
Chatter: Order-based Features for Malware Classification
Aziz Mohaisen1, Omar Alrawi 2, Andrew West1, Allison Mankin1, and Trevor Tonn1

1Verisign Labs, VA, USA 2Qatar Foundation
First IEEE Conference on Communications and Network Security. Oct. 14-16, 2013, Washington, DC, USA.

Contribution
• A system for malware classification using
cheap-to-obtain features; the features used in
our system rely on the order in which artifacts
associated with malware samples happen dur-
ing the execution of a sample.
• An evaluation of the system’s performance
using several families of malware samples.

Behavior-based Analaysis
• Executes malware samples (binaries) in a

sandboxed environment
• Artifacts are collected and used to finger-

print various malware families: memory,
file system, registry, and network.

• Using those artifacts, researchers created
features vectors and used machine learn-
ing algorithms for classification and clus-
tering of malware samples.

• Often times, expensive algorithms: re-
quire co-residence and variety of features.

AV Vendor
Samples

Customer
Samples

Customer
Samples

AV Vendor
Samples

AV Vendor
Samples

Internal
Samples

Internal
Samples

Samples
Priority
Queue

Samples
Priority
Queue

AUTOMALAUTOMAL

Controller

VM_1 VM_n

Behavior
Artifacts

Database

Design Goals and Objectives
• Cost effective: no deep features
• Less invasive: ideally can be imple-

mented as an outside observer unit.
• Generalizable and multiple purpose: can

be used for malware as well as other ma-
licious activities characterization.

• Evolvable to address behavior changes:
easy to tune to address malware circum-
vention mechanisms.

• Accurate: to meet operational standards.

Expansion of Features
• Not all combination of features are used
• Ideally, for k characters and n length of

a feature, there exist kn possible features.
The number explodes quickly as both pa-
rameters grow

• We use a condensed representation: we
use non-zero features across the multiple
samples. The number of features is re-
duced to 0.0005% when n = 6.

• Reduced features not only support effi-
cient representation but fast of operation
when using machine learning algorithmsTable 2: Features used in composing the behavioral

documents of malware samples studied in Chatter.

Feature class Features listing
IP and port unique dest IP, certain ports
Connections TCP, UDP, RAW
Request type POST, GET, HEAD

Response type response codes (200s through 500s)
Size request (quartiles), reply (quartiles)
DNS MX, NS, A records, PTR, SOA, CNAME

ware samples to assist the reliability of the evaluation of this
study. The malware samples used in this study are collected
over a long period of time, and that enabled analysts to
manually identify and label them. This process can be time-
consuming. At average, a previously unseen malware sample
can take more than 10 hours to manually characterize by ex-
perts. The data sources used for collecting those samples are
feeds of several AV vendors we partner with for exchanging
those malware intelligence, customers who are interested in
analyzing and understand the behavior of binaries used in
their enterprises, and our researchers own investigations and
exploration-based samples. For the first class of feeds, the
malware feed is delivered with no AV signatures associated
with each sample. We run Yara signatures [?] (more details
on those signatures are provided in [?]) on the malware feed
to identify malware of interest that we can feed into our
automated malware analysis system.

3.2 Features and Feature Selection
Running a malware sample in a sandboxed environment

results in a lot of artifacts, however not all of them are rel-
evant nor meaningful in identifying a malware sample. Ac-
cordingly, we limit our attention to only representative and
meaningful artifacts that may result in representative fea-
tures. For that, we rely on the domain knowledge of an ex-
pert of the studied malware samples and their families, and
encode that knowledge in the artifacts selected for charac-
terizing the malware samples of the various families.

To this end, we select 26 features all of which are network-
related (for the rationale we mentioned in section ??) as
shown in Table ??. Those features are selected according to
the description in section ??, and are not to be confused with
the n-gram features. Furthermore, 26 features are generated
as a representation for the 3 malware families collectively.
However, we notice that some of the features do not exist
for a given malware family, as shown in Table ??. As we gen-
erate behavioral documents of each malware sample upon its
execution, we obtain a set of characters transformed accord-
ing to the method described in section ?? with the average
length of document in characters as shown in Table ??. Fol-
lowing the procedure in section ??, we obtain the unique set
of n-grams (in a condensed representation) for each malware
sample. We try that for various values of the parameter n
(1 to 8 are shown in Table ?? and used in the rest of the
experiments later on).

