
1

SHELLCORE: Automating Malicious IoT Software
Detection by Using Shell Commands Representation

Hisham Alasmary‡†, Afsah Anwar†, Ahmed Abusnaina†, Mohammad Abuhamad¶,
An Wang�, DaeHun Nyang§, Amro Awad?, and David Mohaisen†

†University of Central Florida ‡King Khalid University
¶Loyola University �Case Western Reserve University §Ewha Womans University ?NCSU

Abstract—The Linux shell is a command-line interpreter that
provides users with a command interface to the operating system,
allowing them to perform a variety of functions. Although very
useful in building capabilities at the edge, the Linux shell
can be exploited, giving adversaries a prime opportunity to
use them for malicious activities. With access to IoT devices,
malware authors can abuse the Linux shell of those devices to
propagate infections and launch large-scale attacks, e.g., DDoS.
In this work, we provide a first look at shell commands used
in Linux-based IoT malware towards detection. We analyze
malicious shell commands found in IoT malware and build
a neural network-based model, ShellCore, to detect malicious
shell commands. Namely, we collected a large dataset of shell
commands, including malicious commands extracted from 2,891
IoT malware samples and benign commands collected from
real-world network traffic analysis and volunteered data from
Linux users. Using conventional machine and deep learning-
based approaches trained with term- and character-level features,
ShellCore is shown to achieve an accuracy of more than 99% in
detecting malicious shell commands and files (i.e., binaries).

Index Terms—Linux Shell Commands, IoT Security, Malware
Detection, Machine Learning

I. INTRODUCTION

INTERNET of Things (IoT) manufacturers and application
developers have started to discover the benefits of the

edge computing paradigm and do more compute and analytics
on the devices themselves. The on-device approaches help
reduce latency for critical applications, lower dependence on
the cloud, and better manage the massive data generated by
the IoT devices. An example of this trend is the Nest Cam
IQ indoor security camera [1], which uses on-device vision
processing power to watch for motion, distinguish family
members, and send alerts. Such a paradigm provides new
opportunities for IoT applications [2], [3]. To unleash the
power of Linux-based systems, IoT devices at the edge employ
shell commands, which would allow invocation of Linux
capabilities in a seamless manner. This utilization, which is
essential for many edge applications, is sometimes exploited
by malicious actors (malactors) to launch malicious activities,
and automate the process of attacks and malware proliferation.

This work was supported in part by AFRL (Air Force Research Lab)
summer program, in part by NSF under Grant CNS-1809000 and Grant CNS-
1814417, in part by NRF (National Research Foundation of Korea) under
Grant 2016K1A1A2912757, and in part by Cyber Florida Seed Grant. The
work of H. Alasmary and M. Abuhamad was done while the authors were at
the University of Central Florida. (corresponding authors: David Mohaisen;
mohaisen@ucf.edu.).

Indeed, the increasing use of IoT devices for everyday
activities has been paralleled with IoT’s susceptibility to risks,
including major attack vectors, such as vulnerabilities in the
hardware and software stacks and the use of default usernames
and passwords. Those attack vectors are demonstrated by
major high bandwidth Distributed Denial of Service (DDoS)
attacks. Targets of those attacks include large companies, such
as Github [4] and Dyn [5]. To launch those attacks, the
attackers exploit infected IoT devices for executing a series
of commands for malware and attack propagation. Since most
IoT and embedded devices use a packed version of software,
such as Busybox [6], to implement Linux capabilities, Linux-
based shell commands are used for automating those attacks.

The Linux shell as an entry point to IoT devices is accessible
to many attacks, including brute-force, privilege escalation,
shellshock, and other vulnerabilities (e.g., CVE-2018-9310,
CVE-2019-1656, CVE-2018-0183, CVE-2017-6707) [7]–
[10]. Using secondary information, such as the listings of IoT
and embedded devices on the likes of Shodan [11], adversaries
can utilize default passwords to connect to arbitrary devices
on the Internet, gain control over them, and use them for their
malicious activities through remote access and automation
tools. For example, a simple “default password” search on
Shodan returns 72,763 results, which all can be accessed, and
used for attacks.

Shell commands are heavily utilized in IoT malware and
botnet operation. Malware-infected hosts use Command and
Control (C2) servers to obtain payloads that include instruc-
tions to compromised machines (or bots). Such instructions
aim to synchronize actions and cycles of activities to attack
targets and propagate the recruitment of new bots that even-
tually become a source of propagation. In this example, bots
use the shell to execute chmod command to change privileges.
Moreover, bots also use the shell to launch a dictionary brute-
force attack and to propagate by connecting to the C2 server to
download instructions using the HTTP protocols. To launch an
attack, a bot typically obtains a set of targets from a dropzone
by invoking a set of commands that uses the shell to flood the
HTTP of the victim and to remove the traces of execution by
executing the rm command [12].

Significance. Detecting malicious shell commands to harden
the security of a device is of paramount importance. While
the prior works have studied the malicious use of Windows
PowerShell, the malicious use of the Linux shell for attack

mailto:mohaisen@ucf.edu

2

automation in IoT devices is not fully-investigated. This work
aims to study shell commands that appear in the static analysis
of IoT malware binaries, and understand their intrinsic features
towards their detection. It is important to note that there
has been some work on understanding shell commands and
their use by malicious software in the literature. However,
the majority of the prior work has focused on other shell
interpreters (e.g. power and web), and the emergence of Linux-
based IoT malware that heavily uses shell commands makes
the detection of shell commands associated with malicious IoT
software of paramount importance.

Our Approach. To address this threat, in this work we design,
implement, and evaluate ShellCore, a system for detecting
malicious shell commands used in IoT malware. To evaluate
ShellCore, we collect a dataset of residual shell commands
from IoT malware samples. Our preliminary analysis shows
that shell commands can be found embedded in the disassem-
bled code of malware binaries. Therefore, we employ static
analysis to search through the disassembled code of malware
to extract the shell used in the malware samples. For the benign
shell commands, we collect a dataset from benign applications
and users. In particular, we use the traffic generated from
applications in a real-world environment. For analyzing and
detecting malicious commands, ShellCore employs a Natural
Language Processing (NLP) approach for feature generation,
followed by deep learning-based modeling for detecting the
malicious commands.

