for two parties; the sender and the receiver of
traffic. For the sender, the anonymity set is n, and the entropy of
the probability distribution for a certain node being the sender is
Hs = log2(n). On the other hand, the anonymity set provided for
the receiver is determined by the probability distribution achieved
after the fixed number of hops used in the system. Let the distri-
bution of the final node selected in a random walk after ` hops be
π`, where π` = [π`i ]

1×n, then the anonymity of the receiver of the
traffic (the last hop in the walk) is Hr , which is given as:

Hr = −
n∑
i=1

π`i log2 π
`
i (14)

Using (14), we define the anonymity set A` as

A` = 2Hr (15)

Given a random walk on a graph with certain properties—see sec-
tion 4.2.2 for details—that random walk has a unique bounding or



stationary distribution (defined in (16)) which captures the maxi-
mum achieved entropy.

The idea of using social networks to provide anonymity and
empower privacy is appealing for several reasons. First, social
networks have been known for certain algorithmic properties that
make the maximal entropy of a random walk achievable within a
few hops from any node in the social graph [109]. On the other
hand, unlike anonymity on fully structured graphs, such as that
provided by Tor [40]—in which recruiting relays and maintaining
trusted ones is a challenge [57]—social network-based anonymity
systems could be a alternative with rich trust characteristics. This
trust is the main ingredient used for reasoning about the potential
of these networks for safeguarding users privacy [56]. Indeed, so-
cial network-based anonymity systems, such as MCON [133] are
known for their desirable characteristics, which are challenging in
traditional mixing-based anonymous communication systems [127,
121, 54]. In the following, we further formalize the system settings
as a graph-theoretic problem.

4.2.2 Formalization (For Static Graphs)
Assume a graph as defined in section 2.2.1. Define the Markov

chain on the graph G following the transition matrix P which is
defined according to P = [pij ]

n×n pij is defined in (3). A unique
stationary distribution is defined for the Markov chain over the tran-
sition probabilities defined above if the Markov chain is ergodic—
requiring it to be both irreducible and aperiodic [106]. Theorem 2
states such distribution.

THEOREM 2. (Stationary distribution) For an undirected and
unweighted graphG, the stationary distribution of the Markov chain
defined overG according to transitions in (3) is the probability vec-
tor, given as π = [πi]

1×n, where

πi = deg (vi)/2m (16)

Using the model in (14) and the distribution in (16), we define
the maximal (in size) anonymity set following the same model as
in (15) as A∞ = 2H

∞
r , where:

H∞r = −
n∑
i=1

(
deg (vi)

2m
) log2(

deg (vi)

2m
) (17)

Lower-bound on the Achieved Receiver Anonymity In [109],
Nagaraja considered a gross definition of the achieved anonymity
for every node in the social graph as a potential destination. This
definition considered the average distribution achieved after ` hops
from any potential source in the social graph. While this cap-
tures the average performance in the system, it simply does not
show the worst case scenario observed at the lower-bound of the
achieved anonymity for receivers. Here, we revise Nagaraja’s defi-
nition in [109] and outline a straightforward fix for the measure of
the anonymity provided in a system that uses walks on the social
graph.

Without losing generality, let ` be a system-wide parameter, which
represents the number of hops from the source to the destination (or
receiver) in the graph, and each node between them is chosen uni-
formly at random from its predecessor. For each source vj (for
1 ≤ j ≤ n), we define the probability distribution after ` hops
as π`(vj) = [π`i (vj)]

1×n for (for 1 ≤ i ≤ n). The anonymity
achieved in the system is bounded below by the entropy achieved
in the probability distribution obtained by walking from the worst
source in the graph:

Hr ≥ inf
vj
{−

n∑
i=1

π`i (vj) log2 π
`
i (vj)} (18)

By extending (15) to the case in (18), we get the following

A` = 2Hr ≥ 2
infvj {−

∑n
i=1 π

`
i (vj) log2 π

`
i (vj)} (19)

The intuition of this lower bound is very simple, and follows from
the definition. Technically, this lower bound follows the classical
theoretical trend in security: proving lower bounds of security (or
anonymity as it is the case in hand) would enable us to guarantee,
in the worst time, that our system would perform better than this
bound for every user. On the other hand, considering the average
case for achieved entropy might be very deceiving since many re-
ceivers are likely not to achieve this average bound.

