
Having your cake and eating it too:
Domain Name Data Networking (DNDN)

Eric Osterweil Craig Murray Aziz Mohaisen

Abstract
Named Data Networking (NDN) is a new architecture that
has been proposed for the Internet. Among its insights is the
realization that we predominantly use the Internet to access
data, and that the endpoints of communications are gener-
ally not our focus. Indeed, the Internet Protocol and the use
of IP addresses is just a means for delivery of content that
could be directly addressed and distributed in a more effi-
cient manner. However, the NDN architecture has several
design and deployment obstacles. First, it relies heavily on
caching among a dense population of NDN nodes, and yet
there will be very few nodes deployed initially. Second, it
uses an unstructured namespace in which names can be cho-
sen by content providers. This makes it challenging to dis-
ambiguate which provider is the actual authority for a name.
Third, NDN ensures security through cryptographic signa-
tures on all data packets, but NDN does not have an archi-
tecture for securely discovering and verifying the authentic-
ity of keys. These are just some of the barriers to widespread
adoption of NDN. We suggest that all of these problems (and
more) can be solved by implementing NDN on top of the Do-
main Name System (DNS). We propose Domain Name Data
Networking (DNDN) as a possible way to facilitate use of
NDN within the existing infrastructure. In this model, DNS
becomes a substrate from which NDN can leverage essential
components. We show the feasibility of DNDN, we evalu-
ate the benefits if it were deployed, and we show a simulated
sample application that uses it. DNS is one of the Internet’s
most operationally well understood, ubiquitous, and resilient
protocols. Why not use it to gain the benefits of NDN’s new
design features and keep the stability of the Internet’s exist-
ing infrastructure?

1. INTRODUCTION
Information Centric Network (ICN) has recently been ad-

vocated as a new networking paradigm to address various
shortcomings in today’s Internet, including security and per-
formance. Two prominent architectures that use this paradigm
are Content Centric Networking (CCN) [15] and Named Data
Network (NDN) [27]. Both architectures are built on the
premise that content is fetched by names, rather than by lo-
cation, and that pervasive caching is deployed to optimize

performance and reduce latency.
For example, when a user is interested in content previ-

ously served to another user on the same network path, the
interest is fulfilled from a near-by cache. This design choice
is considered a great advantage in reducing overall content
retrieval latency [15, 27]. Names in NDN (and CCN; collec-
tively related to as ICN) are structured hierarchically. Secu-
rity is facilitated by per-packet signing at the data producers
and these signatures are verified by the consumers (c.f. §2).

However, to realize the NDN architecture in a future Inter-
net, several issues must be addressed: i) name management,
ii) operational caching, iii) routing, and iv) deployable secu-
rity and scalability [5]. These issues are tangible obstacles to
seeing broad deployment of NDN. To this end, we propose
to jump-start NDN deployment by leveraging the existing
Domain Name System (DNS) [19] infrastructure with an ar-
chitecture we call Domain Name Data Networking (DNDN).
DNS was designed as a distributed database [19], but has not
(as of yet) been used to transmit actual data content. How-
ever, we argue that it can and should. In this way, we imagine
that the old Internet architecture can become the substrate for
a new Internet architecture. Our intuition is that i) the DNS
already gives collision-free namespace, ii) DNS caches are
already richly deployed (in numbers and topological diver-
sity), [2, 23] iii) DNS’ namespace is delegated along author-
itative boundaries to canonical resource holders, and iv) the
DNS Security Extensions (DNSSEC) [6] already give op-
erational secure key learning, source authenticity, integrity
protection, and secure denial-of-existence of DNS data. [22]
With this approach, we gain the operational stability and
knowledge of more than 30 years, and the novel new facili-
ties needed for the next 30 years to operate DNDN 1.
Contributions: In this work, we introduce the case for DNDN,
a realization of the NDN paradigm on top of the DNS. We
advocate various design aspects provided in today’s DNS
that can enable various functional properties advocated in
NDN, and can provide suitable bootstrapping opportunities
for the architecture. We discuss challenges towards realiz-
ing such design aspects, and describe a potential ways of
addressing them, including a preliminary evaluation.