Contributions. This work aims to utilize static analysis to
detect the malicious use of shell commands in IoT binaries,
and to use them as a modality for IoT malware detection.
As such, we make two broad contributions. C-1: Using shell
commands extracted from 2,891 recent IoT malware samples
along with a benign dataset, we design a detection system
that can detect malicious shell commands with an accuracy of
more than 99%. Compared to the state-of-the-art approaches,
our system is more efficient and accurate. Using term- and
character-level features, the feature space on the shell com-
mands is easy to explain and interpret. Features contributing
to malicious behaviors can be easily identified so that shell
commands could be restricted to legitimate use. C-2: We
extend our command-level detection approach and design a
detection model for malicious files (malware samples), which
often include multiple commands. Extending the results of
detecting individual commands, we group the commands by
file and detect the malicious files with an accuracy of more
than 99%. Our detection approach can be applied to files
compiled for any processor architecture (e.g. ARM, MIPS,
Power PC, etc.) as long as the shell commands are extracted,
which can be done efficiently.

Organization. The rest of this paper is organized as follows.
In section II, we present the problem statement and a high-
level overview of our approach. In section III, we review our
approach in details; the feature extraction respecting various
specifics of the application domain, learning algorithms, and
representations. In section IV, we review the evaluation of our
approach; heuristics developed for extracting shell commands
from malicious binaries and benign use contexts, evaluation

metrics and settings, and results. In section V we review the
related work, and draw concluding remarks in section VI.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

In this section, we begin by the problem statement and a
high-level overview of our approach.

A. Problem Statement

The problem we tackle in this paper is an offline malware
classification using shell commands. By offline we mean that
the detector operates in a postmortem mode, where a dataset
is provided and the detector is tasked with identifying whether
each binary in this dataset is malicious or benign. Given the
modality of the analysis of interest, we are also interested in
determining whether a given shell command extracted from a
binary or a use context is malicious or benign. We approach
this problem systematically by modeling shell commands that
appear in the residual artifacts of IoT malware binaries.

The shell command classification problem is formally de-
fined as follows. First, let {xi, yi}Ni=1 be a training set, where
xi ∈ Rd, yi ∈ {0, 1}; that is, xi is a feature representation
of a shell command ci, where the representation has d real-
valued features, and yi is the corresponding label of “zero”
if xi is a benign shell command, and “one” otherwise. The
classification problem of shell commands is formulated as
finding a set of parameters that make up a function f such
that f(xi) = ŷi where ||yi − ŷi|| for all i is minimized (i.e.,
minimal prediction error). The transformation of ci into xi
is called feature extraction, denoted by Φ(ci) = xi, and is a
central contribution of this work through character- and word-
level representations. We use those two approaches for their
prevalence in representing text and text-like data, which is the
case of shell commands.

The malware classification problem is defined as an exten-
sion of the shell command-level classification problem. For
that, we use a combined set of shell commands associated with
each malware sample as a representation to conduct malware
classification (or detection). The same definition above is
extended to malware si, where si is a collection of shell
commands cji , for j = 1, . . . , k, where xj is the corresponding
feature representation of the malware sample si. Note that the
same function Φ can be extended for the feature representation
(e.g., the features associated with the different commands
extracted from the same binary sample can be stacked to
represent the binary). Similarly, the function f is defined for
the binary-level from the command-level classification.

B. A High-level Overview of Our Approach

The shell is a single point of entry for malware to launch
attacks. As such, detecting malicious commands before they
are executed on the host will help secure the host. Even though
the malware aims to exploit a vulnerability in the device
to access its shell, detecting the malicious commands will
help mitigate such exploits. Our analysis highlights the use
of shell commands for infection, propagation, and attack by
malware. The Linux capabilities of embedded IoT devices give
adversaries the required power to abuse the shell.

3

D
is
as
se
m
bl
er

Malware

Benign
Commands

HTTP
Requests

n-grams

Character
Level

Word	
Level

Feature	Extraction Feature	Reduction

Machine	Learning

Fig. 1. The workflow of ShellCore, highlighting the sources of data and
its division by class (malicious or benign). The raw data is preprocessed to
extract shell commands. The shell commands are represented as (1) characters
and (2) words, which are fed to learning networks for detection.

Objectives. The main objective of ShellCore is to effectively
detect malicious IoT binaries (files) based on their usage
of the shell commands. Upon detecting individual malicious
shell commands (i.e., shell commands associated with malware
samples), it will be natural to extend the detection to malicious
binaries (files) as a whole. Thus, we break down the problem
into two parts – 1) detecting malicious commands and 2)
detecting malicious files.

High-Level Design. Our design operates on various binaries of
malicious and benign IoT programs. The key idea of ShellCore
is to employ static program analysis tools to extract meaning-
ful representations that can be used eventually to distinguish
between benign and malicious binaries. To do so, we start
with (potential) IoT malware samples and disassemble them
to extract shell commands. We establish various heuristics for
extracting those commands, and we outline those heuristics
in section IV. We repeat the process for (potentially) benign
samples as well to explore the power of our representation for
malware detection. To make the processing of these commands
computationally tractable, we embed those commands into a
representation space by extracting term- and character-level
feature representations from them using the bag-of-words
technique, which is commonly used in NLP tasks. Along
with the bag-of-words, we use the n-grams to represent the
commands as feature vectors. Given that those representations
may result in high dimensional data representation, we employ
the Principal Component Analysis (PCA) for feature reduction
before implementing the classification over commands (see
section II-A for problem statement).

Upon representing the malicious and benign commands as
feature vectors, ShellCore aims to detect malicious commands,
as shown in Figure 1. To do so, ShellCore employs machine
learning algorithms to classify commands. We use both simple
and more advanced (deep) learning approaches. For evalua-
tion, we use cross-validation to address bias and to ensure
the generalization capabilities of the model. Using the same
model architecture, we extend the detection system to detect
malicious IoT binaries. To do so, we group the commands by
each malware sample and benign application in one single set
that is represented as one feature vector to be classified.

III. OUR DETECTION SYSTEM: SHELLCORE

The core of our detection system is a deep learning model
built on top of NLP-based features. To better help learn
the specifics of shell commands, we tune the default NLP
algorithms to enrich the feature representations of the com-
mands. We represent the commands as feature vectors using
the bag-of-words approach. Then, we reduce the feature space
using PCA. ML-based algorithms are then used for malicious
command and sample detection. In the following, we review
the technical details of the feature extraction, and classification
methods of our detection system.

A. Feature Extraction and Reduction

The feature extraction process aims to present the attributes
of samples, by cleansing and linking the data and transforming
it into a format that is easier to process by the employed
algorithms for detection. In this section, we discuss selecting
features that better represent the characteristics of the samples
in the dataset. There are many methods of feature extraction
depending upon the nature of the data. Considering the textual
nature of our samples, we focus on text-based representation
methods. Towards this, we leverage the term-level NLP-based
approach by considering words in the samples as features.
Additionally, since such an approach misses very crucial
attributes, we then employed a character-level NLP approach
to meet our goals.

