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ABSTRACT
We extend upon our earlier results measuring the mixing
time and advance our understanding of the problem in sev-
eral directions. We relate the mixing time of social graphs to
graph degeneracy, which captures cohesiveness of the graph.
We experimentally show that fast-mixing graphs tend to have
a larger single core whereas slow-mixing graphs tend to have
smaller multiple cores. While this study provides quantita-
tive and empirical evidence relating the mixing time to core
structure of social graphs, it also agrees with our previous
remarks on the potential relationship between the tight-knit
community structure and slow mixing social graphs.

Equipped with with these findings, we advance this vein
of research in several directions. First, we study several
heuristics to improve the mixing time in slow-mixing graphs
using their topological structures. Second, we study the im-
pact of link direction and link dynamics on the quality of
the mixing time. As anticipated, we find that dynamic social
graphs have time-varying mixing characteristics. Counter-
intuitively, we find directed graphs are faster-mixing than
the same graphs when considered without edge direction.

1. INTRODUCTION
Leveraging social ties for building trustworthy com-

puting services is becoming quite popular, and promises
many primitives and applications for communication
and security. Such applications and primitives bene-
fit from both the trust exhibited in the underlying so-
cial networks—which rationalizes collaboration among
nodes in the services built on top of it—and other al-
gorithmic properties, which support the argument for
the effectiveness of applications built on top of these
networks. While most applications and primitives built
on top of social networks share a commonality of pur-
pose in using trust in the underlying graphs (e.g., for
ensuring collaboration, rationalizing assumptions about
the nature of the underlying social graph and attackers’
capabilities, among many others), the algorithmic prop-
erties used in them differ greatly [30]. In the following,
we elaborate on some of these exploited properties and
their applications.

For example, the betweenness of nodes in social graphs—
which captures how well-situated a node is on the path
between other nodes—is used in [36] to build a Sybil
defense in mobile networks. The betweenness and sim-
ilarity are used in [6] for improving routing in delay
tolerant networks. The closeness and connectivity are
used in [13] for efficient content sharing and anonymity.
Connectivity and transitive trust are used in [26] for
improving Internet routing.

Another example of applications is social network
based Sybil defenses, where several designs have been
proposed to defend against the Sybil attack—an attack
in which a misbehaving user claims multiple identities
to influence the system’s behavior [8, 23, 29, 36, 40, 46,
50, 51]. In most of these designs and defenses, trust is
used to rationalize the difficulty of penetrating the so-
cial graph and establishing arbitrarily many links that
thwart the utility of the defense mechanism, whereas
the fast-mixing property is used to argue for the effec-
tiveness of the detection of Sybil identities, and to pro-
duce a feasible solution. The same algorithmic property,
of fast-mixing social graphs, is used in a closely related
direction for demonstrating the utility of social graphs
as good mixers for potential deployment of anonymous
communication networks on top of them [34]. The same
property is used in mobile networks for fast content dis-
semination [27].

Despite the importance of these properties to the us-
ability of such applications, less effort is spent under-
standing the quality of such properties in real-world so-
cial graphs, and even less effort is spent relating these
properties to other topological characteristics of social
graphs. Motivated by the necessity of the assumption to
operate these defenses, we have recently [33] measured
the mixing time in several real-world social and informa-
tion graphs and established that many social graphs are
slower mixing than believed in the literature. We fur-
ther demonstrated that the quality of the mixing time
required for operating Sybil defenses for the majority of
“honest” nodes in the social graph is less than assumed
in the literature. At the down side, we have shown
that some social graphs—despite the relaxation of the
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required quality of the mixing time—have poor mixing
characteristics which makes operating Sybil defenses on
top of them infeasible.

1.1 Main Contributions
In this work, we extend upon our previous results and

vastly advance our understanding of the mixing charac-
teristics of social graphs in several directions, each of
which is an interesting contribution in its own right. In
the first direction, we re-examine the mixing character-
istics of social graphs and relate the mixing pattern in
such graphs to their topological structure. In particular,
we relate the mixing time of social graphs to graph de-
generacy, which captures the cohesiveness of the graph.
We show that fast-mixing graphs are cohesive and con-
sist of a single core even after the decomposition of the
graph into its k-core [25] (a subgraph from the orig-
inal graph obtained by iteratively pruning node with
degree less than k). On the other hand, we show that
slow-mixing social graphs tend to be less cohesive where
they consist of multiple cores after the decomposition
of their graph to the k-core—for relatively small k.

In the second direction, we investigate the use of
graph structure to improve the mixing time of slow-
mixing graphs. Arguing that many of the existing solu-
tions in the literature for speeding up the mixing time
are impractical to the context of many applications pro-
posed on top of social networks, we consider several
heuristics for improving the mixing time of slow-mixing
graphs. Our heuristics are motivated by our findings
on the structure of slow-mixing graphs and use auxil-
iary edges to “wire” separate cores. We investigate the
potential of these techniques on the improvement of the
mixing time. Counterintuitively, we show that the im-
provement of the mixing time does not depend on the
number of edges used for connecting the separate cores
but rather the way they are used: adding a small num-
ber of edges between cores improves the mixing time
while adding more edges arbitrarily would reduce this
quality.

In the third direction, we investigate the mixing time
of directed graphs. Despite that many social graphs are
directed by nature, they are converted to undirected
graphs by completing their degrees [23, 50]. The main
claim made in this context is that the majority of di-
rected edges are in both directions between any pair of
nodes, except in a small portion of nodes that break the
symmetry of edges. However, the extent to which the
modification of graphs in that way would affect the mix-
ing time is not clear. Despite that the number of edges
that break the symmetry of direction in edges could be
as high as 50%, we unveil a surprising and a counter-
intuitive result by demonstrating that directed graphs
are as good mixing as their undirected counterparts. In
fact, we show two cases where undirected graphs are

slower-mixing than the same graphs when considered
with directions.

Finally, we formalize the problem of measuring the
mixing time in dynamic graphs from an application
point of view, and provide the sufficient mathemati-
cal tools to do that by extending upon the tools used
for measuring static graphs. Using these tools, and two
representative social graphs of dynamic structure, we
measure the mixing time of dynamic graphs. As antici-
pated, we show that the mixing time of dynamic graphs
is time-dependent. We further quantitatively measure
how the variation in the mixing time of dynamic graphs
would affect the operation of Sybil defenses.

1.2 Roadmap
The rest of this paper is structured as follows. In sec-

tion 2, we review related work to motivate for our paper
and multifold contributions. In section 3 we outline the
preliminaries by reviewing theoretical tools required for
measuring the mixing time in simple graphs, and show
motivational examples on the mixing patterns of some
real-world graphs. In section 4 we explore the relation-
ship between the mixing time of social graphs and their
core structures. In section 5 we explore methods for
improving the mixing characteristics of slow-mixing so-
cial graphs motivated by our findings on the structure
of these graphs. In section 6 we resolve the problem
of direction in graphs by discussing tools for measuring
the mixing time in a set of these graphs, and quanti-
tively compare that to undirected graphs. In section 7
we explore the mixing time of dynamic graphs and show
measurements of these graphs. Finally, in section 8 we
outline future work directions and draw concluding re-
marks.

2. RELATED WORK
Using social networks to build primitives and services

by exploiting social structures, social network proper-
ties, and trust in social graphs has been a growing area
of research, where several directions are investigated to
solve challenging problems. Social networks measure-
ments is yet another active area of research, where most
of the measured aspects in this paper have their share
of interest in other contexts. Finally, improving the
mixing characteristics of social networks, and formaliz-
ing the mixing characteristics of random walks in sev-
eral graph settings have been actively investigated in
the literature. Here, we elaborate on the relevant prior
work in the literature and emphasize how it differs from
our work. However, we limit ourselves to the domain
of applications built on top of social networks for Sybil
defenses.