1In the rest of this paper, we use NDN to exemplify architectures
that have such features. We note, however, that our contribution
may not require NDN and should apply to ICN generally.

Unlike NDNS [4], which builds a DNS-like system for
NDN that implements its naming characteristics, our work
in this paper builds NDN in the existing DNS with little
changes to the way DNS operates and does naming.
Organization. The rest of this paper is organized as follows.
Preliminaries are introduced in §2. The case for DNDN is
made in §3. We introduce the design concepts and evaluation
of DNDN in §4 and §5. A discussion is provided in §6 and
concluding remarks are made in §7.

2. PRELIMINARIES

2.1 Named Data Networks
Named Data Networkign is a growing research area. We

direct the interested reader to [27] for further details on the
design aspects of NDN. Here we review key components re-
lated to DNDN. In NDN, content is fetched by its name [27].
A NDN network consists of routers, where each router has a
cache that acts as a content store, and edge routers are con-
nected to users and origin servers. An interest packet in NDN
encapsulates a request for content by its name. An origin
server is a server that originates contents to be served in the
network, thus fulfilling interests. The contents (data packets)
may or may not be cached in the network. In NDN, content
is forwarded back to a user on the same path as it is requested
by that user, and PIT (pending interest table) at each NDN
router records which interest is not fulfilled yet. A face in
NDN is the access point (e.g. a port) at which data is sent or
received in a router ([27]; §2.3).

Naming in the future Internet in general is still a topic of
a great debate [12], where both flat and structured names
are considered. In NDN in particular ([27]; §2.1), names
are assumed hierarchically structured. For example, video
produced by a producer prod and published by that pro-
ducer might be referred to as/prod/videos/demo.mpg,
where ‘�/’ delimits name components.

NDN assumes a data-centric security approach ([27]; §2.2),
contrary to today’s IP networks that leave it to devices to en-
sure security, often using a connection-centric security ap-
proach. In particular, each data packet in NDN is signed by
a producer’s private key and signatures are verified by the
potential consumer.

2.2 The Domain Name System
The DNS [19] maps domain name such as www.example.com

to service identifiers (such as IP addresses, email servers,
cryptographic certificates, and more). Virtually every Inter-
net application relies on looking up certain DNS data. In
this section we introduce a basic set of DNS terminology
which is used throughout the text, including resource records
(RRs), resource record sets (RRsets), and zones, followed by
an overview of the DNS Security Extensions (DNSSEC).

All DNS data is represented in the same data structure
called Resource Records (RRs), and each RR has an asso-
ciated name, class, and type. For example, an IPv4 address

for the domain name www.example.com is stored in an
RR by that name. A host with several IPv4 addresses will
have several RRs, each with the same name but a differ-
ent IPv4 address. The set of all resource records associ-
ated with the same name is called an Resource Record Set
(RRset). DNS resolvers query for RRsets. For example,
when a browser queries for www.example.com, the reply
will be the RRset with all the IPv4 addresses for that name.
Note that the smallest unit that can be requested in a query is
an RRset, and all DNS actions including cryptographic sig-
natures, discussed later, apply to RRsets instead of individual
RRs.

The DNS is a distributed database organized in a tree struc-
ture. At the top of the tree, the root zone delegates authority
to Top Level Domains (TLDs) like .com or .net. The zone
.com then delegates authority to create example.com, the
zone .net delegates authority to create example.net,
and so forth. In the resulting DNS tree structure, each node
corresponds to a zone. Each zone belongs to a single ad-
ministrative authority and is served by multiple authorita-
tive nameservers to provide name resolution services for all
the names in the zone. In DNS, the delegations are hier-
archical (from a domain to a proper subdomain), but not
necessarily sequential (e.g., they can skip a level). Every
RRset in the DNS belongs to a specific zone and stored at
the nameservers of that zone. For example, the RRset for
www.example.com belongs to the example.com zone
and is stored in the example.com nameservers; while the
RRset for www.example.net belongs to the example.net
zone and stored in the example.net nameservers.