1) Term-level NLP-based model: We leverage NLP for
feature generation, by considering independent words as fea-
tures and occurrence of space and/or characters as tokenizers,
while words with a length greater than two are considered
in the bag-of-words for feature vector creation. We adopt
the bag-of-words approach, along with n-grams. Let I1 be
the words in a command, and N is the total number of
words in the command. Therefore, each word in the command
can be represented as I1i, where i ∈ [1, N], such that
I1 = I11, I12, I13, ..., I1N .

2) Character-level NLP-based Model: The term-level NLP-
based approach does not take the operational symbols, such as
the logical operators, in a command into consideration, which
undermines many discriminating and dominant characteristics
of the shell command, thereby not representing the commands
accurately. The presence of many shell commands utilizing
keywords l ≤ 2 call for building a more accommodating
feature generation mechanism. To do so, we changed the
boundaries of the definition of a word by considering every
space, special characters, alphabets, and numbers as words,
along with the n-grams and command statistics. This augments
our vocabulary with more granular features to capture the at-
tributes precisely. Let I2 be a representation of each character,
alphabet, number, etc., constituting a command, and N is the
total number of such constituents in the command. Therefore,
every such constituent in the command can be represented as
I2j , where j ∈ [1, N], such that I2 = I21, I22, I23, ..., I2N .

3) Feature Representation: To represent every element in
the dataset from a defined reference point, they are repre-
sented with respect to axes in space. In particular, every
command/sample in the dataset is represented as a feature

4

vector in the defined feature space. We begin by finding the
feature space to determine the dimensionality of the vectors.
Particularly, the commands are augmented such that every
feature of the commands in the dataset has a representation
in the feature space. Every command in the dataset is then
represented in a space of n axes, where n is the size of feature
space. To do so, we devise multiple representations of the
commands, such as including the words in the commands and
splitting the commands by spaces and every special character.
We also form a feature vector by considering each and every
letter and special character as features combined with the
special characters. We implemented the bag-of-words method
to define our feature space. The rest of this section explains
our feature representation mechanism.

4) Bag-of-Words as Command Embedding: We generate a
representation of commands/samples using the bag-of-words
technique. Depending upon the splitting pattern of the samples,
we create a central vector that stores all words in the samples.
Each sample in the dataset is then mapped to an index in
the sparse vector representation, i.e., feature vector for every
elements in the dataset, where the vector has an index for every
word in the vocabulary— The final vector is represented as
the occurrence of each word from the vocabulary in a given
command (i.e.,multi-hot encoding).

Specifically, to generate the vector space, we add every word
to an array. For every sample, we initialize its feature vector
with a size equals to the bag of words. For every occurrence
of a word in a sample, its index location is incremented.
Therefore, every feature vector of a sample represents the
frequency of the corresponding word in the dictionary.

5) Encoding Syntax: An important characteristic of the
commands is their syntax. This syntax depends on the structure
of the command. Therefore, in addition to the standard features
gathered from the commands, we also augment the feature
space with feature proximity, to capture the structure of the
commands. To do so, we also include the features of n-grams.
Every n contiguous words in a sample’s shell commands are
considered as a feature. When using n-grams as features, every
n contiguous words occurring in a sample are added to the bag
of words corresponding to them in the feature space.

For each of the two models, as aforementioned, we create a
separate bag of words, such that, the bag contains all the words
Ik1i, where i ∈ [1, N] and k ∈ [1,m], such that N is the total
number of words in a command and k is the total number of
commands in the dataset. along with the n-grams. Therefore,
the words in all the commands as per the term-level NLP
model, can be combined as I111, I

2
11, I

3
11,I

1
12, I

1
13,I

m
1N

Let B be the bag of word for the dataset, such that B =
B1, B2, B3, ..., Bt, where t ≤ m ∗ N and Bp, such that
p ∈ [1, t], is unique in B. Moving forward, each command
Ii, where i ∈ [1, N], can be represented as a feature vector
(F) with respect to the bag of words B, such that the tth index
be represented as the frequency of occurrence, of the tth word
in the bag, in the command. F = fB1 , fB2 , fB3 , ..., fBt , such
that fBp , where p ∈ [1, t], depicts the frequency of the word,
appearing at index p in the bag B, in the command Ii.

6) Feature Reduction: We capture as many features as
possible to achieve accurate results. However, beyond a certain

point, the model may suffer from the curse of dimensionality,
which causes the performance of the model becomes inversely
proportional to the number of features. The usage of a wide
variety of features to represent samples leads to a high dimen-
sional feature vector which leads to (i) high cost to perform
learning and (ii) overfitting, i.e., the model may perform very
well on the training dataset, but poorly on the test dataset.

Dimensionality reduction or feature reduction is applied
with the aim of addressing the two problems. We implement
PCA for feature reduction to improve the performance and the
quality of our classifier of ShellCore, where the PCA features
(components) are extracted from the raw features. PCA itself
is a statistical technique used to extract features from multiple
raw features, where raw features are of n-grams and statistical
measurements. PCA creates new variables, named Principal
Components (PCs). PCs are linear combinations of the original
variables, where a possible number of correlated variables
are transformed into a low dimension of uncorrelated PCs
(thus the quality improvement). PCA normalizes the dataset
by transforming them into a normal distribution with the same
standard deviation [13], resulting in a standard representation
of variables in order to identify a subset that can best charac-
terize the underlying data [14].

We reduce the d-dimensional vector representation of com-
mands to q number of principal components onto which the
retained variance under projection is maximal.

B. Classification Methods

After representing each sample as a feature vector, we
classify them into malicious and benign by leveraging the ML-
based algorithms.

1) Deep Neural Networks (DNN): DNN is a type of con-
nected and feed-forward neural networks with multiple hidden
layers between the input and output layers. The hidden layers
consist of a number of parallel neurons, connected with a
certain weight to all nodes in the following layers to generate
a single output for the next layer. Given a feature vector X
of length q and target y, the DNN-based classifier learns a
function f(.) : Rq −→ Ro, where q is the input’s dimension and
o is the output’s dimension. With multiple hidden layers, the
dimension of the output of every hidden layer decreases with
transformation. Each neuron in the hidden layer transforms
the values of the preceding layer using linearly weighted
summation, w1 + w2 + w3 + ...wq , which passes through a
ReLU activation function (y(x) = max(x, 0)). The output of
the hidden layers is then fed to the output layer, and passed
to a sigmoid activation function h, defined as h(x) = 1

1+e−x ,
outputting the prediction of the classifier.