2.1 Sybil Defenses Using Social Networks
While the idea of using social networks to improve

security in distributed systems has been investigated
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in [26] and [7], the first formal attempt to use social
networks for defending attacks was in SybilGuard [51],
which is uses fast-mixing graphs for Sybil detection.
The same work has been extended and improved in
SybilLimit [50]. Both SybilGuard and SybilLimit did
not measure the mixing time, which is necessary for
their operation. However, SybilLimit showed end-to-
end results demonstrating that real-world social graphs
mix well enough to support its requirements. Also us-
ing fast-mixing graphs, Danezis and Mittal introduced
SybilInfer, an inference mechanism for Sybil nodes de-
tection [8]. Tran et al. used the fast-mixing social
graphs, and a ticket distribution mechanism that ben-
efits from the mixing characteristics of social graphs, for
building a Sybil resistant voting system called SumUp [46].
Lesniewski-Laas et al. [23] used the same property to
build a Sybil-proof DHT system.

Based on the expansion which is related to the mix-
ing time, Tran et al. introduced GateKeeper [45] which
improves SybilLimit by reducing the number of sybil
introduced per attack edge to O(1). Using transitive
trust and implicit assumptions on mixing characteris-
tics of social graphs, Sirivianos et al. [40] and Mislove et
al. [29] introduced two filtering algorithms of unwanted
communications, both of which try to mitigate the im-
pact of Sybil identities.

Though authors of most of these designs performed
experiments to show insights on practicality of their de-
signs, none of them measured the mixing time or any
other property used for their operation directly from so-
cial graphs. Measuring these properties to understand
the quality required for the operation of these designs is
possible in most social graphs. This work is dedicated
for understanding the main used property, the mixing
time, under different scenarios.

2.2 Defense Analysis and Mixing Measurements
The use of assumptions in building Sybil defenses on

top of social networks—like the “fast-mixing”—without
verification motivated for investigating whether such
systems work on various social graphs or not. Viswanath
et al. [48] conducted an experimental analysis of Sybil
defenses based on social networks by comparing differ-
ent defenses (SybilGuard [51], SybilLimit [50], Sybil-
Infer [8], and SumUp [46]). They demonstrated that
different Sybil defenses work by ranking different nodes
based on how they are well-connected to a trusted node.
Also, they demonstrate that different Sybil defenses are
sensitive to community structure in social networks and
argue that community detection algorithms can be used
to replace the random walk based Sybil defenses.

In [33], Mohaisen et al. measured the mixing time
in several social graphs and demonstrated that social
graphs are slower mixing than believed in literature.
Furthermore, they noticed that mixing patterns in so-

cial graphs are associated with the underlying social
model, where social networks with confined social mod-
els, and strict trust properties, are slow mixing whereas
social networks with less strict trust properties are fast
mixing. This observation is used in [30] to account for
trust in social network-based Sybil defenses using mod-
ulated random walks.

Finally, Dellamico et al. [9] measured the mixing time
in four datasets (Epinion, OpenPGP, DBLP, and Ad-
vogato) using the sampling method and the model in
(3). Their work was motivated by evaluating the effec-
tiveness of a wide range of designs based on both the
mixing time and transitive trust. The authors claimed
that real-world social networks meet theoretical assump-
tions of the Sybil defenses without showing that on any
particular defense. The main conclusion made in [9] is
that the mixing time is not associated with any of the
known characteristics of the social graphs.

Our work in this paper is motivated by this part of
related work, where our work advances existing findings
vastly in many directions. We relate the mixing time
to graph structure, propose heuristics to improve the
mixing time based on this structure, measure the mixing
time for naturally directed graphs, and formalize and
measure the mixing time for dynamic graphs. In each
of these directions we show several interesting findings
based on our measurements.

2.3 Mixing and Graph Structure
To the best of our knowledge, there has been no

prior work in the literature on understanding the mixing
time of social graphs and relating it to graph structure,
though there has been several works on understanding
graph structural properties that could be indirectly re-
lated to the mixing time (such as diameter and clus-
ters) [21,22]. Thus our work is the first of its own type
to consider this problem. On the other hand, control-
ling the mixing characteristics of social graphs, by ei-
ther slowing them down or speeding them up, has been
considered in several papers including [3, 11,18,30,37]

In [37] it is shown that multiple random walks can
be used to speed up the mixing characteristics of so-
cial graphs. In [11], a method is proposed for sampling
multigraph, where it is claimed that these graphs are
faster mixing than their simple counterparts. In [18] a
heuristic is used to sample from graphs with respect to
a certain biased distribution while maintaining a fast
convergence rate to that distribution. In [3] a method
for speeding up convergence to stationary distribution
by providing nodes with random uniform jumps capa-
bilities to the entire graph—which is in essence simi-
lar to PageRank [35] for directed graphs—is proposed
and shown to speed up mixing characteristics of social
graphs. Finally, in [30] several modulated random walks
are proposed to control the mixing time (mostly by re-
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ducing it) by limiting walks to trusted links, which in
turn improves the operation of applications built on top
of these graphs.

While these designs are of a great value, we argue
that in many real-world scenarios they cannot be used
directly to control the mixing time of social graphs due
to their high cost and high risk to the utility of the in-
tended applications by the improved mixing time. More
details are in section 5.

2.4 Properties of Dynamic and Directed Graphs
Understanding dynamics in social and information

networks has been extensively studied in the literature [4,
12, 16, 17, 41–44, 47, 49]. For example, in [12] Golbeck
studied patterns of dynamics of social memberships and
relationships. In [16], Kleinberg studied cascading be-
havior in networks in general, which applies to social
networks under dynamics as well. In [4], Backstrom
et al. studied group formation under dynamics in so-
cial networks. In [42], Tang et al. studied community
evolution in dynamic social networks. In [43], Tan-
tipathananandh et al proposed a framework for com-
munity detection in dynamic social graphs.

In [49], Wilson et al. studied interaction graphs by
analyzing and comparing their structural properties,
and measured the implication of their structure on ap-
plications, including Sybil defenses (SybilGuard in par-
ticular). While the results show significant trend of dy-
namics, no measurements for how these dynamics quan-
titatively affect the mixing characteristic of the social
graph is provided. Similar to that, Viswanath et al.,
in [47], considered the (volume-wise) evolution of inter-
actions among users in Facebook, but did not measure
the mixing time of the time-varying social graph. In [30]
we measured the mixing time of an interaction graph
borrowed from [49] and compared it to the relationship-
based graph. We demonstrated that the former graph
is slower mixing than the latter one, but did not con-
sider the problem of measuring the mixing time of the
evolving graph at different times due to the lack of data
and tools.

Findings in most of these works are different in essence.
However, they convey similar conclusions by pointing
out the impact of dynamics on measured characteris-
tics in social graphs. Yet, none of these works consid-
ered how these dynamics affect the mixing time. In
this work, we go one step farther by formalizing time-
evolving graphs, define their mixing time, and measure
it in two real-world traces.

Measuring the mixing time in directed graph is not
explored yet too, though there has been some recent
theoretical efforts on formalizing the problem of fast-
mixing directed graphs, as in [15]. In this paper, as the
first result in that direction, we elaborate on formaliz-
ing the mixing time of directed graphs, show how to

measure it, and measure it for several directed graphs.
We compare the measurements to undirected graphs
derived by omitting graph directions.

3. THE MIXING TIME IN SIMPLE GRAPHS
Here we elaborate on the method used in measur-

ing the mixing time in undirected unweighted (simple)
graphs, which is simplest to consider. We begin by for-
malizing the model of these graphs, the mixing time,
and some motivational measurements borrowed from
our prior work in [33].