Additionally, the types of RRs in DNS is an extensible
list ranging from IP addresses (A RRs) to cryptographic keys
(DNSKEY RRs) to text records (TXT RRs), and is actively
added to for application-specific types.

2.3 DNSSEC Overview
Security was not a primary objective when the DNS was

designed in mid 1980’s and a number of well known vulner-
abilities have been identified [9, 7]. DNSSEC [6] provides
a fairly straightforward cryptographic solution to the prob-
lem. To prove that data in a DNS reply is authentic, each
zone creates public/private key pairs and then uses the pri-
vate key(s) to sign data. Its public keys are stored in a type
of RR called DNSKEY, and all the signatures are stored in
another type of RR called RRSIG. In response to a query,
an authoritative server returns both the requested data and
its associated RRSIG RRset. A resolver that has learned the
DNSKEY of the requested zone can verify the origin authen-
ticity and integrity of the reply data. To resist replay attacks,
each signature carries a definitive expiration time.

In order to authenticate the DNSKEY for a given zone,
say www.example.com, the resolver needs to construct a
chain of trust that follows the DNS hierarchy from a trusted
root zone key down to the key of the zone in question (this
is shown in Figure 1). In the ideal case, the public key of

com

example.com

root
net

example.net Root

DNSKEY

DNSKEY

Resolver

Figure 1: Resolvers preconfigure the root zone’s KSK (its
public key) as a trust anchor and can then trace a “chain
of trust” from that key down the DNSSEC hierarchy to
any zone’s key that they have encountered.

the DNS root zone would be obtained offline in a secure
way and stored at the resolver, so that the resolver can use
it to authenticate the public key of .com. The public key
of .com can then be used to authenticate the public key of
example.com.

3. THE CASE FOR DNDN
As a future Internet architecture, NDN’s promise is com-

pelling: native content caching embedded in the network’s
substrate to reduce latency, communications that focus on
named content rather than service endpoints to reduce con-
gestion, and primitives to support intrinsic security of all
data [10]. However, the deployment of any new Internet
architecture faces significant hurdles, including achieving a
critical mass. Without enough nodes supporting the new
technology, there will be insufficient benefit to justify ex-
pense of time and materials. Simply put, without enough of
a network, there is no network effect. However, in the search
for a new Internet architecture, we may not have to replace
the old one. DNDN is an architecture that uses the old archi-
tecture as a substrate to enable the new one.

The future Internet will not be built in a vacuum. It must
be built considering the context of today’s Internet [12, 10,
20]. Not only are there suggestions that we should build on
what already works, but market forces will likely mandate
that we use legacy systems in any future architecture.

In this proposal, we suggest that we can jump-start NDN
deployment by leveraging the existing DNS infrastructure.
By using DNS as a substrate for NDN we can project its
model of named data into the distributed name-based database
that DNS already forms. Based on our observation that DNS
can hold actual data, we gain the benefit of years of devel-
opment, rich tool-sets, testing, and operational experience,
as well as functional benefits that are analogous to the de-
sign principles of NDN. The DNS has evolved over the past
30 years to become a highly salable, resilient, and available
global system. DNS caches are richly deployed; large in
numbers and broad in topological diversity, as evidenced by
the Open Resolver Project [2]. While these servers are often
maligned as a blight on the Internet [2], they serve as evi-
dence that ubiquitous DNS caching is not only achievable,

but is actually available today. NDN is an ideal technology
to benefit from this wide deployment and caching capacity,
and to take today’s Internet into tomorrow.

What is in a name? A rose by any other name could be a
thorny mess. While the concept of naming data is appealing,
the devil lies in the details. How will the namespace of the
future Internet be managed? There will have to be a system
in place to prevent name collision and the delegation of nam-
ing authority (after all, a rose from a Montague might not be
the same as a rose from a Capulet). The DNS today provides
a collision-free namespace to build on, and approaches to re-
mediate various layer seven name ambiguities are even well
explored[14, 16]. This is further motivation to leverage the
DNS namespace infrastructure for use in NDN.