While features selection algorithms exist to reduce the
number of features used in classifying malware samples with
reasonable accuracy, we avoid using any of those algorithms
for the following reasons. First of all, the goal of Chatter is
to enable the use of new features rather than testing which
subset of them perform best. Second, reducing the number
of features and trying o↵-the-shelf algorithms, like recursive
features selection, principle component analysis, and others,
is an orthogonal work that we leave as a future work.

Table 3: The number of unique n-grams actually
observed in each of the studied families.

n value 1 2 3 4 5 6 7 8
Zeus 24 102 250 481 943 1690 2638 3794

Darkness 24 103 243 461 875 1503 2266 3149
SRAT 25 105 247 460 877 1536 2337 3300

3.3 Evaluation Metrics and Procedures
To evaluate Chatter, we use evaluation metrics widely

used in the related literature [?,?]: the accuracy, precision,
recall, and F1 score. For a binary classification problem, in
which it is required to determine if a given malware sample
belong to the class of interest S, we define the following
possibilities: 1) true positives (Tp) is the number of samples
correctly identified by the machine learning algorithm to
belong to the class S. 2) false positive (Fp) is the number of
samples marked by the machine learning algorithm falsely to
belong to S. 3) true negative (Tn) is the number of samples
marked by the machine learning algorithm correctly not to
belong to S. 4) false negative (Fn) is the number of samples
marked by the machine learning algorithm falsely not to
belong to S (but they are actually in S). Using the four
outcomes and counts above, the precision, recall, accuracy,
and F1 score are defined as follows:

Precision =
Tp

Tp + Fp
, Recall =

Tp

Tp + Fn
,

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
,

F1 score = 2 ⇥ precision ⇥ recall

precision + recall
.

For all experiments we run to evaluate Chatter, we use the
k-fold-cross-validation method with k = 10. In this method,
the input dataset is divided into k-folds, where k � 1 folds
are used for training the machine learning algorithm and the
remaining fold is used for testing. The process is repeated
k-times by changing the testing dataset among among the
k possible folds. At the end, the result—in terms of the
true and false (positive and negative)—is computed as the
average over the k runs. We set k to 10 because this is the
widely used setting in related contexts.

3.4 Machine Learning Algorithms
In the evaluation of Chatter, we use three machine learn-

ing algorithms: the k-nearest neighbor (k-NN), support vec-
tor machines (SVM), and decision tree classifier. All of the
three algorithms are intended for binary supervised learning,
and are capable of identifying the membership of a malware
sample into one of two classes. In the following, we formally
and briefly review those algorithms
Support Vector Machines (SVM): Given a training set
of labeled pairs (xi, yi) for 0 < i  `, xi 2 Rn, and yi 2
{1,�1}, the (L2-regularized primal) SVM solves:

min
w,b,⇠

1

2
wT w + C

X̀

i=1

⇠i

subject to yi(w
T�(xi) + b) � 1 � ⇠i,

⇠i � 0

where the training vectors xi are mapped into a higher di-
mensional space using the function �, and the SVM finds

Design and Example

Results
• Datasets: Zeus (1025 samples, 50.74 avg chars),
Darkness (544 samples, 61.47 avg chars), and
SRAT (1130 samples, 52.74 avg chars).
• Evaluation metric: we use the accuracy, preci-
sion, recall, and F1-score.

• Precision =
Tp

Tp+Fp

• Recall = Tp

Tp+Fn

• Accuracy =
Tp+Tn

Tp+Tn+Fp+Fn

• F1 score = 2× precision×recall
precision+recall

• Parameters and settings: n used for the n-
gram is in the range of 1 to 8. A random set
with equal size is used against the given fam-
ily. Only network features are used (26 of them
across multiple families). The table below is
for augmented experiment with file-system arti-
facts. (below: chatter; above: +fs, order: dark-
ness, zeus, SRAT).

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y ●

● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

●

● ● ●

●
● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re ●

● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

A
cc

ur
ac

y

●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

P
re

ci
si

on

●

●
● ●

●

● ●

●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

R
ec

al
l

●
●

● ●

●
●

● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

F
−

1 
S

co
re ●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ● ●

● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

● ●
● ●

● ● ●
●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

Pr
ec

is
io

n ●

●
● ●

●

● ●

●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Precision

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

R
ec

al
l

●
●

● ●

●
●

● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) Recall

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

Ac
cu

ra
cy

●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Accuracy

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

F−
1 

Sc
or

e ●

●
● ●

● ●
●

●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) F1 Score

Figure 3: Performance measures for the Zeus malware with network artifact classification using Chatter.