3.1 Graph Model and Uniform Walks
LetG = (V,E) be a simple undirected and unweighted

graph, where V is the set of vertices of G such that
|V | = n and E is the set of edges in G such that
|E| = m. For G, we define A = [aij ]

n×n as the ad-
jacency matrix, where

aij =

{
1 vi ∼ vj
0 otherwise

. (1)

(vi ∼ vj means that vi is adjacent to vj). Let the num-
ber of nodes in V adjacent to vi be deg(vi) (also com-
puted from A as deg(vi) =

∑
j aij). For G, we define

the stochastic transition probability matrix P = [pij ] of
size n× n where the (i, j)th entry in P is the probabil-
ity of transitioning from node vi to node vj in one step,
which is defined as follows

pij =

{
1

deg(vi)
vi ∼ vj

0 otherwise.
(2)

Let D = [dij ]
n×n be a diagonal matrix, where dii =

deg(vi), then the transition probability is computed as
P = D−1A.

3.2 The Mixing Time
Moving from a node to another on G is captured by

the Markov chain which represents a random walk over
G. A random walk of length t over G is a sequence
of vertices in G such that each node is selected at its
predecessor in the random walk following the transition
probability defined in (2). The Markov chain is said
to be ergodic if it is irreducible and aperiodic, where in
such case it has a unique stationary distribution π and
the distribution after t steps converges to π. The sta-
tionary distribution of the Markov chain is a probability
distribution that is invariant to the transition matrix P
(i.e., πP = π). The mixing time, T , is defined as the
minimal length of the random walk to reach the sta-
tionary distribution. More precisely, the mixing time
of a Markov chain on G parameterized by a variation
distance ε is defined as

T (ε) = max
i

min{t : |π − π(i)P t|1 < ε}, (3)
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where π = [deg(vi)/2m]1×n (for simple graph), π(i) is
the initial distribution concentrated at vertex vi, P

t is
the transition matrix after t steps, and | · |1 is the total

variation distance, defined as 1
2

∑n
j=1 |π

(i)
j − πj |. We

say that a Markov chain is “fast-mixing” [8, 23, 50, 51]
when ε = Θ( 1

n ), and T (ε) = O(log n). An interesting
result on bounding the mixing time for simple graphs
is provided in [39], and used in [33] for measuring the
mixing time of several real world social graphs. In short,
the method uses the second largest eigenvalue, µ for
bounding the mixing time. The closer µ is to 1, the
slower the mixing time, and faster otherwise.

Measuring the mixing time can be done using both
definitions [33]. However, since using the second largest
eigenvalue would account only for the poorest mixing
source in the social graph, measuring the mixing time
using the definition in (3) is highly desirable to express
the richer patterns of mixing, which represent various
initial sources in the social graph. In [33], we used this
observation to capture the variety of mixing patterns
in the same social graph. By varying sources of walks,
and sampling such sources from G, one can get a good
estimate about the distribution of the mixing across dif-
ferent sources, and thus the entire graph. By definition,
however, the mixing time of the graph is defined as the
mixing observed at the slowest source, thus every other
source in the graph has at least that mixing bound.

Table 1: Datasets of (undirected) social graphs
for which we measure the mixing time.

Dataset # nodes # edges

Youtube [28] 1, 134, 890 2, 987, 624
DBLP [24] 769, 641 3, 051, 127

Slashdot [22] 70, 355 459, 620
Epinion [38] 32, 223 342, 012

Physics 2 [20] 11, 204 117, 619
Gnutella [20] 4, 317 18, 742

Physics 1 [20] 4, 158 13, 422
Wiki-vote [19] 1, 300 36, 529

3.3 Motivational Initial Results
We borrow the same tools in [33], which are explained

section 3.2, to measure the mixing time of social graphs
and highlight the variability in mixing patterns across
different social graphs. Datasets used for this measure-
ment are shown in Table 1. For directed graphs (4
graphs in Table 3), we use the graph conversion method
in section 6.2.1. More details on these graphs are in [33]
and the corresponding citation along with each graph.
From each of these graphs, we select 1, 000 initial nodes
uniformly at random and compute the statistical dis-
tance ε as we increase the length of the random walk
t. At each time step we compute the basic statistics of
ε—the max, mean, and median. Results of this mea-
surements are shown in Figure 1, where the main con-

clusion [33] is that social graphs differ in their mixing
characteristics, independent of their size and density.
This conclusion can be made clear on Figure 1(b) (and
on 1(a) and 1(c) for max and median with slight dif-
ferences) by observing that while Gnutella’s number of
nodes is 3 times larger larger than that of Wiki-vote,
and while Wiki-vote is 3 times denser than Gnutella,
Gnutella still has better mixing characteristics than any
other graph we tested. Another example is by observ-
ing Youtube and Physics 2. Physics 2 dataset is three
times denser and 100 times smaller, yet it has same
mixing characteristics as Youtube. Other examples can
be easily driven from these results to demonstrate this
tendency.

An interesting question that rises now is: can we re-
late the mixing time in these graphs to their structure?
What is obvious is that simple characteristics, like den-
sity and size, are not be sufficient to answer this ques-
tion. Moreover, degree distribution, clustering coeffi-
cient, and others are not sufficient to understand the
mixing pattern as shown in [9]. It is intuitive to think
that fast-mixing graphs should have inherit property
in their structure, which captures their “connectivity”.
The connectivity itself is related to the mixing time.

For example, the conductance which is an indicator
of how well-connected is a graph gives a lower bound
of the connectivity and mixing time. However, comput-
ing the optimal conductance is NP-hard [2] and known
approximation is a O(log n)-approximation which runs
in O(n2) [1], making it expensive to compute for large
graphs. Also, even if the exact conductance is com-
puted, it would be used for reasoning about the lower
bound of the mixing time, but not the general pat-
tern in the graph. Combining that with our findings
in [33]—where we show that some slow-mixing graphs
according to the definition are slow due to a small por-
tion of nodes—would make the use of conductance to
understand the mixing pattern in social graphs of less
interest.

We explore another graph structure property that
could sufficiently distinguish slow-mixing from fast-mixing
graphs and show the pattern in their structure. More
importantly, this property can be computed in O(n)
for an exact solution, and can be done for large (million
nodes) graphs feasibly.

4. THE MIXING AND GRAPH STRUCTURE
It is unclear what properties slower mixing graphs

possess. Furthermore, it has been claimed in the liter-
ature that the mixing time do not relate to any of the
graph structure properties, making the mixing time in-
teresting in its own right [9]. Here, we re-examine this
statement by trying to understand the mixing charac-
teristics of social graphs and relating them to graph
structure. Indeed, we find that mixing characteristics
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Figure 1: A measurement of the mixing time of undirected graphs shown in Table 1 [Best viewed in
colors].

are very related to core structure of the social graph,
which captures graph cohesiveness. We show that fast
mixing graphs tend to have large single core, whereas
slower mixing graphs tend to dissolve into multiple cores.
Before getting into the details of our measurements, we
lay down the preliminaries by defining graphs cores.

4.1 Graph Cores and Node Coreness
Let G = (V,E) be a graph defined according to the

same model in section 3. For any k where 1 ≤ k ≤ kmax,
let Gk = (Vk, Ek) be a subgraph in G such that Vk = nk
and |Ek| = mk, and with the constraint that for all
vi ∈ V , the minimum degree of any node vj ∈ Vk is k.
Gk is said to be a k−core of G if, in addition to the
above condition, it is a maximal and connected graph.
If we relax the connectivity condition of the k−core,
we get a set of cores (potentially more than one) where
each of such cores satisfy the degree condition. Such
set of cores is represented as a (disconnected) graph
G′k = (V ′k, E

′
k) where |V ′k| = n′k and |E′k| = m′k. An

efficient algorithm for decomposing a simple graph to
its k−cores by iteratively pruning nodes with degree
less than k has the complexity of O(m) where m is
the number of edges in the graph [5]. We define the
node-relative (or normalized) size of G′k as n′k/n and
the edge-relative size of G′k as m′k/m. Similarly, for Gk

(the largest core) we define these normalized quantities
as n′k/n and m′k/m. Finally, for every node vi ∈ V , we
define the coreness c as the largest c s.t. vi ∈ Gc where
Gc is a c−core.