Finally, whatever the next Internet architecture will be, it
must have a robust system for verifying its data. If we de-
sign a system that caches content extensively, we must in-
clude mechanisms for ensuring the authenticity of the cached
data. DNSSEC is an operational system that gives secure key
learning, source authenticity, integrity protection, and secure
denial-of-existence of non-existent data. DNS offers the very
facilities that NDN needs from a substrate, and DNDN illus-
trates how the new architecture can be built on one of the
Internet’s oldest core protocols.

4. ARCHITECTURE
The architecture of DNDN has four general components:

the method by which the NDN namespace is mapped into
DNS, the transcoding of NDN data into DNS RRsets, the
logic used to establish faces (or peer) with other entities in
DNDN, and the event logic that manages the mis-match be-
tween NDN’s persistent queries and DNS’ transactional query
and response model.

4.1 Namespace
One of NDN’s core enhancements has been to lift the In-

ternet’s thin waist from IP to names [1]. NDN names offer
an open-ended extensibility, while DNS imposes more or-
thodox limitations on domain names. DNDN’s architecture
reconciles these using a set of mapping primitives.

The first step in our mapping method is to reverse the order
of labels. The most significant labels in an NDN name are
the left-most and in DNS domain names the most significant
are the right-most. So we reverse them.

Next, DNDN’s mapping method reconciles NDN’s arbi-
trarily long names with DNS’ domain name length limit by
collapsing multiple NDN labels into collision-free hashes.
The initial architecture uses truncated SHA256 for that. We
collapse multiple labels only from the middle of the name,
thereby preserving the least-significant labels for any control
labels (such as version information, segmentation informa-
tion, etc.) We note that in certain circumstances, content au-
thors may wish to use more than one hash label in DNS, in
order to manage their zone sizes and response sizes (but we
discuss this further in §6.1. Our transcoding scheme allows

DNDN content at these DNS names to be DNSSEC signed
and secured by simply including the content in a standard
authoritative DNS name server.

At a high-level, NDN names such as:
/com/cnn/headlines/2015/. . ./〈ver〉/〈seg〉
map to DNS names like:
〈seg〉.〈ver〉.〈hash〉.headlines.cnn.com

We discuss these issues further in §6.1

4.2 Data
Data in NDN is broken down into Type Length Values

(TLV) data structures. Using TLV, Binary Large OBjects
(BLOBs) can be segmented into segments of TLVs for trans-
port. In DNDN, data will be transported in DNS RRsets,
and secured with DNSSEC signatures and keys (RRSIG and
DNSKEY records). The limitations in DNS message and RRset
sizes suggest that content authors will want to segment data
into RRs and RRsets that match the operational needs of their
zone sizes and network capacities [22, 3]. For this reason,
DNDN collapses TLV data structures into a single BLOB,
and then re-segments the BLOB into RRsets. The decision
of how to choose segment sizes is discussed further in §3.

4.3 Peer Logic and Routing
The connectivity model of DNDN is slightly simplified

from the approach taken by native NDN nodes. When as-
signing faces to a DNDN node, the primary goal is to offer
rich caching. In DNDN, authoritative data is initially located
on a DNS zone’s authoritative name servers. The DNS cache
becomes the content store for DNDN. Once fetched for the
first time, DNDN data can persist in any standard DNS cache
for the lifetime specified by the DNS TTL field. As a re-
sult, DNDN nodes are configured with a primary caching
DNS recursive resolver, and augmented using other avail-
able caching recursive resolvers.2 When an interest is issued
by an NDN application and received by a DNDN node, the
cache of that node is checked for the named content. If the
content is not in the cache, the list of peer DNDN caches is
queried over DNS with the Recursion Desired (RD) bit set
to 0. This informs these peer nodes that the query should
only be answered if it is already in cache. If none of the
caches have the requested data, the primary caching recur-
sive resolver is instructed to fetch it. In each case, the query
instructs caches to use DNSSEC checking (via the AD bit),
and optionally ask to have all verification information sent to
the DNDN node (by setting the CD bit). This allows the local
cache to contain data for other peers in the DNDN network
in the future, while being able to directly retrieve content af-
ter a cache miss. In the event an NDN interest is scoped, the
final step of querying the authority can be omitted.