2) Support Vector Machine (SVM): SVM classifies the
data by finding the best hyperplane that separates the data
from the two classes. For training a new classifier to achieve
a preferable class, the training analyses are considered as
positive examples, which are included in the class, while
the remaining attempts are negative examples. To classify a
new sample, the classifier computes the margin and selects
the hyperplane with the smallest margin (distance) from the
sample as the output class [15]. We use SVM due to its

5

effectiveness in high dimensional spaces. To achieve the
goal, we utilize the following decision function [16], [17]
sgn(

∑n
i=1 yiαiK(xi, x) + ρ) where xi, i ∈ [1, q], is the

training feature vector of sample, ρ is the hyperplane margin,
yi are the output labels, and the kernel function K(xi, x) is
defined as, K(xi, x) = φ(xi)

Tφ(xj).

C. Term- and Character-level NLP-based Approaches

1) Term-level NLP-based Model: The term-level NLP-
based learning model uses words as features, with spaces
and other special characters as tokenizers. Additionally, it
does not consider words less than three characters long. To
better represent the locality of the words, the model utilizes n-
grams. Particularly, it uses 1- to 5-grams. With 10-fold cross-
validation, the model achieves the results as is shown in Table
IV. The results are shown for both SVM and DNN-based
classifiers, with DNN-based classifier yielding better results.

2) Character-level NLP-based model: We note that the
term-level considers the words and neglects the characters,
spaces, and words that have a length of less than three. This,
in turn, presents a major shortcoming, since a large number
of command keywords have a length of fewer than three
characters, including cd and ls, or consist of special characters,
such as || and &&. To address the shortcoming, we create the
feature generation step considering these important domain-
specific characteristics that would otherwise be ignored. To
do so, we change the way in which a word is defined by
carefully declaring the tokenizers such that no character is
ignored. Subsequently, the changed bag of words considers
the character-level, and contains every letter, number, and
character represented as an individual feature.

IV. EVALUATION AND DISCUSSION

In this section, we evaluate ShellCore’s performance. We
start by classifying individual commands using the NLP-based
approach. In all evaluations, our model exhibits high accuracy.
We divide our evaluation into two parts. First, we build a
detection system to detect malicious commands by consid-
ering every individual command in the dataset. Second, this
detection system is then extended for detecting malicious files,
where the above commands corresponding to an application
are combined together when representing a single file as a
feature vector of multiple commands.

We provide further details of the datasets and their charac-
teristics, and the utilized evaluation metric. We then describe
the term-level and character-level NLP-based models. Finally,
we describe how these two models are leveraged for detecting
individual commands and malicious files.

In addition to the placement of the letters, characters, and
spaces, we also consider combinations of these elements in
the form of n-grams (up to 5-grams) into a vector space.
Finally, for feature reduction, we use PCA such that the feature
representations preserve 99% of the variance in the training
dataset.

To set out, we begin by describing the process of assembling
the dataset used in this evaluation. We obtain our shell
commands by statically disassembling the malware binaries

TABLE I
MALWARE DATASET BY ARCHITECTURE. PERCENTAGE IS OUT OF THE

TOTAL SAMPLES.

Architecture Samples Percentage
ARM 668 23.11%
MIPS 600 20.75%
Intel 80368 449 15.53%
Power PC 270 9.34%
X86-64 242 8.37%
Renesas SH 233 8.06%
Motorola m68k 217 7.51%
SPARC 212 7.33%
Total 2,891 100%

and extracting shell command strings (following some regular
expression rules).

A. Malicious Dataset and Commands Extraction

We obtain a dataset of 2,891 randomly selected IoT malware
samples from the IoTPOT project [18], a honeypot emulating
IoT devices. IoTPOT emulates services, such as telnet and
other vulnerable services including those of specific devices
with distributed proxy sensors in several countries. Table I
depicts the malware distribution according to their architec-
tures and their percentage. Figure 1 shows our approach, end-
to-end, split into three modules: initial discovery, command
extraction, and detection. Our data collection is in the first
two modules. In the following, we outline the steps we have
taken in order to obtain the shell commands from the malware
samples (binaries).

In the initial discovery module, we disassemble the malware
binaries. To create a set of rules that automatically apply to
samples for retrieving the relevant commands, we manually
examine all shell commands extracted from the strings of 18
malware samples and establish patterns of those commands.
We then use them to automate the extraction of shell com-
mands for the rest of the malware samples.

The second component in our workflow is a command
extraction module, which takes the command patterns obtained
in the initial discovery phase and applies those patterns to the
strings of each sample. As a result, we extract the shell com-
mands from the malicious binary samples, by concentrating
on the strings only, and label them as malicious.
Commands Extraction. Using Radare2, an open-source static
analysis tool with an API for automation, we first disassemble
each malware binary in our 2,891 samples and extract the
strings from the disassembled code. We then use the strings
appearing in each sample to obtain the shell commands in
them, creating our malicious commands. For coverage, we
gather all strings from the disassembled code. For a faster
extraction of the shell commands, we calculate the offset,
or memory address where the string is referenced in the
disassembled code, then conduct the disassembly from that
offset. We pull the instruction set at the offset and extract the
desired command. Before automating the command extraction,
we manually analyze the 18 samples to observe patterns that
could uniquely identify the shell commands.

From these 18 malware samples, we identify 1,273 patterns
and use them to extract the shell commands from other

6

samples. For example, strings beginning with shell command
keywords, such as cd , between if and fi, kill, wait, disown,
suspend, fc, history, break, among other similar command
structures, are extracted. For coverage of those patterns, we
use online resources to build a dataset of the keywords of
shell commands to augment our automation process.

Based on the identified patterns, we use regular expressions
to search for the specific patterns in the strings obtained from
the malware to automate the process for all malware samples.
Although the commands contained in the strings may not
be syntactically correct, e.g. spaces are masked with special
characters or spaces, they, however, hint to the location of shell
command references. Therefore, we navigate to the address
where a particular string is quoted and disassemble at that
offset. This analysis generate a total of 2,008 unique malicious
commands.

B. Benign Dataset and Commands Extraction

To evaluate ShellCore, acquiring a benign shell commands
dataset is a necessary step, although a challenging task for
multiple reasons. For example, while Linux-based applications
are ubiquitous, extracting the corresponding shell commands
and using them as a baseline for our benign dataset might be
only partially representative, since these binaries may not be
necessarily intended for embedded devices.

Another approach to collect benign shell commands is
by observing shell access and their usage by benign users,
which requires monitoring network traffic to “sniff” the shell
commands by benign users. However, we notice that a majority
of the traffic nowadays is carried over HTTPS, the encryption
limits our visibility into those benign shell commands.