The definition of k-core and graph coreness [25] is
equivalent to many other interesting graph properties,
such as k-coloring [10]. In particular, a k-core graph is
(k + 1)-colorable, which does not only depend on the
density of the graph but the way edges are established
between nodes. Indeed, we show in section 5 that in-
creasing the density of the graph arbitrarily does not
necessarily improve the mixing time.

4.2 Measurements and Results
We use the same datasets shown in Table 1 to explore

the pattern of mixing time in social graphs by decom-

posing them to their core structures defined above.
For each of these graphs we use an off-the-shelf im-

plementation of the linear-time algorithm in [5] to com-
pute the k−core by relaxing the connectivity assump-
tion, which could lead to a disconnected graph. As k
increases to its ultimate value at which the graph dis-
appears (no node in it would have a c-coreness equal to
that ultimate k) we compute the following: (1) the num-
ber of cores in the k-core as we decompose the graph for
increasing k, (2) the size of each k-core as we increase k
normalized by the original graph size, and (3) the size
of each core in the k-core as we increase k. Among these
we are in particular interested in the first and second
metrics—the number and normalized total size of the
cores in the k-core. The results of these measurements
shown in Figure 2 and Figure 3. Notice that graphs
in Figure 2 are slow mixing and graphs in Figure 3 are
fast mixing, as shown in Figure 1. We make two obser-
vations on these results that capture their fundamental
differences.

First, the most obvious result by comparing Figure 2
to Figure 3 is that slow mixing graphs are less cohesive
whereas fast mixing graphs are more cohesive. This
cohesiveness is reflected on the number of cores in the
k-core of each graph as we increase k. Whereas slow
mixing graphs shown in Figure 2 are decomposed into
multiple cores as we increase k, fast mixing graphs resist
this decomposition and remain cohesive as we increase
k (shown in Figure 3).

Second, despite that slow mixing graphs are decom-
posed into multiple cores, these cores are relatively small
in size and the disappearance of the graph is very quick
in many cases as we increase k; see for example Fig-
ure 2(a)) and Figure 2(c). On the other hand, though
they have single core for an increasing k, they remain
mostly large in size and resist dissolution; see for ex-
ample Figure 3(a) and Figure 3(c). While the general
tendency in the decrease of the normalized graph size
as we increase k is reciprocal in the order of k, with the
difference being a constant among graphs, we observe
some of the fact mixing have a negative exponential or-
der of k (e.g., −c1ek + c2 for two positive constants c1
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(c) Youtube
Figure 2: A measurement of the core structure in a select of social networks, representing both the
number of cores in the k-core and the total normalized size as k increases.
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(b) Slashdot
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Figure 3: A measurement of the core structure in a select of social networks, representing both the
number of cores in the k-core and the total normalized size as k increases.

and c2). This latter case is illustrated in Figure 3(a)
where the decreases in the graph size is very small.

Limitations of the measurements: it is obvious
that our measurements only consider two extremes: fast
mixing graphs and slow mixing graphs but nothing in
between. In reality, graphs tend to have mixing patterns
that can be differentiated at average (or at maximum as
per the definition of the mixing time). These differences
are not captured here by the method we considered,
though we anticipate that this can be related to the two
metrics we have considered here. Further theoretical
and empirical investigation on this issue would be an
open direction to consider in the future.

Now that we established that there is a fundamental
difference between fast and slow mixing graphs in terms
of their structure, can we use these differences for slow
mixing graphs to improve their mixing characteristics?
We try to answer this question in the following section.

5. IMPROVING THE MIXING TIME
Now that we learned the fundamental difference in

structure between fast and slower mixing social graphs,
a natural question that rises is how to improve the mix-
ing time of slower mixing social graphs. Indeed, there
has been several successful attempts in the literature
to improve the mixing characteristics of Markov chains
on graphs [3, 11, 14, 15, 35, 39]. A well-known example
of such attempts is using teleportation probability [3]
(which borrows ideas from [35]). Each node in the graph
decides to follow the uniform random walk protocol by
selecting the next hop of the walk from its direct neigh-
bors uniformly at random, with a total probability 1−α,

or direct the random walk towards a uniformly chosen
node at random from the rest of the graph with a total
probability α. α is chosen to be small enough so as not
to deviate or change the overall random walk structure
and the final bounding or stationary distribution.

5.1 Limitations of Existing Solutions
While such scheme in theory would work and provide

the intended guarantees in improving the mixing time,
it comes at high cost in practice [3]. Imagine an ap-
plication like a Sybil defense that utilizes social graphs
for its bootstrapping, or an anonymous communication
system that uses social links, or information dissemi-
nation algorithm that forwards information over social
links, among many others. In each of these applica-
tions, users are limited by the number of nodes with
whom they share relationships, and if such “teleporta-
tion” process existed it would be with cost [3], which
would be high in many cases. Furthermore, incentives
may not exist for using such scheme at scale.

Another fundamental reason why such an algorithm
for improving the mixing time would not be practical is
that it improves the mixing time of nodes regardless to
their labels: honest or dishonest. This in fact is due to
that a node would not be able to verify whether a far
away node that forwards the random walk towards it
through those jumps is honest or not, since most likely
both nodes would be separated by multiple hops. In a
Sybil defense that uses social networks, while one would
be interested in improving the mixing time of the hon-
est region of the social graph, Sybil (dishonest) nodes
in the graph also would benefit from the teleportation
probability used for performing the uniform jumps in
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Figure 4: Mixing time measurement of Physics 1 before/after using the heuristics to improve its
mixing characteristics.
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Figure 5: Mixing time measurement of Physics 2 before/after using the heuristics to improve its
mixing characteristics.

the random walk, thus violating the basic assumption
of “sparse-cut” used in the defense for identifying dis-
honest nodes.

To this end, we outline two requirements for an ideal
algorithm that improves the mixing time in order to be
sufficient for this type of applications. First, such an
algorithm should improve the mixing time of the good
nodes in the social graph. Second, the same algorithm
should maintain the property of the social graph which
differentiates honest from dishonest nodes. As in above,
the algorithm should not improve the extent to which
random walks originated from the dishonest region mix
with the honest part of the graph.

5.2 Heuristics to Improve the Mixing Time
To achieve both goals, using the structural property

of slow-mixing social graphs, we propose several heuris-
tics. In the k−core graph decomposition process, a
graphGi is decomposed into itsGi+1 core by recursively
trimming all of its nodes with a degree less than or equal
to i. By doing so, we have observed that the graph Gi+1

is decomposed into multiple cores; one of these cores is
the major core (largest in size), while other cores are
relatively smaller in size (minor cores). While it might
be impractical, especially for smaller i, to postpone or
prevent the decomposition of the graph, one could try
several techniques, which can be turned into algorithms
to postpone or prevent the decomposition of the graph
into multiple disconnected components. One direct ap-
proach is to connect (or wire) disconnected cores in the

graph Gi to each other using auxiliary edges. This in-
deed leads to the following three scenarios.
Scenario X-1-C: wire a single node in each minor core
X with a node in the major core C using one edge. The
end vertices of added edges can be arbitrarily chosen.
By doing so, we can easily see that the graph will al-
ways have a single core at any time when increasing k.
The number of added edges is the sum of the number of
cores in each k-core, for all k, minus k itself (to exclude
major and single cores).
Scenario X-A-C: wire each node in each of the mi-
nor cores with a node in the major component, as we
increase k. Same as above, this would prevent produc-
ing multiple cores at time and the number of auxiliary
edges is bounded by the number of nodes in the minor
component.
Scenario X-A-A: wire all nodes in a minor core to
other cores in the graph, including both minor and ma-
jor cores. The number of auxiliary edges is bounded by
the order of the number of nodes in each k-core.