4.4 Event Model
The final component of the DNDN architecture is the event

2Our Evaluation §5 will illustrate that even without investing in a
new deployment, the number of DNDN nodes is already millions.

Unix
Domain

TCP DN
S

ndn-cxx

DNDN

Figure 2: DNDN is implemented as a transport face
(DNS) within the current NDN architecture.

model. The disconnect between NDN’s pending interests
and DNS’ query and response model is an important gap. For
example, if an NDN node queries for /something/DNE
that currently Does Not Exist, and a producer later produces
it, data is sent back to the consumer. In DNS, the query for
DNE.something is simply given an NXDomain response,
indicating that it does not exist. In DNDN, such cases are
handled by silent retries at specific intervals until an ultimate
timeout. This is an example of an imperfect alignment be-
tween the two models, but we leave it to future work to re-
solve whether this is a reasonable approximation.

5. EVALUATION
To evaluate the feasibility and performance of DNDN, we

have implemented a proof of concept within the existing NDN
codebase, and conducted simulations of varying preliminary
deployment scenarios.

5.1 Proof of Concept
One of the existing implementations of NDN is called the

NDN Forwarding Daemon (NFD), which uses an extensi-
ble NDN library called ndn-cxx, written in C++. In this
framework, various transport protocols are encapsulated so
that NDN faces can remain agnostic of how communications
are transmitted over different network substrates. Currently,
TCP and Unix domain sockets are supported, and we aug-
ment this with a DNS transport face.

Figure 2 illustrates where DNDN is implemented within
the current framework. We implement DNDN as a trans-
port module so that NDN daemons can maintain their cur-
rent logic and capitalize on DNDN by simply configuring
the right kind of face with a minimal disruption to normal
NDN functionality

5.2 Network Simulations

Table 1: Sample DNDN deployments results.

DNDN % of # of % Full Hit Total
Nodes ORRs Peers Peers Ratio B/W
601,238 10% 0 N/A 0.0 36.07 TB
601,238 10% 100 95.73% 7.98 4.52 TB

Another critical question about DNDN is how well its sim-
plified caching model works? To evaluate this, we imagine
an NDN application, which we call NDNews, that lets news
sites create small 30 minute videos (60 MiB in our calcula-
tions) of news events and allows NDN clients to watch them.
To simulate this, we use the Internet’s Autonomous System
(AS) topology that is calculated by the Internet Research Lab
(IRL) [21], a large scale measurement of Open Recursive Re-
solvers (ORRs) maintained by the Open Resolver Project [2],
and the AS locations of a candidate new source’s DNS name
servers (CNN.com). Our data set includes 50,485 ASes, and
6,012,387 ORRs.3

With this setup, we simulated 10% of the OORs acting as
DNDN nodes, where each DNDN node attempts to choose
100 local (in the same AS) neighbor caches to act as peered
faces. We also used a configuration of 0 peers to be a base-
line for content fetching without caching (i.e. native behav-
ior of video browsing today). We then re-ran this same setup
multiple times during which we assigned random wake-up
times to each DNDN node and measured the amount of net-
work bandwidth consumed. The results of these experiments
are summarized in Table 1. Of note is % Full Peers: not
every AS in the ORR set has 100 neighboring IPs, so only
some of the DNDN nodes are able to have full peer lists.
Nevertheless, the average hit ratio in our simulations shows
the substantial gains, even with this simplistic caching model
(only at the edge instead of including caching deeper in the
network—following the insight in [10]).