Here, we extend the findings in the literature on using static
graphs as mixers for anonymous communication to the case of
the dynamic graphs. Such dynamic graphs arise naturally in many
contexts due to social churn imposed by node and edge dynamics
(joining and leaving social networks). It is worth noting that this
is the first work of its own type to consider extending such results
for building anonymous communication systems on top of dynamic
social graphs.

4.2.3 Formalization (Dynamic Graphs)
The dynamic graph is a simple generalization of the static graph

used in literature. In particular, G = {G(i)} for 1 ≤ i ≤ t is
a dynamic graph over t time periods. Let G(i) = (V (i), E(i))

for 1 ≤ i ≤ t, where |V (i)| = n(i) and |E(i)| = m(i), be
an unweighted and undirected graph (later we extend that to the
weighted graph case). Let V (i) = {v(i)1 , v

(i)
2 , . . . , v

(i)

n(i)} and E(i)

be the set of pairs of vertices v(i)j -v(i)k if both nodes v(i)j and v(i)k in
V (i) are connected to each other. For G(i), we define A(i) where
A(i) = [a

(i)
jk ]n

(i)×n(i)

(the superscription is used as part of the
notation, and does not mean power), where:

a
(i)
jk =

{
1 v

(i)
j ∼ v

(i)
k ∈ G

(i)

0 otherwise
. (20)

For the same graphG(i), we define the transition probability matrix
P(i) such that P(i) = [p

(i)
jk ]n

(i)×n(i)

, where:

p
(i)
jk =

{
1/deg (a

(i)
jk ) v

(i)
j ∼ v

(i)
k ∈ G

(i)

0 otherwise
. (21)

Extending and generalizing (20) and (21) to the weighted case is
easy if weights are given on edges in the graph. We define

a
(i)
jk =

{
w(v(i)j , v(i)k) v

(i)
j ∼ v

(i)
k ∈ G

(i)

0 otherwise
, (22)

where w : E(i) → R is a weight function that assigns real-valued
weights to edges in G(i). Using (22), we define the degree of a
node to be in terms of weights associated with edges for which that
node is an end-vertex, as

degw (v
(i)
j ) =

∑
k

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G

(i). (23)

Notice that (23) can also be written as degw (v
(i)
j ) =

∑
k a

(i)
jk—

where a(i)jk is defined in (22). Using (23), we can compute P(i) =

[p
(i)
jk ] for weighted graphs, where

p
(i)
jk =

{
w(v

(i)
j , v

(i)
k )/degw (v

(i)
j ) v

(i)
k ∼ v

(i)
k ∈ G

(i)

0 otherwise
. (24)
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Figure 33: Simple example of dynamic graph. a
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2 ) is as per the definition. One or more of the weights

a
(i)
12 could be zero.

In a matrix form, P(i) can be defined as P(i) = (D(i))−1A(i)

where D(i) is a diagonal matrix computed from A(i), where the
diagonal element d(i)jj in D(i) is the sum of ones in the j-th row
in A(i) (that is, the degree of node vix in G(i)). At any time slot
i, we define the bounding distribution of the Markov chain on the
graphGi as in literature defined [deg (v

(i)
j )/2m(i)]. It is, however,

unclear how to proceed with the different snapshots of the same
graphs at different times.

For example, as shown in Figure 33, both nodes v(1)1 and v(1)2 are
connected, but not with their future images—v

(2)
1 or v(2)1 and v(2)2

or v(3)2 , respectively. This also applies to states in the future not
connected to the past images. In the following, we investigate sev-
eral techniques for modeling the dynamic social graph as a graph
where transitions from future states to past states is possible. Tech-
niques utilize here are generic, and can be used to any graph with
multiple labels.

4.2.4 Dynamic graph as a multigraph
As per the formalism in section 4.2.3, a dynamic graph over t

time slots can be viewed as a multigraph: all nodes that correspond
to a certain past state are collapsed under the same label in the
present state. Accordingly, if two nodes that have been labeled
with two different labels in the transformation process from mul-
tiple graphs to multigraph had an edge between them, the edge is
created in the multigraph. Since the multigraph includes states of
nodes in the past, current, and future time (for the current snapshot
of the graph), multiple edges are potentially created between two
labels. Such edges could be weighted or unweighted, depending on
the original multiple snapshots representing the dynamic graph.