Notice that in each of these scenarios, we need to im-
prove the mixing time of the honest region of the graph,
so wiring a fixed number of honest nodes is ideally per-
formed using this method. In our study, and for the
limitations of our datasets, we consider that the entire
graph is of honest nodes to derive insight on the po-
tential of each method in improving the mixing time.
Extending this to the general case when labels of nodes
are given is straightforward. Furthermore, when con-
sidering wiring unlabeled nodes even if an edge is cre-
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ated between an attacker and an honest node, it would
have a limited impact on the number of Sybil identities
introduced per that attack edge, as in SybilLimit for
example.

The rationale of using auxiliary links is very natural
and simple. Such links can be either virtually created
between nodes if the application that uses the social
graph is centralized [46], or through link recommenda-
tions if this process is to be performed in a decentralized
application [50].

5.3 Results and Discussion
We select two of the slow-mixing and relatively small

social graphs to explore the potential of our heuristics.
These graphs are shown in Table 1 with their initial
statistics. The results of measuring the mixing time
after applying the heuristics in section 5.2 and for the
same settings of measurements as in section 3 are shown
in Figure 4 and Figure 5, respectively. The total number
of edges before and after wiring graphs according to the
methods in section 5.2 is shown in Table 2. On these
graphs we make following observations.

First of all, our simplest heuristic (X-1-C), which pro-
duces minimal effect on the graph density—122 edges
are added to Physics 1—significantly improves the mix-
ing time according to its definition as the maximal t
for a given ε and provides a correction on the slowest
mixing sources. This source, by definition, would have
the poorest mixing characteristics resulting in a poor
mixing in the overall graph as shown in Figure 4(a).
Similar improvement is obtained on average for mixing
time, as shown in Figure 4(b). The standard deviation
among all source for which the mixing characteristics
are computed is also being improved as the addition of
these few auxiliary edges regulate the structure of the
graph, as shown in Figure 4(c).

Second, the extent to which additional edges improve
the mixing time differs and depends on the initial mix-
ing characteristics of the graph. Graphs that mix better
than others (yet overall slow-mixing) tend to have less
number of cores which means less number of additional
useful edges are added to these graphs. For example,
X-1-C adds about 68 edges to the original Physics 2
graph, which translates into less effect on the mixing
time, as shown in Figure 5. The original graph already
mixes better than Physics 1 dataset (on average) and
the addition of these edges, though improves the slow-
est mixing sources (and the mixing of the graph as per
the definition), it does not improve a lot on average.
For the same reason, better improvement on average is
realized in Physics 1 as shown in Figure 4.

Third, by considering the number of added edges in
X-A-A in both datasets and the measured mixing time,
we observe that the addition of a lot of edges—despite
improving the density of the graph—does not improve

Table 2: The number of edges in the different so-
cial graphs before and after wiring them accord-
ing to our heuristic for improving their mixing
characteristics. The number of nodes is shown
in Table 1.

Dataset
Number of edges (total)

Orig. X-1-C X-A-C X-A-A

Physics 1 13422 13544 16482 25064
Physics 2 117619 117687 119082 121169

the mixing time. Indeed, we find that using this heuris-
tic would slow the mixing of these graphs down. One
potential reason for this behavior is that, as we add
more edges, random walks are diverted from traversing
other nodes in the graph by the additional edges con-
necting minor cores. This diversion is translated into
slower convergence to the stationary distribution.

6. THE IMPACT OF LINK DIRECTION
Many graphs in general, and social graphs in partic-

ular, are directed by nature. On the other hand, many
applications, including Sybil defenses, information rout-
ing, dissemination, and anonymous communication—
when built by exploiting social structures—require mu-
tual relationships which produce undirected graphs. How-
ever, when undirected graphs are used as testing tools
for these applications to bring insight on their usabil-
ity and potential, directed graphs are transformed into
undirected graphs by omitting directions. One claim
made in that context is the percent of added edges to
complete edges in both directions and make them undi-
rected is small (e.g., 10% of the total number of edges
among all nodes), and thus converting the entire di-
rected graph to undirected would not incur a major im-
pact on the graph structure. Whether this is the case
or not when it comes to the mixing time of the social
graph is not tested before, though the intuition is that
directed social graphs would have different, and likely
slower, mixing patterns than undirected graphs. Here,
we investigate this issue and qualitatively measure the
difference in the mixing time in both cases. Before in-
troducing the measurements, we elaborate on the way
to measure the mixing time in directed graphs and how
this differs from the undirected case.

6.1 Mixing Time of Directed Social Graphs
Conditions required for defining the mixing time on

undirected and directed social graphs, and the way used
for computing the mixing time, are slightly different.
While connectivity is required in both cases to define
the mixing time, the directed graph requires this con-
nectivity in the form of a strongly connected component
(SCC). In SCC there exists a path between every pair of
nodes in the graph. Computing the SCC of a graph in
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linear time can be done using Tarjan’s algorithm, which
we use in this work for different graphs.

Notice that obtaining the SCC from the directed graph
is necessary for defining the mixing time. From an ap-
plication point of view, if a design like a Sybil defense
is to be used on top of a directed graph then either that
graph needs to be SCC at the first place or to have a
fixation for the isolated components in that graph so
the entire graph is an SCC. One potential way for fix-
ing this problem to graphs that are not SCC in their
entirety is to use our mixing time improvement method
by wiring honest nodes in two disconnected components
so as to allow flows in the entire graph. We leave this
direction as a future work, and limit ourself to the SCC
in these graphs which could potentially not include all
nodes.

While the definition of the mixing time in both di-
rected and undirected graphs is still the same, the bound-
ing (stationary) distribution of Markov chains defined
on both graphs is different. In particular, unlike the
undirected graph where we can easily express the sta-
tionary distribution in a clean form in terms of node
degree as shown in section 3, the stationary distribu-
tion in case of the directed graph does not relate to
node degree (not the in-degree nor the out-degree).

6.1.1 Defining the Mixing Time for Directed Graphs
Similar to the model in section 3, let A = [aij ]

n×n

be the adjacency matrix of a directed graph ~G where
aij = 1 if an (directed) edge exists from node vi to
node vj (denoted by vi → vj), and 0 otherwise. Notice
that A is most likely asymmetric, unlike in undirected
graphs. Let deg(vi)

− be the out-degree of node vi. We
define the transition probability matrix P = [pij ] where
pij = 1/deg(vi)

− iff vi → vj and 0 otherwise. In a
clean matrix form, we get P = (D−)−1A, where D− is
a diagonal matrix with the ii-th element in it defined
as

∑
j aij . We define the stationary distribution as π =

JPt (which could be used for any connected graph),
where t → ∞ and J is a (1 × n)-vector in which all
entries are ones. As t grows, one would lose the sparsity
of P. Thus, computing the stationary distribution using
the method above is time and space inefficient.

6.1.2 Estimating the Stationary Distribution
Here we devise a method for computing a good esti-

mate of the stationary distribution without having to
modify the structure of P which leads to inefficiency.
We observe that, regardless of the initial distribution,
every walk on a strongly connected graph would ulti-
mately converge to the stationary distribution π. We
could further make the total variation distance between
the ideal stationary distribution and the accumulated
distribution of a random walk beginning from an ar-
bitrary node in the graph arbitrarily small. In other
words, given an arbitrary initial distribution π(∗) and

the matrix P, we can compute π
(∗)
` = π(∗)P` so as

|π(∗)
` −π|1 < δ where δ is very close to 0, for some large

walk length `.