To cope with these shortcomings, we rely on volunteers for
providing their usage of shell commands as a representative
of benign usage. In order to do so, we conduct collection
efforts at both the host and network levels. At the host-side,
we gather the bash history data from nine volunteer users.
To protect the users’ privacy, we anonymize their identities by
manually observing the commands and removing every clearly
identifying information, such as usernames, domain names and
IP addresses, in a consistent manner. In total, we collect a
dataset of about 143 MB from these volunteers, consisting
of 5,772 commands. The collected commands correspond to
services, such as ssh, git, apt, Makefile, and curl, among
others, and generic Linux commands, such as cd, rm, chmod,
cp, and find, among others.

For the network-side profiling, we rely on high-level net-
work traffic monitoring from two networks to obtain network-
level artifacts (e.g. GET, POST, etc.) that are not part of an
encrypted payload. In particular, we look for commands com-
ing from various Linux-based tools, frameworks, and software
inject. Since an entry point for many malware families is the
abuse of many application-layer protocols, such as HTTP, FTP
and TFTP, with the intent to distribute malicious payloads and
scripts, we attempt to monitor those protocols in benign use
setup for benign data collection. As such, we built our benign
command collection framework with two separate networks,
as highlighted in Figure 2.

tcpdump	-w	pci.pcap

Fig. 2. Monitoring stations for creation of benign dataset creation. Two
network implementations are used: NAT, and a home network.

The first network is hidden behind a NAT and consists of
five stations, while the second network is a home network
with 11 open ports: 21, 22, 80, 443, 12174, 1900, 3282, 3306,
3971, 5900, and 9040. The main purpose of this setup is to
capture the incoming and outgoing packets from the home
network. Our home network in this experimental setup consists
of two 64-bit Linux devices, one Amazon Alexa, one iPhone
device, one Mac device with a voice assistant, Siri, which
is continuously used, and a router. Figure 2 is a high-level
illustration of our benign data collection system. In the first
network (right), we have five devices that are used in a lab
setting under “normal execution”, i.e., for everyday use. The
network is monitored over a period of 24 hours, where all
network traffic is captured.

The second network is a home network designed by select-
ing a variety of devices, also operating under “normal execu-
tion” with the exception that the configured voice assistants in
the second network are actively queried during the monitoring
time. To establish a baseline, the network is monitored without
the devices and as the devices are added gradually to the
network. For the voice assistants, we iterate over a set of
questions requiring access to the Internet and actively monitor
the traffic at the router for seven hours. Using these settings,
we gather a dataset of approximately 34 GB from the first
network and approximately 1 GB from the second network.

The traffic gathered from the five volunteers (with consent)
in the first network (Network 1) result in a total of 28,578,754
individual payloads, and only 1,625,143 of them are not
encrypted, which we utilize for our benign dataset. From
the second network (Network 2), five sources generate 4,735
unencrypted payloads in total, which we use as part of our
dataset. In total, our benign dataset consists of three parts,
bash (5,772 commands), network 1 (1,625,143 commands),
and network 2 (4,755 commands).

Table II shows samples of the payloads from the four data
sources. We analyze the samples to find the architecture for
which they are compiled using the Linux File command.

C. Evaluation Settings and Metrics

To evaluate ShellCore, we use the dataset highlighted in
IV-A and IV-B. In the following, we review settings, parame-
ters tuning, validation technique, and evaluation metrics.

1) Dataset: Table III shows the number of commands as
well as the commands’ length statistics (maximum, minimum,
average, median, and standard deviation). We notice that com-
mands in Network 1 have similar lengths, as indicated with

7

TABLE II
DATA SOURCES IN OUR DATASET. “SOURCES” IS THE NUMBER OF FILES USED TO EXTRACT COMMANDS, WHILE “COMMANDS” IS THE TOTAL NUMBER

OF COMMANDS OBTAINED FROM THE SOURCE FILES.

Data Sources Commands Example
PCAP Net. 1 5 1,625,143 GET /update-delta/hfnkpimlhhgieaddgfemjhofmfblmnib/5092/5091/193cb84a

0e51a5f0ca68712ad3c7fddd65bb2d6a60619d89575bb263fc5dec26.crxd HTTP/1.
1\r\nHost: storage. googleapis.com\r\nConnection: keep-alive\r\nUser-Agent:
Mozilla/5.0 (X11; Linux x86˙64) AppleWebKit/537.36 (KHTML, like Gecko) C
hrome/72.0.3626.121 Safari/537.36 \r\nAccept-Encoding: gzip, deflate\r\n

PCAP Net. 2 5 4,735 GET /favicon.ico HTTP/1.1\r\nConnection: close\r\nUser-Agent: Mozilla/5.0
(compatible; Nmap Scripting Engine; https://nmap.org/book/nse.html)\r\n
Host: 192.168.2.1\r\n

Bash cmd. 9 5,772 sudo wget https://download.oracle.com/otn-pub/java/jdk/8u201-b09/4297048
7e3af4f5a a5bca3f542482c60/jdk-8u201-linux-x64.tar.gz

Malware 2,891 2,008 GET /cdn-cgi/l/chk˙captcha?id=%s & g-recaptcha-response=%s HTTP/1.1
User-Agent: %s Host: %s Accept: */ Referer: http://%s/ Upgrade-Insecure-
Requests: 1 Connection: keep-alive Pragma: no-cache Cache-Control: no-cache

TABLE III
SIZE CHARACTERISTICS OF THE DIFFERENT DATASETS. LEN. STANDS FOR LENGTH.

Dataset Commands Command Length Statistics
Maximum Minimum Average Median Standard deviation

Network 1 1,625,143 1,564 52 184.68 185 4.88
Network 2 4,755 1,536 8 209.01 167 146.26
Bash 5,772 356 2 23.00 14 27.71
Malware 2,008 984 5 293.91 384 168.03

the low deviation. We notice that Network 2 (corresponding
to the IoT devices setting) and Malware datasets have the
closest lengths overall, per the average and standard deviation
characteristics of their distributions.

2) Parameters Tuning: For a better features representation,
we utilize n-grams. Particularly, we use 1- to 5-grams. For
the DNN-based classifier, we also try multiple combinations
of parameters to tune the classifier for better performance. We
achieve the best performance using five hidden layers.

3) K-Fold Cross-Validation: To generalize the evaluation,
cross-validation is used. For K-fold cross-validation, the data
are sampled into K subsets, where the model is trained on
one of the K subsets and tested on the other K-1 subsets. The
process is then repeated, allowing each subset to be the testing
data while the remaining nine are used for training the model.
The performance results are then taken as the average of all
runs. In this work, We use 10 for K.

4) Evaluation Metrics: For a class Ci, (where i ∈ {0, 1}),
False Positive (FP), False Negative (FN), True Positive (TP),
and True Negative (TN) are defined as:

• TP of Ci is all Ci instances classified correctly
• TN of Ci is all non-Ci not classified as Ci

• FP of Ci is all non-Ci instances classified as Ci

• FN of Ci is all Ci instances not classified as Ci.