According to our simulations, DNDN saves substantial net-
work overhead by reducing content fetching from 36.07 TB
to 4.52 TB. To compound this, recent measurements [18]
suggest that there has been a relatively constant AS diam-
eter for over 10 years (despite large growth in the Internet).
As such, the network savings (as modeled by bandwidth per
AS hop) could actually be 〈Difference in Traffic〉×〈Average
number of hops〉 = (36.07− 4.52)× 3.5 = 110.425 TB.

6. DISCUSSION
The deployment of DNDN does not come without certain

design challenges.

6.1 Namespace Management
A main property of DNS is that it provides strong guaran-

tees for collision avoidance. To ensure that same avoidance
3Not all ORRs discovered by [2] function properly. We have pruned
our evaluation to only use well functioning ORRs.

in DNDN, we argue that by design one should keep the top n
level domains reserved for authority and collision avoidance.
For example, an NDN name /com/cnn/headlines/...
would resolve to headlines.cnn.com in DNDN.

We note that NDN names are arbitrarily long by nature,
potentially too long for DNS. Thus, we suggest compressing
multiple NDN labels into a single DNS label or a hash. How-
ever, a single hash may make the zone content too flat, and
the resource record sets (RRsets) too big, which may affect
the operation of DNDN. Thus, figuring out the right number
of labels, including various user-specified labels, is needed.

One approach to address this issue is to use multiple hashes,
which could also be used to manage delegation depth, en-
sure that RRset sizes can be managed while also aggregating
multiple NDN labels, and to allow high-level user-specified
description in names. For example, the above example of
converting the NDN name to a DNDN name would include
<hash>.<hash>... before the record name. Finally, we
suggest appending segmentation and versioning labels for
explicit requirements (i.e., appending <seg>.<ver> to the
resulting domain name for the transformation from the NDN
name) and to meet application-specific needs.

6.2 Data Management and Transport
As shown in §4, data in DNDN is transported from caches

or origin servers hosting the contents to hosts requesting this
data in today’s DNS RRsets. Furthermore, the security of
such data is addressed by DNSSEC: DNDN uses the RRSIG
to verify contents of RRset.

To cope with the challenge of representing and transport-
ing DNDN data in DNS, we identify two options: using an
existing record type or creating a new one with its specifica-
tion of representation. For the first approach, we could use
the TXT record type, which is today used for transporting
opportunistic encryption material, sender policy framework
(SPF) material, and DNS service discovery material. The
main advantage of this approach is that it would require no
modifications to the existing DNS infrastructure and record
types. The other approach for representing data is to intro-
duce a DNDN record type, which is specifically used for rep-
resenting and transporting DNDN data. As active members
of the IETF, we advocate creating application-specific record
types over using a generic types.

We note that today’s DNS responses allow up to 4096
Bytes (4KiB) responses, although in reality there is no reason
why responses should not exceed such size. Furthermore, to-
day’s DNS deployment is facilitated by a wide use of UDP as
a transport protocol, where the fraction of TCP traffic seen at
a large top-level domain registry, such as .com is just below
1%. However, to enable DNDN with large TXT or DNDN
records without having to deal with issues like fragmenta-
tion, we argue that TCP is used as the means of transporta-
tion from the servers hosting DNDN data. The rest of DNS
need not change from UDP. When enabled, a maximal mes-
sage size 65535 (64KiB) Byte is allowed. We further note

headlines.cnn.com

that TCP is already of particular and independent interest in
the Internet research community today to allow stateful con-
nections that facilitate security and privacy [28].

6.3 Connectivity Issues
Several general connectivity-related issues in DNDN arise,

which may affect the deployment of our architecture. In par-
ticular, a simplistic deployment elides the need for a more
elaborate routing scheme, while focusing on data resolution
and locality of caching. The choice of peer caches is an im-
portant one. Issues ranging from locality [5] to liveliness to
responsiveness to trustworthiness [11] to robustness of large
data sets [24] and more may be critical in deciding which
caches to configure as neighboring faces [25], or how and
where caching should be performed [10]. While the prior
work addressing those issues in the general NDN platform
could provide clues for addressing those issues, we leave the
specific mechanism and policy around peer choice and main-
tenance in DNDN to future work.