The convergence of π
(∗)
` is guaranteed by the defi-

nition of the stationary distribution. Without know-
ing the (ideal) stationary distribution π, one could use

π
(∗)
` as an estimate for π, for large `. Such distribu-

tion is sufficient to measure a very close estimate of
the mixing time of the directed graph in an efficient
way, and to serve the purpose of our measurement in
understanding the difference between the mixing pat-
terns in directed and undirected graphs under similar
circumstances. In [32] we bound the error between these
measurements and ideal measurements to a small neg-
ligible constant. Furthermore, to speed up the con-
vergence to π, we begin from a uniform distribution
π(∗) = [1/n]1×n.

Notice that computing π
(∗)
` = π(∗)P` does not require

computing P`. We can iteratively compute π
(∗)
` using a

vector-matrix multiplications of π(∗) and P, where we
can benefit from the sparsity of P. In our measure-

ments, and to make π
(∗)
` a good estimate of π we set

` = 10, 000, for which we observe a steady distribution

with no significant difference between π
(∗)
`−1 and π

(∗)
` as

` increases.

6.1.3 Computing the Mixing Time
The remaining part of computing the mixing time of

directed graphs is straightforward. Given π
(∗)
` and P,

we define the mixing time as follows (similar to Eq. 3,
see Appendix A in [32] for bounding the error in this
definition).

T (ε) = max
i

min{t : |π(∗)
` − π(i)Pt|1 < ε},

Using the same method as when computing the mix-
ing time of the undirected graph, we begin by a sample
of initial distributions (of nodes) uniformly selected at
random and compute ε as above for an increasing t.
The mixing time as by definition is the maximum t for
a given ε, while other statistics such as the mean and
standard deviation are good indicators of the general
tendency of the mixing pattern.

6.2 Results and Discussion
Here we outline the main results and findings of mea-

suring the mixing time of directed graphs. We compare
our findings to the original method in which directed
graphs are converted into undirected graphs. This method
is previously used in [33] for measuring the mixing time,
and follows the same method of graph converging as
in [23] and [50].
6.2.1 Datasets and Data Preprocessing

Four different datasets are used for this measurement
and are shown in Table 3. Three of these datasets are
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Table 3: Datasets used for measuring the mixing time in directed graphs with their statistics. The
undirected graph is obtained from the SCC and the difference is computed between 2m of undirected
graph and m in directed graph.

Dataset
Original graph Largest SCC Largest SCC % Undirected (SCC) Difference

n m # SCC n m n (%) m (%) n m # edges percent

Slashdot 77, 360 905, 468 6, 724 70, 355 818, 310 90.94 90.37 70, 355 459, 620 100, 930 10.98
Epinion 75, 879 508, 837 42, 176 32, 223 443, 506 42.47 87.16 32, 223 342, 013 240, 520 35.16

Wiki-vote 7, 115 103, 689 5, 816 1, 300 39, 456 18.27 38.05 1, 300 36, 529 33, 602 45.99
Gnutella 10, 876 39, 994 6, 560 4, 317 18, 742 39.69 46.86 4, 317 18, 742 18, 742 50.00

previously used for measuring the mixing time in [33],
and represent social networks. The last dataset (Gnutella) [21]
is of a peer-to-peer system for file sharing, where nodes
are hosts and edges indicate that a host is connected to
another host.

The first dataset is of the Slashdot Zoo [22], in which
a directed edge between two nodes indicates that the
first node tags the second node as a friend. The second
dataset is of Epinion [38], a who-trust-whom online so-
cial network. An edge between two nodes indicates that
the first node has tagged the second node as a trusted
node. The third dataset is of wiki-vote [19], which con-
tains voting for wikipedia administrators promotion. A
link between two nodes indicates that the first node has
voted for the second node.

For each of these graphs, in order to satisfy the con-
nectivity condition required for measuring the mixing
time, we compute the largest strongly connected com-
ponent (SCC). The SCC of each graph and its relative
size compared to the original graph is shown in Table 3.
The largest SCC varies in size, and ranges from as low
as 18% of the number of nodes in the original graph (as
low as 38% of edges, as in Wiki-vote) to as high as 90%
of nodes (and edges, as in Slashdot).

We convert each of the SCC’s computed above from
the directed graph form to an undirected graph by com-
pleting the in- and out-degrees, and omit loops to obtain
simple graphs. The resulting graphs and their statistics
are shown in Table 3. While the same graph size is
maintained, the difference in the number of edges and
graph density between both forms of the graph is great,
and ranges from as low as 11% in Slashdot (agreeing
with previous results on other datasets such as Live-
journal experimented with in [23]) to as high as 50% as
in Gnutella and Wiki-vote.

6.2.2 Results and Discussion
Now we proceed to measure the mixing time for both

directed and undirected graphs. Same as in section 3,
we use the definition of the mixing time, with the sta-
tionary distribution properly computed for the different
graphs based on their types. For each graph, we mea-
sure ε—the distance between the stationary distribution
and the accumulated distribution after t steps. We re-
peat this process for each graph, and by beginning from

1000 different nodes as sources of initial distributions in
order to capture the pattern of mixing.

The results of the measurements are shown in Fig-
ure 6 and Figure 7. Figure 6 shows a comparison be-
tween the average ε among 1000 sources for varying t—
from 1 to 100, whereas Figure 7 shows maximum ε for
a given t among the 1000 sources, making t the mix-
ing time for that ε by definition. Contrary to what
is anticipated due to the difference in the graph struc-
ture introduced by omitting edge direction, we find that
the average mixing time does change in most cases, as
shown in figures 6(a) through 6(c), which are repre-
sentative social graphs. More interesting, we find that
the mixing time of the directed graph is even better
than that of the undirected graph, as it is the case in
Figure 6(d).

While the mean computed over all ε’s for a given t
is meaningful for the average node, it does not capture
the worst case scenario which is of interest in many
cases. For example, for an anonymous communication
systems suggested on top of social networks, it is always
better to prove guarantees with lower-bounds. Lower
bound guarantees are satisfied by the mixing time in
the definition, and satisfied for the maximum ε among
all distributions for a given t. For the same experiment
above, we plot maximum ε for different t, where the re-
sults are shown in Figure 7. As the per the definition of
the mixing time, no difference between measurements
for both types of graphs is observed (in Figure 7(b)
and Figure 7(c)). Furthermore, the same advantage of
mixing time pointed out earlier for Gnutella dataset is
also translated into a better mixing time when consid-
ering the maximum among all sources, as shown in Fig-
ure 7(d). Finally, while the average mixing character-
istics of Epinion shown in Figure 6(a) are tied for both
directed and undirected graphs, the maximum ε com-
puted among all sources for a given t differs slightly, as
shown in Figure 7(a). Furthermore, in the same figure,
we observe that a steep region of the convergence to
the stationary distribution ends at some point, which
happens earlier in the directed graph case. Even be-
fore switching the convergence rate, both graphs pro-
vide similar mixing characteristics, though the directed
graph mixes better in the active region (for t < 20).
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Figure 6: A measurement of the mixing time (average case) of undirected graphs before and after
omitting directions.
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Figure 7: A measurement of the mixing time (worst case, the maximum ε for each walk length)
of undirected graphs and after converting them into the directed form by completing their in- and
out-degree.

7. THE IMPACT OF LINK DYNAMICS
All Sybil defenses that use social networks did not

consider social churn as part of their design and anal-
ysis. This social churn happens for nodes and edges.
Node churn is due to appearance and disappearance of
nodes (by joining or leaving the network) while edge
churn is due to the creation or removal of edges be-
tween nodes in the network. As we have shown in sec-
tion 2.4, there are many efforts to understand the dy-
namics of social networks and the way they affect topo-
logical structures, but none considered understanding
how much these dynamics affect the mixing time.

Here, we consider measuring the mixing time in dy-
namic graphs. We define the mixing time, explain our
method for deriving datasets for which the mixing time
is meaningful and well defined, and show results of mea-
suring the mixing time with insights on the applications
that use the quality of mixing time as a metric for their
operation performance.