Table 4: Precision, recall, accuracy and F1-score for selected n-gram values.
n-grams 1 4 8
Algorithms P R A F1 P R A F1 P R A F1

Z
eu

s k-NN 80.79 79.68 81.48 79.97 79.07 83.90 82.25 81.35 78.29 78.17 79.64 78.09
SVM 67.41 82.67 72.69 73.92 75.96 80.47 78.67 77.84 80.41 82.87 82.45 81.50
Decision Trees 80.14 80.90 81.74 80.42 81.13 81.82 82.67 81.35 80.82 82.82 83.02 81.77

D
a
rk

. k-NN 76.22 73.13 76.08 74.56 80.40 71.52 77.70 75.57 71.38 69.58 71.65 70.20
SVM 76.82 32.38 62.24 45.05 78.18 71.32 76.45 74.35 76.62 76.36 77.22 76.27
Decision Trees 80.45 72.56 78.20 76.07 81.75 72.89 79.04 76.93 80.50 68.37 76.39 73.59

S
R

A
T k-NN 81.38 76.78 82.78 78.45 83.87 81.83 85.51 81.95 83.99 74.28 82.93 78.16

SVM 76.88 65.43 75.88 69.55 83.70 82.94 86.23 83.03 85.68 80.86 86.33 82.71
Decision Trees 85.16 81.11 86.44 82.60 88.28 81.65 88.01 84.45 86.13 78.92 85.54 81.85

tures. This latter condition can be fulfilled by running the
malware and the host in a limited (monitored) mode of op-
eration. This mode of operation can be further triggered in
Chatter by observing some suspected hosts for harboring
malware and this approach allows that host to be studied
directly.

As we discuss in the following section (§??), our system re-
quires maintenance to address evolution in behavior of mal-
ware samples. However, this maintenance is made easy given
the operational context of Chatter: researchers keep feed-
ing the system with new ground truth labels over its oper-
ation life-time. Accordingly, any change in behavior will be
capture in this ground truth, and the system can be easily
retrained to capture such changes.

Finally, while the accuracy provided by Chatter when
running in isolation is less than that provided by other sys-
tems; e.g., AMAL [?], the results are operationally accept-
able: oftentimes it is required to only weed out likely ir-
relevant malware samples in large repositories. Other false
alarms can be further captured and addressed using more
expensive techniques (e.g., by combining other features as
we have shown in section ??).

4.2 Limitations
There are several limitations of Chatter that would im-

pact its performance, which we address in this section.
Noised features: Like most behavior-based systems for
malware classification Chatter performs best when mal-
ware samples do not produce extra information to disguise
their behavior and fool the used machine learning algorithm.
Or even worse, often times malware samples evolve overtime,
and a real-world system for malware characterization and
classification needs to address this evolvability. However,
unlike systems that make use of exact matching of behavior
profiles, Chatter provides some flexibly in how matching
of malware samples are grouped together using the n-gram
features. A potential scenario for fooling Chatter is to gen-
erate a lot of irrelevant behavioral artifacts and plug them
in the behavioral profile in the hope of hiding what is rele-

vant and used for characterizing malware samples. To that
end, Chatter will generate potentially di↵erent features for
malware samples that potentially belong to the same fam-
ily. While the problem is generic and not limited to the
operation of Chatter, but rather any system that relies on
behavioral patterns in the execution of malware, we address
this issue in two ways:

• We emphasize that not all the features generated by
a malware sample need to be used to operate the ma-
chine learning algorithm: a feature selection algorithm
can be used to marginalize the impact of the noised
features on the operation of Chatter.

• We note that certain events in the operation of a mal-
ware sample that belongs to the malware family have
to happen in the same partial order, regardless to the
noise put in between of them. Our future work to ad-
dress this limitation is to derive features concerning
those events as they happen in their partial order by
filtering out the noise between them. While this might
seem to requires deep understanding of the studied
malware families and their expected behavior, signal
processing techniques might be utilized to perform the
task in less expensive way. For example, in the future
it is worth considering how statistical and information
theoretical characteristics of the n-gram features can
guide the process of deriving representative and mean-
ingful features. Notice that employing this partial or-
der of events would address the issue where a malware
sample will craft a legitimate-looking network artifact
to also add noise to the artifacts used for characterizing
it.

Adaptive malware: Also, as in other behavior-based sys-
tems, adaptive malware samples produce various behavior
profiles based on the environment they are run in and are
an issue for the operation of Chatter as well. Even worse,
some malware samples would not act upon running in a
sandboxed environment, which will be an issue if the sand-

References
[1] Aziz Mohaisen et al., Chatter: Behavior and

Order-based Features for Malware Classification
In Technical Report, VeriSign Labs, October 2013

1