We note, however, that various well-understood and widely
deployed operational practices in DNS could play a signif-
icant role in enhancing DNDN’s performance. For exam-
ple, while locality of caching (as we simulated in §5) is a
desirable feature to reduce latency in DNDN, the existence
of large DNS forwarding caches (which aggregate queries
from downstream recursive resolvers and cache for them)
could improve cache hit rates and trustworthiness and effi-
ciency. Those caches correspond to proxies [8, 17] (or hid-
den DNS servers [23]) in many enterprise and open recursive
resolver settings. Those and other similar efforts on mea-
sures to improve DNS trustworthiness [13] and on resolver
selection [26] could guide our future work.

6.4 Hybridizing DNDN and Native NDN
Among the potential security issues in DNDN is interac-

tions between DNDN’s collision-free namespace and native
NDN nodes that author content under the namespace that ex-
ists in DNS. For example, if a native NDN author places con-
tent at /com/example/chat, which is not affiliated with
the DNS zone chat.example.com, then there will be a
name collision. A DNDN node will reject the data, but a na-
tive NDN node (which may not be subject the DNDN’s rules)
will allow he collision. This issue, of hybridizing the two ap-
proaches, is fundamental and suggests that the two types of
networks (DNDN and native NDN) not be hybridized. We
leave this issue to future work.

7. FUTURE WORK
In this work we have outlined a synergy between the future

Internet architecture of NDN and the current Internet archi-
tecture, and have proposed a design to capitalize on both of
them: Domain Name Data Networking. We implemented a
proof-of-concept of DNDN, simulated its performance, and
have outlined a number of challenges. Specifically, we have
found evidence that reusing the DNS cleanly addresses sev-

eral specific open challenges faced by NDN, and our sim-
ulations show almost a factor of eight reduction in network
utilization, over conventional content streaming.

In the future, we plan to investigate the open issues we
have outlined above, using a full implementation and de-
ployment of DNDN, and investigate its performance in ac-
tual deployment. We believe that the path forward, for the
future Internet architectures, may be to strive for greenfield
advantages on top of solid operational staples.

8. REFERENCES
[1] Named data networking: Motivation & details.

http://named-data.net/project/archoverview/.
[2] Open resolver project.

http://openresolverproject.org/.
[3] Availability problems in the dnssec deployment. In RIPE 58, 2009.

http:
//www.ripe.net/ripe/meetings/ripe-58/content/
presentations/dnssec-deployment-problems.pdf.

[4] A. Afanasyev. Addressing operational challenges in Named Data
Networking through NDNS distributed database. PhD thesis,
University of California Los Angeles, 2013.

[5] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang. Snamp:
Secure namespace mapping to scale ndn forwarding. In Proceedings
of 18th IEEE Global Internet Symposium (GI 2015), 2015.

[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol
Modifications for the DNS Security Extensions. RFC 4035, March
2005.

[7] D. Atkins and D. Austein. Threat Analysis of the Domain Name
System (DNS). RFC 3833, August 2004.

[8] R. Bellis. Dns proxy implementation guidelines. RFC 5625, August
2009.

[9] S. M. Bellovin. Using the domain name system for system break-ins.
In Proceedings of the Fifth Usenix Unix Security Symposium, pages
199–208, 1995.

[10] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker. Less pain, most of the
gain: Incrementally deployable icn. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 147–158. ACM, 2013.

[11] C. Ghali, G. Tsudik, and E. Uzun. Network-layer trust in named-data
networking. Computer Communication Review, 44(5):12–19, 2014.

[12] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox. Information-centric networking: seeing the forest for the
trees. In Proceedings of ACM HotNets, 2011.