7.1 Defining Mixing Time for Dynamic Graphs
In static graphs, the mixing time captures the length

of the random walk, at worst, required for reaching a
constant distance from the stationary distribution. Ex-
tending this definition to dynamic graphs is quite easy.
Given that dynamic graphs are multiple snapshots of
the “same” set of nodes, computing the mixing time for
the dynamic graph would add one additional dimension
to the problem, which is the time.

Let the dynamic graph G = {G1, G2, . . . , Gg} where
Gj(1 < j ≤ g) is the graph at time j. Extending the
mixing time definition in (3) to cover the dynamic graph

produces

T (ε) = max
j

max
i

min{t : |πj − π(i)
j Pt

j |1 < ε}, (4)

where Pj is the transition matrix of Gj and πj is a

stationary distribution computed from Pj . π
(i)
j is the

starting distribution at vi at time j. πj depends on
graph type, undirected or directed, and can be com-
puted as in section 3 and section 6, respectively.

The intuition of the definition in (4) is simple. While
the mixing time in a static graph, by definition, provides
an upper bound on t from all sources by accounting for
the worst mixing source, the definition in (4) adds the
time as another dimension in the upper bound, so as
every source at any time would have at least as good as
what this bound provides.

Social churn by both node and edge dynamics would
enforce constraints on the definition above. By defini-
tion, every snapshot is supposed to have the same set of
nodes to avoid the impact of changing the graph size on
the measured mixing time. In reality, two churn cases
violate this definition: (1) nodes in the past but not in
the current or future, and (2) nodes in the future or
present but not in the past.

On one hand, we need to relax the definition to cap-
ture both cases. On the other hand, we need to limit
the data so as the mixing time is computed for a set
of nodes who are “mostly” associated with each other
over time under link dynamics only, but not both edge
and node dynamic. Here we emphasize “mostly” since
there is no guarantee to have a connected social graph
for which the mixing time is well-defined for all nodes
at all times. In the following, we use the same defini-
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tion for measuring the mixing time in both cases. We
elaborate on data collection and cleaning so as to obtain
representative graphs for both cases.

7.2 Datasets and Data Preprocessing
Our sources of data are two datasets, the DBLP Com-

puter Science co-authorship graph [24] and a Facebook
interaction social graph [47]. Both graphs are available
online.

The DBLP Dataset: The original DBLP dataset
consists of 943, 316 nodes representing authors in com-
puter science and 6, 379, 554 edges between them, for
publication records from March 1936 to May 2011. An
edge between two nodes indicates that both nodes co-
authored a paper together. The graph consists of 40, 685
disconnected components and all edges are between 892, 565
nodes. After removing isolated nodes and disconnected
components, the remaining graph consists of 769, 642
and 3, 051, 127 undirected edges.

To generate dynamic graphs from the largest con-
nected component of the DBLP graph, we limit our-
selves to the period of 2006 to 2010 inclusive. We select
each author who has publications at each and every
of these years. The result is a multigraph where two
nodes would have an edge if they co-authored a paper
or more in a given year. Multiple edges could be created
between two authors if they co-authored over multiple
years. Multiple edges are labeled with respect to the
year of publication. The final multigraph has 46, 994
nodes and 458, 736 edges. We decompose each multi-
graph to multiple-graphs with respect to the edge label.
Finally, as some nodes who published in the given pe-
riod could be isolated in a certain year, we remove these
nodes so as each resulting graph is connected. Statistics
of the different resulting graphs are shown in the upper
part of Table 5.

To maintain a consistent association of nodes in each
graph from the beginning to the end of the evolution
for most nodes, and thus have a better estimate for
the mixing time for (almost) the same set of nodes un-
der edge dynamics only, we perform a simple type of
matching. To do so, we fix a reference graph—the first
or last, depending on which has least number of nodes.
For each graph other than the reference, we compute
the set intersection of nodes in that graph and those in
the reference graph. Then, for the same graph, we con-
sider edges that exist only between the resulting nodes
in the set intersection and prune all disconnected nodes.
By fixing the last graph in the upper part of Table 5 as
a reference, we construct graphs under edge dynamics,
for which statistics are in the lower part of Table 5. In
the rest of this paper, we refer to the first type of graphs
as graphs with “different size” and to the second type
as graphs with “same size”.

The Facebook Dataset: The Facebook dataset [47]
is for wall posts in New Orleans regional network, and

spans the period from 2004 to 2009. A link between
two nodes indicates that the first node has interacted
with the second node. Further details on statistics of
the entire dataset is in [47]. The volume of interaction
begins slow and increases as the time goes. To obtain a
dynamic graph from this dataset, we limit ourselves to
the last 30 months of interactions. Because the dataset
itself is small and does not guarantee that interactions
between the same set of nodes persist over the period of
time of interest, we consider all interactions in the pe-
riod of the 30 months and consider each graph snapshot
over a period of 6 months. The resulting five graphs
are shown in the upper part of Table 4. Notice the
high variability in graph size, which is explained by the
growth of Facebook in that period [47]. To maintain
a consistent association of nodes in each graph, we use
the same method explained above. However, we use
the first graph as a reference. The resulting graphs and
their statistics are in the lower part of Table 4.

7.3 Results and Discussions
First of all, for both types of dynamic graphs and

for both datasets we measure basic structural statistics
and properties shown in Table 4 and Table 5. These
statistics are as follows

• Graph size: number of nodes and number of edges.
• Assortativity (of degree; also known as the Pearson

correlation coefficient), is a value in [-1, 1] which
indicates the correlation between similar degree
nodes.
• Transitivity: (value in [0, 1]) fraction of all possible

triangles (including triads, two edges with a shared
vertex between them) which are in fact triangles.
• Clustering coefficient: is the average (thus in [0,

1]) of local clustering coefficient for all nodes. The
local clustering coefficient for a node is the fraction
of possible triangles that go through that node.
• Diameter: the longest of eccentricities among all

nodes in the graph. The eccentricity of a node is
the longest shortest path from it to other nodes in
the graph.
• Radius: shortest eccentricity.

7.3.1 Basic Dynamic Graph’s Characteristics
The measurements of these basic characteristics are

shown in Table 4 and Table 5. While the general ten-
dency is that graphs in the DBLP dataset tend to have
similar size—due to the way these graphs are created—
slight changes in the topological characteristics can be
observed, and are explained by a decrease in the clus-
tering coefficient and variability in the diameter and ra-
dius as the time goes (upper part of Table 5). Further-
more, when using the preprocessing method explained
above for deriving a consistent graph for its past and fu-
ture states, we observe that while the size of the graph
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Table 4: Statistics of Facebook time-varying
graphs. Metrics of comparison are number of
nodes (n), number of edges (m), assortativity
(ga), transitivity (gt), average clustering coeffi-
cient (gc), diameter (gd), and radius (gr).

G
ra

ph Facebook (different size graphs)
n m ga gt gc gd gr

FB-1 9154 23245 0.185 0.087 0.102 19 10
FB-2 13288 37908 0.198 0.085 0.101 18 10
FB-3 16540 42427 0.124 0.075 0.092 19 10
FB-4 23879 59190 0.136 0.068 0.085 21 11
FB-5 35665 86525 0.144 0.067 0.084 18 10

G
ra

ph Facebook (same size graphs)
n m ga gt gc gd gr

FB-1 9154 23245 0.185 0.087 0.102 19 10
FB-2 7897 24646 0.221 0.094 0.116 13 8
FB-3 7389 19895 0.124 0.079 0.010 14 8
FB-4 7089 18117 0.140 0.076 0.088 16 9
FB-5 6452 13461 0.088 0.068 0.079 18 10

Table 5: Statistics of DBLP time-varying graphs.
Metrics of comparison are number of nodes (n),
number of edges (m), assortativity (ga), transitiv-
ity (gt), average clustering coefficient (gc), diame-
ter (gd), and radius (gr).