Formally, for the dynamic graph G = {G(i)} described in sec-
tion 4.2.3, we define a multigraph G as G = (V,E), where

V =
⋃

i=1...t

{V (i)}, and E =
⊎

i=1...t

{E(i)}. (25)

Notice that ∪ is a set union, which does not allow repetition of ver-
tices, whereas ] is a multiset union, which allows edge repetition.
When E is computed, the index that corresponds to the time of the
edges in Ei can be removed for simplicity. A simple toy exam-
ple of transforming the multiple snapshots of the dynamic graph in
Figure 33 into a multigraph is in Figure 34.

Our formalization above of the graph as a multigraph (rather than
union multigraph as per the way defined in [48]) follows the intu-
ition of what a dynamic graph could yield of associations at any
time. At a time i, where 1 ≤ i ≤ t, constructing the proper
graph for operating a potential system, like mixing-based anony-
mous communication system, and maintaining the same informa-
tion driven from the original multiple snapshots of the graph would
be possible. Furthermore, assigning different weights to different
associations, based on the history of the association, would be also
possible (see below for details).

It is noted, however, that our model of the graph still uses the
high dimension. The literature of graph-theory, however, provides
us some powerful tools to reduce the dimensionality of the multi-
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Figure 34: Simple example of converting a dynamic graph (in
figure 33) into multigraph by collapsing all images of a node
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multiset union of the individual graphs).

v1

v2

v3

a
(1)
12 + a

(2)
12

a
(1)
13 + a

(2)
13 + a

(3)
13

a
(2)
23 + a

(3)
23

Figure 35: A simple example of multigraph (shown in figure 34)
conversion into weighted graph by summing weights of edges
between every pair of nodes.

graph above. Indeed, the adjacency matrix representation of multi-
graph accepted in the literature [16] considers entries in this matrix
as the number of edges (or sum of weights) between nodes. Ac-
cordingly, reducing the multigraph into a “weighted” graph repre-
sentation is straightforward.

In the following section, we elaborate on this notation and show
a transformation of the multigraph into a weighted graph. Fur-
thermore, we prove some results on the random walk on weighted
graphs essential to the rest of this work.

4.2.5 Dynamic graphs as weighted-graphs
Now, it is straightforward to convert the dynamic graph model

represented as a multigraph, as in (25), into a weighted graph. For
that, we generalize formalizations in section 4.2.3. In particular,
the model in (22) can be rewritten (for weighted undirected graph)
as A = [ajk]n×n—here, n = |V|—where

ajk =
∑
i=1...t

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G

(i)∀i. (26)

Similarly, we extend the model in (23) into

degw (vj) =
∑
i=1...t

degw (v
(i)
j ) =

∑
∀k

a
(j)
k (27)

=
∑
∀k

∑
i=1...t

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G

(i). (28)

We can further extend the transition probability formulation to cover
the weighted graph by plugging both (26) and (27) into a similar
model to that of (24), to get P = [pjk]n×n, where

pjk = ajk/degw(vj) (29)

For a random walk defined on G according to the transition prob-
ability defined in (29), the following theorem states the stationary
distribution. This theorem (and the proof herein) are essential for
latter results on characterizing and operating on dynamic graphs.
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Also, the proof of Theorem 2 follows similarly as in the proof be-
low.

THEOREM 3. Let G = (V,E) be a connected, undirected, and
weighted graph defined as in (25). For a random walk following
transition probabilities as in (29), the stationary distribution is de-
fined as π = [πi]

1×n (for n = |V|), where:

πi = degw(vi)/
∑

k=1...n

degw (vk) (30)

4.2.6 Generalized Weighted Graphs
In many natural social contexts, recent associations are more

appreciated than old associations, or vice-versa. By taking the
interaction-based model as an example (e.g., [142, 135]), it is noted
that the majority of interactions happen in the early time after es-
tablishing the social association, where the volume of interaction
decays as the social association ages. Accordingly, a general frame-
work for quantifying the potential of any system on top of so-
cial networks should consider implicit social network characteris-
tics, such as link age, in addition to the explicit differences among
links captured by the topological structure. Here, we generalize the
model in section 4.2.5 to accommodate for implicit values of asso-
ciations over time. Without losing generality, let αi (for 1 ≤ i ≤ t)
be a set of parameters that take numerical values. An extension of
the social graph model in (26) is as follows:

ajk =
∑
i=1...t

αiw(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G

(i)∀i. (31)

The rest of the model in section 4.2.5, particularly in (27) through (31),
holds for this generalization after adjusting ajk as in (31). A toy
example demonstrating the adjustment of weights in Figure 35 is
shown in Figure 36.