We used the Accuracy (AC), False-Negative Rate (FNR),
and False-Positive Rate as evaluation metrics, which are de-
fined as follows:

• AC = (TP+TN)/(TP+TN+FP+FN),
• FNR = FN/(TP+FN),
• and FPR = FP/(FP + TN).

We report the metrics as mean AC, mean FNR, and mean FPR
for the ten folds.

TABLE IV
EVALUATION RESULTS OF MALICIOUS COMMANDS DETECTION. T- AND
C-LEVEL STAND FOR TERM- AND CHARACTER-LEVEL, RESPECTIVELY.

Metric
Command Detection Malware Detection

T-level C-level T-level C-level
SVM DNN DNN DNN DNN

AC 0.929 0.990 0.998 0.979 0.998
FNR 0.032 0.020 0.001 0.005 0.002
FPR 0 0.001 0.001 0.050 0.001

D. Detecting Malicious Commands

We use ShellCore to detect individual malicious commands.
We first present the results of the term-level model, followed
by the character-level NLP model. When using DNN, the term-
level model provides an accuracy of 99.0% along with an
FNR of only 0.1% and FPR of 2.0% as shown in Table IV;
SVM, however, provides an accuracy of 92.9%. Given that the
DNN-based model performs better, we select the DNN-based
model as the classifier for our following evaluations. We then
test the performance of the character-level NLP-based model
for detecting individual malicious commands over the same
dataset. As shown in Table IV, the approach improves the
performance of the model, where the accuracy increases from
99.0% to 99.8% and the FNR improves from 2.0% to 0.1%.

The difference in the evaluation results of the two models
is attributed to the difference in the underneath learning algo-
rithms of the two models, and hint at the importance of special
characters and letters with length less than three. Figure 3 plots
the accuracy of malicious command and files detection using
both character- and term-level feature representations using the
DNN-based model with 10-fold cross-validation. As shown,
the accuracy is in the range of 96.1% to 99.8% in every fold
when using the term-level model for the training phase, while

8

the accuracy for the testing phase is in the range of 96.0% to
99.9%, with an average accuracy of 99.0%. For the character-
level model, however, the testing accuracy is noticeably higher,
between 99.6% and 99.9%. Overall, ShellCore achieves an
average of 99.85% accuracy in detecting malicious commands,
highlighting the effectiveness of our model.

E. Malware Detection

To generalize from the shell command detection to binaries
(malware) detection, we classify files as malicious or benign
using vectors of feature per file that combine the feature values
of the shell commands associated with each file.

1) Dataset: For this task, we generate benign samples,
drawn from benign commands randomly selected to follow
similar command-frequency distribution as the malicious sam-
ples. We first generate the command-frequency distribution,
i.e., defined the distribution of number of commands per sam-
ple, of the real-world malicious samples in our dataset. Then
by using the sampling techniques, we generate a statistically
similar (size-wise) dataset of benign samples that fall in the
same size as the malicious samples.

2) Model Training and Detection Performance: Subse-
quently, we train and test the model over the file specific
dataset. In doing so, the commands corresponding to a file
are represented as a feature vector of that file. Similar to
the individual commands detection, as shown in Table IV,
we try both the term-level and character-level NLP-based
approaches, with the character-level model yielding a higher
detection rate of 99.8% with 0.2% and 0.1% of FNR and FPR,
respectively. Compared to the term-level model, the character-
level model performs better and improves the accuracy by
≈2% and also reduces the FPR and the FNR. This reflects the
improved feature representation technique and also emphasizes
the importance of special characters. Figure 3 presents the
performance results of ShellCore for malware detection, where
it demonstrates that ShellCore can detect malicious commands
with high accuracy and very low error (false positive and
false negative) rate. Moreover, the same table shows that the
accuracy of ShellCore is improved when using the character-
level NLP-based model.

F. Discussion

1) The Use of Shell as a Weapon: Shell is a command-line
interpreter providing a command-line interface for operating
systems by executing a particular command from the terminal
to perform specific tasks by calling the appropriate OS com-
mand. It abstracts the details of the communication between
the application and the operating system. However, adversaries
use the shell commands to gain access to host devices to
launch attacks. This can be facilitated by the use of default
credentials by the owners and vulnerabilities in the services
such as SSH, and device firmware. The vulnerabilities in the
firmware could be due to the usage of outdated firmware or due
to delayed upgrading of firmware or services. For example, in
2014, Shellshock bash attacks caused a vulnerability in Apache
systems through HTTP requests and using the wget command

to download a file from a remote host and save it to the tmp
directory to cause infection [19].

A recent vulnerability (CVE-2019-1656), which results
from the improper input validation in Linux operating system
and can be exploited by the adversaries by sending crafted
commands to gain access to targeted devices, has been re-
ported [7]. By abusing the shell, adversaries can utilize the
shell to brute-force the credentials of users to gain access to the
device by launching a dictionary attack. Additionally, they can
use the shell to connect to C2 servers to download instructions;
e.g. infecting the device, propagating itself, or launching a
series of directed flooding attacks. Moreover, malware can use
bash to find command to look for uninfected files in the host
device and use the tmp directory to download and run malware.

2) Detecting Individual Shell Commands: Although re-
searchers have looked into the malicious usage of Windows
PowerShell, and except for analyzing the vulnerabilities in
Linux shell (e.g. shellshock), the malicious usage of shell
commands has not been analyzed in the past. Prior works
have analyzed and detected the use of shell commands to
propagate attacks, e.g. sending malicious bots [20], and in-
stalling ELF executables on Android systems [21]. Given the
larger ecosystem of connected embedded devices with Linux
capabilities, and sensing the urgency, we analyze the usage of
shell commands used by malware. We propose a system to
detect malicious commands with 99.8% accuracy.

3) Malware Detection: Many efforts have been dedicated
to address the security threats to IoT from the hardware, the
software and the application perspectives. Some also argue that
there is a need for a cross-layer approach for comprehensive
protection of the IoT systems [22]. Meanwhile, IoT malware
has been on the rise. Given the difficulty of obtaining samples,
very few works have been done on detecting IoT malware,
and even less using residual strings in the binaries either.
section V discusses the methods that work on detecting IoT
malware. In this work, we use the commands in the malware
samples for detecting them. Our detection model achieves an
accuracy of 99.8% with FNR and FPR of 0.2% and 0.1%,
respectively. As malware abuse the shell of the host device,
detecting them at the shell will help safeguard the device from
becoming infected. Additionally, malware access a device by
breaking into the host device by launching a dictionary attack,
typically a single shell command execution. Alternatively, a
host device can also be infected by a zero-day vulnerability or
an outdated device with an existing exploitable vulnerability,
among others, which are also executed by individual shell
commands. For a successful event, where the adversary breaks
into a host, it will then abuse the shell to infect the host,
followed by propagating the malware, and creating a network
of botnets to launch attacks. As such, having a detector of
such high accuracy, at both the individual command level and
malware sample level, with low FPR and FNR, will help stop
the host device from being used as an intermediary target for
launching attacks, despite the presence of vulnerabilities or the
host. This makes this work very timely and necessary.