[13] A. Hubert and R. Van Mook. Measures for making dns more resilient
against forged answers. RFC 5452, 2009.

[14] ICANN. Guide to name collision identificationand mitigation for it
professionals.
https://www.icann.org/en/system/files/files/
name-collision-mitigation-01aug14-en.pdf, August
2014.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. Braynard. Networking named content. In Proceedings
of ACM CoNEXT, pages 1–12, 2009.

[16] B. Kaliski. Uncontrolled interruption? dozens of “blocked” domains
in new gtlds actually delegated. Between the Dots
http://blogs.verisigninc.com/blog/entry/
uncontrolled_interruption_dozens_of_blocked,
February 2014.

[17] D. Kaminsky. Explorations in namespace: White-hat hacking across
the domain name system. Commun. ACM, 49(6):62–69, June 2006.

[18] Mirjam Kuhne. Update on as path lengths over time.
https://labs.ripe.net/Members/mirjam/
update-on-as-path-lengths-over-time.

[19] P. Mockapetris and K. J. Dunlap. Development of the domain name
system. In SIGCOMM ’88, pages 123–133, 1988.

[20] A. Mohaisen, H. Mekky, X. Zhang, H. Xie, and Y. Kim. Timing
attacks on access privacy in information centric networks and

http://named-data.net/project/archoverview/
http://openresolverproject.org/
http://www.ripe.net/ripe/meetings/ripe-58/content/presentations/dnssec-deployment-problems.pdf
http://www.ripe.net/ripe/meetings/ripe-58/content/presentations/dnssec-deployment-problems.pdf
http://www.ripe.net/ripe/meetings/ripe-58/content/presentations/dnssec-deployment-problems.pdf
https://www.icann.org/en/system/files/files/name-collision-mitigation-01aug14-en.pdf
https://www.icann.org/en/system/files/files/name-collision-mitigation-01aug14-en.pdf
http://blogs.verisigninc.com/blog/entry/uncontrolled_interruption_dozens_of_blocked
http://blogs.verisigninc.com/blog/entry/uncontrolled_interruption_dozens_of_blocked
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-time

countermeasures. IEEE TDSC, 2015.
[21] R. V. Oliveira, B. Zhang, and L. Zhang. Observing the evolution of

internet as topology. In SIGCOMM, pages 313–324, 2007.
[22] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quantifying the

operational status of the dnssec deployment. In IMC ’08, 2008.
[23] K. Schomp, T. Callahan, M. Rabinovich, and M. Allman. On

measuring the client-side dns infrastructure. In Proceedings of the
2013 conference on Internet measurement conference, pages 77–90.
ACM, 2013.

[24] C. Wang, J. Li, F. Ye, and Y. Yang. Netwrap: An ndn based
real-timewireless recharging framework for wireless sensor networks.
Mobile Computing, IEEE Transactions on, 13(6):1283–1297, 2014.

[25] M. Xie, I. Widjaja, and H. Wang. Enhancing cache robustness for
content-centric networking. In INFOCOM, 2012 Proceedings IEEE,
pages 2426–2434. IEEE, 2012.

[26] Y. Yu, D. Wessels, M. Larson, and L. Zhang. Authority server
selection in dns caching resolvers. ACM SIGCOMM Computer
Communication Review, 42(2):80–86, 2012.

[27] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al. Named data
networking (ndn) project. Technical report, PARC, 2010.

[28] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and
N. Somaiya. Connection-oriented DNS to improve privacy and
security. In Proceedings of the 36th IEEE Symposium on Security and
Privacy, San Jose, Californa, USA, May 2015. IEEE.

	Introduction
	Preliminaries
	Named Data Networks
	The Domain Name System
	DNSSEC Overview

	The Case for DNDN
	Architecture
	Namespace
	Data
	Peer Logic and Routing
	Event Model

	Evaluation
	Proof of Concept
	Network Simulations

	Discussion
	Namespace Management
	Data Management and Transport
	Connectivity Issues
	Hybridizing DNDN and Native NDN

	Future Work
	References