4.2.7 Proposed Work
Following our preliminary formalization in above, we look for-

ward to advance this work in many directions as follows.

• We will study how the weighted graph that accounts for dy-
namics would affect anonymity attained for users by using
the new quantification of anonymity and by biasing random
walks on the graph according to these weights. We expect
these would produce different anonymity guarantees than that
obtained when using a static unweighted graph. We will do
that on two real-world dynamic graphs (DBLP and Face-
book), where dynamics are interactions over time. Our initial
measurements show that the anonymity, as both anonymity
set and entropy, is improved using our model.

• We will investigate a distributed method for computing the
entropy of a walk even before using the social network for
real communication so that users can make sure they obtain
a high a high anonymity for their communications.

5. REFERENCES
[1] Ebizmba. www.ebizmba.com/, 2009.
[2] Facebook. www.facebook.com, 2010.
[3] IEEE 7th International Conference on E-Science, e-Science

2011, Stockholm, Sweden, December 5-8, 2011. IEEE
Computer Society, 2011.

[4] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and H. J.
Sips. A gossip-based distributed social networking system.
In WETICE ’09: Proceedings of the 2009 18th IEEE
International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, pages 93–98,
Washington, DC, USA, 2009. IEEE Computer Society.

[5] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. Wattenhofer. Farsite: Federated, available, and reliable
storage for an incompletely trusted environment. In OSDI,
2002.

[6] Y.-Y. Ahn, S. Han, H. Kwak, S. B. Moon, and H. Jeong.
Analysis of topological characteristics of huge online social
networking services. In Proc. of WWW, pages 835–844.
ACM, 2007.

[7] E. Al-Shaer, S. Jha, and A. D. Keromytis, editors.
Proceedings of the 2009 ACM Conference on Computer
and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009. ACM, 2009.

[8] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@ home: an experiment in
public-resource computing. Communications of the ACM,
45(11):56–61, 2002.

[9] F. Azzedin and M. Maheswaran. Evolving and managing
trust in grid computing systems. In IEEE Canadian
Conference on Electrical and Computer Engineering,
volume 3, pages 1424–1429. IEEE, 2002.

[10] F. Azzedin and M. Maheswaran. Towards trust-aware
resource management in grid computing systems. In Proc.
of CCGRID, pages 452–452. IEEE, 2002.

[11] L. Banks, P. Bhattacharyya, M. Spear, and S. Wu. Davis
social links: Leveraging social networks for future internet
communication. In Applications and the Internet, 2009.
SAINT’09. Ninth Annual International Symposium on,
pages 165–168. IEEE, 2009.

[12] L. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, 2007.

[13] V. Batagelj and M. Zaversnik. An O(m) algorithm for
cores decomposition of networks. Arxiv preprint
cs/0310049, 2003.

[14] G. Bigwood and T. Henderson. Social dtn routing. In
CoNEXT ’08: Proceedings of the 2008 ACM CoNEXT
Conference, pages 1–2, New York, NY, USA, 2008. ACM.

[15] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your
contacts are belong to us: automated identity theft attacks
on social networks. In WWW ’09: Proceedings of the 18th
international conference on World wide web, pages
551–560, New York, NY, USA, 2009. ACM.

[16] B. Bollobás. Modern graph theory, volume 184.
Springer-Verlag, 1998.

[17] N. Borisov. Computational puzzles as sybil defenses. In
A. Montresor, A. Wierzbicki, and N. Shahmehri, editors,
Peer-to-Peer Computing, pages 171–176. IEEE Computer
Society, 2006.

[18] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu.
The socialbot network: when bots socialize for fame and

www.ebizmba.com/
www.facebook.com


money. In R. H. Zakon, J. P. McDermott, and M. E.
Locasto, editors, ACSAC, pages 93–102. ACM, 2011.

[19] Z. Cai and C. Jermaine. The latent community model for
detecting sybil attacks in social networks. In Proc. of NDSS,
2012.

[20] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and
J. Weissman. Exploring mapreduce efficiency with
highly-distributed data. In Proc. of ACM MapReduce, 2011.