4) Limitations: In this study, we analyze the IoT mal-
ware statically to extract shell commands from the malware

9

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Fold

Train Accuracy Test Accuracy

(a) C-level command detection.

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Fold

Train Accuracy Test Accuracy

(b) C-level malware detection.

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Fold

Train Accuracy Test Accuracy

(c) T-level command detection.

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Fold

Train Accuracy Test Accuracy

(d) T-level malware detection.

Fig. 3. Accuracy of detecting malicious commands using 10 fold cross-validation. T- and C-level stand for Term- and Character-level, respectively.

disassembly. Thus, our approach is limited to malware that
do not employ obfuscation. Prior studies have shown that
obfuscation is still uncommon among the IoT malware [23],
making our model applicable under existing circumstances.
Additionally, prior studies have also shown the existence
of standard packers, such as UPX [23], [24]. Their unpack
module can thus be leveraged to extract the malware binary;
our model can then be used to detect malicious software.

5) Applications: DETECTS MALICIOUS SOFTWARE BY THE
COMMANDS THEY EXECUTE ON THE SYSTEM. GIVEN THE
INCREASE IN IOT MALWARE ATTACKS, THEIR USE OF SHELL
COMMANDS CAN BE USEFUL IN DETECTING THE INTENT
OF THE MALWARE. ADDITIONALLY, CAN BE LEVERAGED
TO DETECT FILELESS ATTACKS []. SUCH ATTACKS MAKE
USE OF THE DEVICE’S TERMINAL TO EXECUTE SUCCESSIVE
COMMANDS TOWARDS THEIR MALICIOUS INTENT. AS A
FILE IS UNAVAILABLE FOR ANALYSIS, THE EXECUTION OF
COMMANDS CAN BE USED AS A MODALITY TOWARDS THEIR
DETECTION.

V. RELATED WORK

A summary of the related work is in Table V. Broadly, there
have been some work on PowerShell and Web Shell commands
detection, as well as IoT malware detection, which are related
to this work. No prior work exists on IoT shell commands.

1) Shell Commands: Hendler et al. [28] detected malicious
PowerShell commands using several machine learning ap-
proaches, e.g. NLP and Conventional Neural Network (CNN).
Both studies have focused on shell commands that can only
run on Microsoft Windows, i.e., handling binaries of a single
architecture, with very little insight of whether the approach
can be applied to IoT software and command artifacts. Addi-
tionally, Uitto et al. [10] proposed a command diversification
technique, by modifying and extending commands, to protect
against injection attacks. Further, Anwar et al. [31] statically
analyze the IoT malware and specify about the presence of
shell commands in their disassembly. They use them along
with other features, such as, strings, Control Flow Graphs
(CFG) towards malware detection.

2) Web Shell: Web shell is a script that allows an adversary
to run on a targeted web server remotely as an administrator.
Starov et al. [25] statically and dynamically analyzed a set of
web shells to uncover features of malicious hypertext prepro-
cessor shells. Tian et al. [26] proposed a system to detect ma-
licious web shell commands using CNN and word2vec-based
approaches. In a similar context, Rusak et al. [27] proposed

a deep learning approach to classify malicious PowerShell
by families using the abstract syntax trees representation of
the PowerShell commands. Li et al. [29] propose an ML
model to detect malicious web shells written in PHP, achieving
an accuracy 91.7%. Moreover, Stokes et al. [30] employ a
recurrent deep learning model to detect malicious VBScripts
by using a dataset of first 1000-bytes of 240,504 VBScript
files and achieving a TPR of 69.3% and an FPR of 1.0%.

3) IoT Malware Detection: IoT malware has been on the
rise and has received the attention of researchers which is
evident by the growing body of work in this domain. Pa et
al. [18] proposed IoTPOT, a detection system that supports
different malware architectures to analyze and detect Telnet-
based attacks on IoT devices. [Danget al. [32] deployed four
IoT honeypots to study the recent fileless attacks launched
by Linux-based IoT devices. These attacks do not rely on the
malware files and leave no footprint, so, they found that 99.7%
of fileless attacks use shell commands, making ShellCore
is more relevant in detecting this types of attack. However,
recent works have focused on detecting IoT malware network
traffic, such as, IoT network packets [33], [34].] Bertino and
Islam [35] proposed a behavior-based approach that combines
behavioral artifacts and external threat indicators for malware
detection. The approach, however, relies on external online
threat intelligence feeds (e.g. VirusTotal) and cannot be gen-
eralized to other than home network environments (due to
computations offloading). On the other hand, Hossain et al.
[36] proposed Probe-IoT, a forensic system that investigates
IoT-related malicious activities. Similarly, Montella et al.
[37] proposed a cloud-based data transfer protocol for IoT
devices to secure the sensitive data transferred among different
applications, although not addressing the insecurity of the
IoT software itself. Cozzi et al. [38] analyzed a large Linux
malware dataset by studying their behavior, and discussed
obfuscation techniques that malware authors use. Furthermore,
Alasmary et al. [39] and Anwar et al. [31] use the different
artifacts of the IoT malware, such as, CFGs, strings, and
functions, to build detection systems. Taking this forward,
Abusnaina et al. examined the robustness of CFG-based IoT
malware detection models to adversarial attacks [40] and also
proposed effective defenses [41]. Recent arts have also focused
on exploring the IoT network environment. Choi et al. [42]
explored the presence of endpoints the disassembly of the IoT
malware binaries towards characterizing IoT malware spread
and affinities. This emphasis on the network has also enabled
the monitoring and detection of anomalies and vulnerabilities
in wireless communication and network traffics [43]–[45].

10

TABLE V
COMPARISON WITH RELATED WORK. AUC: AREA UNDER THE CURVE, TPR: TRUE POSITIVE RATE, TNR: TRUE NEGATIVE RATE, AC: ACCURACY,

FNR: FALSE NEGATIVE RATE, FPR: FALSE POSITIVE RATE, NLP: NATURAL LANGUAGE PROCESSING, CNN: CONVOLUTIONAL NEURAL NETWORKS,
MS: MALWARE SIGNATURE,MF: MALWARE FUNCTIONS, LW: LONGEST WORD IN FILES HEADER, DL: DEEP LEARNING, MLP: MULTI-LAYER

PERCEPTRON, SVM: SUPPORT VECTOR MACHINE, GBT: GRADIENT BOOSTED TREE, LSTM: LONG SHORT TERM MEMORY, SDA: STATIC AND
DYNAMIC ANALYSIS, PR.: PRECISION, RE.: RECALL, AND F1: F1-SCORE. NOTE THAT OUR SYSTEM IS CAPABLE OF CLASSIFYING BOTH SHELL

COMMANDS AND HOSTING MALWARE. *THE LAST ROW DEMONSTRATES THE RESULTS OF OUR SYSTEM IN CLASSIFYING MALWARE SAMPLES USING
THEIR SHELL COMMANDS.