G
ra

ph DBLP (different size graphs)
n m ga gt gc gd gr

DB-1 31704 71994 0.262 0.338 0.483 26 14
DB-2 33012 79475 0.230 0.325 0.480 27 14
DB-3 33923 84125 0.281 0.331 0.467 24 13
DB-4 33071 82282 0.225 0.297 0.453 23 12
DB-5 26150 62161 0.186 0.249 0.419 24 13

G
ra

ph DBLP (same size graphs)
n m ga gt gc gd gr

DB-1 18984 42478 0.206 0.303 0.447 22 12
DB-2 20152 48515 0.210 0.304 0.447 27 14
DB-3 21273 53873 0.245 0.307 0.436 22 12
DB-4 21472 55731 0.198 0.269 0.424 22 12
DB-5 26150 62161 0.186 0.249 0.419 24 13
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Figure 8: A measurement of the mixing time—worst case, maximum ε for each walk length vs. the
mean—for dynamic graph generated from the DBLP dataset using the two methods for same and
different sizes. [Best viewed in colors]

is affected (which is natural) other properties such as
the clustering coefficient, diameter, and radius are min-
imally affected. This is indeed surprising, as the size of
the different graphs is reduced greatly from its original
size. For example, while the size of DB-4 decreases by
about 35%, the radius and diameter are still almost the
same. Other properties are affected in the same way
(or even less) for similar change in graph size across the
different snapshots.

Similar observations are made on the Facebook dataset
in Table 4. Notice that the first set of graphs (with dif-
ferent size) indeed differs greatly in size due to node
dynamics. Despite that, this change in size is mini-
mally reflected on the radius and diameter while it is
more significant for the clustering coefficient. Also, as
the time goes, the general tendency in these graphs is
that their transitivity and assortativity decrease despite
size growth (in general). When using the above method
for generating graphs with similar size, we observe that
(in general) the radius and diameter (as well as other
properties) decrease more significantly than in DBLP.

7.3.2 The Mixing Time of Dynamic Graphs
Here we describe the results of measuring the mix-

ing time in dynamic graphs. We use the same settings
(number of initial distributions and length of walks) as
in section 3. The results are shown in Figure 8 (for
max and mean ε measurements of DBLP) and Figure 9
(for Facebook). On these plots, we make several quick
remarks.

Most importantly, and as anticipated, the mixing time
is time-dependent. Both mean and max ε change signif-
icantly as the graph evolve over time, regardless to what
considerations are made for node associations within
the graph. This distance is as high as about 0.1 in the
DBLP dataset for the average ε as shown shown in Fig-
ure 8(a) and as high as 0.12 for graphs with the different
size as shown in Figure 8(b), for t = 20. Also, the dif-
ference ε is as high as 0.5 for same size graphs (shown
in Figure 8(c)) and 0.52 in graphs with different size
(shown in Figure 8(d)) for the maximum ε which cap-
tures the mixing time by definition, for t = 100.
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Figure 9: A measurement of the mixing time—worst case, maximum ε for each walk length, vs. the
mean—for dynamic graph generated from Facebook dataset using the two methods for same and
different sizes. [Best viewed in colors]

Similar observations are made on the Facebook graphs,
where results are in Figure 9. The dynamic graph of
Facebook exhibits less variability in the mixing pat-
tern at average than in DBLP (in Figure 9(a) and Fig-
ure 9(b)) but more on average in graphs with same
size than the raw graphs with different size. Variabil-
ity of the worst mixing, which captures the mixing of
the poorest source, is more in graphs with different size
than with the same size, though both are quite vari-
able with respect to graphs in the same category (in
Figure 9(d) and Figure 9(d). The difference among dif-
ferent datasets with our previous measurement in [33]
and the difference in the same dataset in this way agrees
with the measurements on the volume-wise evolution of
the Facebook dataset in [47], where it has been shown
that a growth in the communication volume (the pat-
tern in graphs with different size), which decays as the
edge between nodes ages (the pattern in graphs with
same size). This latter part explains the decreased con-
vergence rate in graphs with same size due to their dis-
tortion over time. For more details, see [32].

8. CONCLUSION
In this work, we extended upon our previous results

of measuring the mixing time and advanced this vein
of research in several directions. First, we have shown
that the mixing time of social graphs is related to their
degeneracy, which captures cohesiveness of graphs. We
use this finding to explore methods for improving the
mixing time of slow mixing social graphs. In parallel
to that, we have investigated the impact of link direc-
tion on the mixing characteristics and have shown that,
counterintuitively, directed graphs are mostly faster mix-
ing than undirected graphs. Last, we defined and mea-
sured the mixing time of dynamic graphs and we found
that the mixing time of these graphs is time-varying, as
anticipated. Under certain circumstances, the mixing
quality of these graphs decay as the time goes, agreeing
with other findings in the literature on these graphs.
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APPENDIX
A. BOUNDING THE ERROR IN ESTIMA-

TION π FOR DIRECTED GRAPHS

Theorem 1. Let |π(i)
t − π|1 ≤ ε and |π(i)

t − π
(∗)
` |1 ≤

ε′, then ε − ε′ ≤ δ where δ ≥ |π(∗)
` − π|1 and ε ≤

2 max(ε′, δ). Furthermore, for large enough `, ε ≈ ε′.

Proof. The proof of all statements follows from the
total variation property and the triangular inequality.
Recall that the ultimate stationary distribution for a
directed graph is π = JPt, where t → ∞, P is the
transition probability matrix as defined in section 6.1.1,
and J is a (1 × n)-vector in which all entries are ones.
Using the method used for estimating the stationary
distribution π in section 6.1.2, we recall the following
quantities:

• π is the ideal stationary distribution of every ran-
dom walk defined on the graph ~G according to tran-
sitions defined by P as in above.

• π(∗)
` is an estimate of π computed according to the

method in section 6.1.2; i.e., π
(∗)
` = π(∗)P`.

• π(i)
t is the distribution of a random walk after t

steps by beginning from a source vi; i.e., π
(i)
t =

π(i)Pt.

Now, we want to bound ε, the statistical distance
(total variation distance) between the (ideal) stationary
distribution and the distribution of a random walk on
the graph after t steps beginning from node vi (which
could be any node). Without losing generality, let the
following be true (Both (5) and (6) are given in the
statement of the theorem)

|π(∗)
` − π|1 ≤ δ (5)

|π(∗)
` − π(i)

t |1 ≤ ε′ (6)

We are here interested in bounding |π(i)
t −π|1. Using

the triangular inequality, and from (5) and (6), we have

|π(i)
t − π|1 ≤ |π

(∗)
` − π|1 + |π(∗)

` − π(i)
t |1

≤ δ + ε′

≤ 2 max(δ, ε′)

≥ ε (7)

However, since δ is a function of ` that goes to 0 as
` → ∞, and ` in our experiments is set to be large,
particularly ` � t from which we obtain ε′ � δ, the
last inequality can be further relaxed to ε ≈ ε′.

Notice that δ and ε′ are distances computed from a
fixed distribution to two different stationary distribu-
tions, thus formally speaking this argument wouldn’t
hold in general. However, because of the graph struc-
ture which is fast mixing by nature and the length of
the random walk that we use for both cases, it is mild to
show correctness under this assumption for a relatively
small t (say, 100). In experiments, we use ` to be 100
times t so that the argument holds.

B. IMPACT OF IMPROVED MIXING TIME
ON THE PERFORMANCE OF SYBIL DE-
FENSES

The contents of this section have been intentionally
omitted. An extended revision including these sections
will be posted soon, and is available upon request

C. SIZE PATTERN OF MULTI-CORES IN
SLOW MIXING GRAPHS

The contents of this section have been intentionally
omitted. An extended revision including these sections
will be posted soon, and is available upon request
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