[21] M. Castro, P. Druschel, A. J. Ganesh, A. I. T. Rowstron, and
D. S. Wallach. Secure routing for structured peer-to-peer
overlay networks. In OSDI, 2002.

[22] J. Caverlee and S. Webb. A large-scale study of MySpace:
Observations and implications for online social networks.
Proc. of ICWSM, 8, 2008.

[23] A. Chaintreau, P. Fraigniaud, and E. Lebhar. Opportunistic
spatial gossip over mobile social networks. In WOSP ’08:
Proceedings of the first workshop on Online social
networks, pages 73–78, New York, NY, USA, 2008. ACM.

[24] A. Chakrabarti. Grid computing security. Springer Verlag,
2007.

[25] A. Chandra and J. Weissman. Nebulas: Using distributed
voluntary resources to build clouds. In Proc. of HotCloud,
2010.

[26] V. Chandrasekaran, R. Dantu, N. Gupta, X. Yang, and
D. Wijesekera. Efficiency of social connection-based
routing in P2P VoIP networks. In Communication Systems
and Networks (COMSNETS), 2010 Second International
Conference on, pages 1–6. IEEE, 2010.

[27] K. Chard, K. Bubendorfer, S. Caton, and O. Rana. Social
cloud computing: A vision for socially motivated resource
sharing. Services Computing, IEEE Transactions on,
(99):1–1, 2011.

[28] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. Social
cloud: Cloud computing in social networks. In IEEE
CLOUD, pages 99–106. IEEE, 2010.

[29] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and
S. Suri. Feedback effects between similarity and social
influence in online communities. In Proceeding of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 160–168. ACM, 2008.

[30] M. Cryan, M. E. Dyer, L. A. Goldberg, M. Jerrum, and
R. A. Martin. Rapidly mixing markov chains for sampling
contingency tables with a constant number of rows. SIAM J.
Comput., 36(1):247–278, 2006.

[31] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa.
From volunteer to cloud computing: cloud@home. In
N. M. Amato, H. Franke, and P. H. J. Kelly, editors, Conf.
Computing Frontiers, pages 103–104. ACM, 2010.

[32] E. M. Daly and M. Haahr. Social network analysis for
routing in disconnected delay-tolerant manets. In MobiHoc
’07: Proceedings of the 8th ACM international symposium
on Mobile ad hoc networking and computing, pages 32–40,
New York, NY, USA, 2007. ACM.

[33] E. M. Daly and M. Haahr. Social network analysis for
information flow in disconnected delay-tolerant manets.
IEEE Trans. Mob. Comput., 8(5):606–621, 2009.

[34] G. Danezis, C. Díaz, C. Troncoso, and B. Laurie. Drac: An
architecture for anonymous low-volume communications.
In Proc. of PETS, pages 202–219. Springer, 2010.

[35] G. Danezis and P. Mittal. SybilInfer: Detecting sybil nodes
using social networks. In Proc. of NDSS, 2009.

[36] J. Davitz, J. Yu, S. Basu, D. Gutelius, and A. Harris. ilink:
search and routing in social networks. In KDD ’07:
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
931–940, New York, NY, USA, 2007. ACM.

[37] J. Dean and S. Ghemawat. Mapreduce: a flexible data
processing tool. Communications of the ACM, 53(1):72–77,
2010.

[38] M. Dellamico, , and Y. Roudier. A measurement of mixing
time in social networks. In STM 2009: 5th International
Workshop on Security and Trust Management, 2009.

[39] R. Dingledine and N. Mathewson. Tor bridges specification.
Technical report, The Tor Project,
https://svn.torproject.org/svn/tor/
trunk/doc/spec/bridgesspec.txt, 2008.

[40] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the
second-generation onion router. In USENIX Security, 2004.

[41] T. T. A. Dinh and M. Ryan. A sybil-resilient reputation
metric for p2p applications. In SAINT, pages 193–196,
2008.

[42] P. Domingues, B. Sousa, and L. Moura Silva.
Sabotage-tolerance and trust management in desktop grid
computing. Future Generation Computer Systems,
23(7):904–912, 2007.

[43] J. Douceur and J. S. Donath. The sybil attack. In IPTPS,
pages 251–260, 2002.

[44] C. Dwyer, S. Hiltz, and K. Passerini. Trust and privacy
concern within social networking sites: A comparison of
Facebook and MySpace. In Proceedings of AMCIS, 2007.
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