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Contribution
We propose designs to account for trust in so-
cial graphs used for Sybil defenses. We model
trust as modified random walks. Our designs
are motivated by the observed relationship be-
tween the algorithmic property required for the
defenses to perform well and a hypothesized
trust value in the underlying social graphs.

Designs to Account for Trust
Two designs weigh locality of trust, by weight-
ing the current or originator nodes high, while
two weigh differential trust among neighbors.
Lazy Random walks: each node captures the
random walk with probability α or a neighbor
uniformly with probability 1−α
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Originator-biased Random Walk: each node
over any path returns the random walk to its
originator with probability α or follow the nor-
mal protocol with probability 1− α.
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P′ = αAr + (1− α)P, π = [πi]
n×1. (2)

πi =

{
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Similarity-biased Walk: uses the cosine mea-
sure, a graph-theoritic similarity measure to de-
termine how close are nodes to each other
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iff vi ∼ vj (5)
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Interaction-biased Walk: similar to the
similarity-biased random walk, but weighing
the frequency of interactions between nodes.

P′ = D−1B, D = diag(
n∑
k=1

Bik) (7)

B’s entries are observed locally by each node
(interactions) and π is computed same as in (6).
Mixed Random Walks: use a combination of
the four different walks.

Defenses Model
• G = (V,E) is undirected and unweighted

social graph, where |V | = n, |E| = m.
• A is an adjacency matrix and P is a tran-

sition matrix defined as row norm of A.
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• Probability of walks landing on vi after
walk length of the mixing time of G is
proportional to deg(vi), i.e., π = [deg(vi)2m ].

Defenses Assumptions
• Fast mixing social graph: w = O(log(n)).
• Strong trust in social graphs.
• Hard to establish edges with Non-Sybil.
• Number of attack edges is limited.
• Sparse-cut between Sybil and Non-Sybil.
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Results
• We first measure the mixing time of differ-
ent social graphs, and observe a relationship be-
tween the mixing time and the level of knowl-
edge (trust) in the underlying graph.
• Then, we learn the impact of the different pro-
posed designs on the mixing time. We show that
parameters associated with the different mixing
models for characterizing trust control the mix-

ing time.
• Finally, we learn the cost of SybilLimit to ac-
cept all non-Sybil nodes in some social graphs,
under varying parameters for the different de-
signs. While these proposed designs characterize
trust, we show that trust—once it is incorporated
into the Sybil defense—comes at some cost. The
datasets (n/deg/µ) are below.

Physics 1(4.2K /3.23/ 0.998133) • Youtube (1.1M/2.63/ 0.997972) • Facebook (63.4K/12.87/
0.998133) • Facebook A (1M/20.35/0.982477) • Wiki-vote (7.1K /14.256/0.899418) • Livejournal
B (1M/27.56/0.999695 • Physics 2 (11.2K /10.50/0.998221) • DBLP (615K/1.88/ 0.997494) • Live-
journal A (1M/26.15/0.999387) • Physics 3 (8.6K/2.87/0.996879) • Enron (33.7K/5.37/ 0.996473).
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Originator walk (α = 0.05)
Lazy walk (α = 0.5)
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Measuring the mixing time of social graphs (small networks on left, large networks on right)

Accounting for trust impacts the mixing time (DBLP, Facebook, Physics, and Livejournal)

Incorporating trust into social graphs impacts Sybil defenses (Lazy, Originator—DBLP)

SN-based Sybil Defenses
Include SybilLimit, SybilGuard, SybilInfer, etc.

• Each node performs random walks and
sample/register last node in the walk
from “close to” stationary distribution.

• Suspects send their “authentic” last
nodes address to the verifier, which also
has a verification list.

• The verifier checks for collision in the ver-
ifier/suspect sampled nodes (probability
guaranteed by the birthday paradox).

• The attacker has a limited number of
nodes (edges) to register on.

• Probability of honest node’s random
walk ending in the dishonest region is
bounded by the walk length w.

• Guarantees: SybilLimit and SybilGuard
allow w Sybil identities per attack edge.

• The parameter w depends on the mixing
time of the social graph.
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