Study Shell Type Dataset Capability Performance (Best Result) Method
Starov et al. [25] Web shell 481 Analysis — SDA
Uitto et al. [10] Linux shell 13,257 Analysis — Diversification
Tian et al. [26] Web shell 7,681 Detection Pr. (98.6%), Re. (98.6%), F1 (98.6%) CNN
Rusak et al. [27] PowerShell 4,079 Detection AC (85%) DL
Hendler et al. [28] PowerShell 66,388 Detection AUC (98.5-99%), TPR (0.24-0.99%) NLP, CNN
Li et al. [29] PHP web shell 950 Detection AUC (98.7%), AC (91.7%), FPR (1.0%) RF, SVM, GBT
Stokes et al. [30] VBScripts 240,504 Detection TPR (69.3%), FPR (1.0%) LSTM, CNN
Ours (Command-level) Linux shell 190,897 Detection AC (99.89%), FNR (0.08%), FPR (0.13%) DNN, SVM
Ours (Binary-level) Linux shell 2,891* Detection AC (99.83%), FNR (0.13%), FPR (0.20%) DNN, SVM

VI. CONCLUSION

We proposed ShellCore, a machine learning-based approach
to detect shell commands used in IoT malware. We analyze
malicious shell commands from a dataset of 2,891 IoT mal-
ware samples, along with a dataset of benign shell commands
assembled corresponding to benign applications. ShellCore
leverages deep learning-based algorithms to detect malicious
commands and files, and NLP-based approaches for feature
creation. ShellCore detects individual malicious commands
and malware with an accuracy of more than 99%, with low
FPR and FNR, when detecting malware. The results reflect
that despite a comparatively low detection rate for individual
commands, the proposed model is able to detect their source
with high accuracy.

REFERENCES

[1] Google. (2017) Nest cam iq indoor: State-of-the-art smart. Available at
[Online]: https://tinyurl.com/yatod9zp.

[2] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “Cspot:
portable, multi-scale functions-as-a-service for iot,” in Proceedings of
the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 236–249.

[3] S. Y. Jang, Y. Lee, B. Shin, and D. Lee, “Application-aware iot camera
virtualization for video analytics edge computing,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2018, pp. 132–144.

[4] L. H. Newman. (2018) Github survived the biggest DDoS attack
ever recorded. Available at [Online] : https://www.wired.com/story/
github-ddos-memcached/.

[5] KrebsOnSecurity. (2016) Hacked cameras, DVRs powered todays mas-
sive internet outage. Available at [Online]: https://tinyurl.com/zxrfm36.

[6] N. Wells, “Busybox: A swiss army knife for Linux,” Linux Journal, vol.
2000, no. 78es, p. 10, 2000.

[7] NVD. (Retrieved, 2018) Nvd vulnerability metrics. Available at [Online]
: https://nvd.nist.gov/vuln-metrics/cvss.

[8] Developers. (Retrieved, 2010) Cve-2010-4258: Turning denial-of-service
into privilege escalation. Available at [Online]: https://tinyurl.com/
y8ex6ltj.

[9] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: state-of-the-art defenses and
open problems,” in Proceedings of the Asia Pacific Workshop on Systems,
APSys, 2011, p. 5.

[10] J. Uitto, S. Rauti, J. Mäkelä, and V. Leppänen, “Preventing malicious
attacks by diversifying Linux shell commands,” in Proceedings of
the 14th Symposium on Programming Languages and Software Tools,
SPLST, 2015, pp. 206–220.

[11] J. C. Matherly, “Shodan the computer search engine,” Retrieved, 2009.
[12] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proceedings of the 26th USENIX Security Symposium, Vancouver, BC,
Canada, Aug. 2017, pp. 1093–1110.

[13] L. H. Chiang, E. L. Russell, and R. Braatz, “Fault detection and
diagnosis in industrial systems,” vol. 12, 2001.

[14] H. Uguz, “A two-stage feature selection method for text categorization
by using information gain, principal component analysis and genetic
algorithm,” Knowledge-Based Systems, vol. 24, no. 7, 2011.

[15] I. Steinwart and A. Christmann, Support vector machines. Springer
Science & Business Media, 2008.

[16] I. Guyon, B. E. Boser, and V. Vapnik, “Automatic capacity tuning of
very large vc-dimension classifiers,” in Proceedings of the Advances in
Neural Information Processing Systems, NIPS, 1992, pp. 147–155.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[18] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT
threats,” Journal of Information Processing, vol. 24, pp. 522–533, 2016.

[19] M. Koch, “An introduction to Linux-based malware,” SANS Institute
InfoSec Reading Room, 2015.

[20] D. Geer, “Malicious bots threaten network security,” IEEE Computer,
vol. 38, no. 1, pp. 18–20, 2005.

[21] A.-D. Schmidt, H.-G. Schmidt, J. Clausen, K. A. Yuksel, O. Kiraz,
A. Camtepe, and S. Albayrak, “Enhancing security of linux-based
android devices,” in Proceedings of 15th International Linux Kongress,
2008.

[22] A. Wang, A. Mohaisen, and S. Chen, “Xlf: A cross-layer framework
to secure the internet of things (iot),” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 1830–1839.

[23] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and
D. Balzarotti, “The tangled genealogy of iot malware,” in Annual
Computer Security Applications Conference, 2020, pp. 1–16.

[24] UPX: the Ultimate Packer for eXecutables. Available at [Online]: https:
//upx.github.io/.

[25] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis, “No
honor among thieves: A large-scale analysis of malicious web shells,”
in Proceedings of the 25th International Conference on World Wide Web,
WWW, 2016, pp. 1021–1032.

[26] Y. Tian, J. Wang, Z. Zhou, and S. Zhou, “Cnn-webshell: Malicious
web shell detection with convolutional neural network,” in Proceedings
of the VI International Conference on Network, Communication and
Computing, ICNCC, 2017, pp. 75–79.

[27] G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “AST-based deep learning
for detecting malicious powershell,” in Proceedings of the Conference
on Computer and Communications Security, CCS, 2018, pp. 2276–2278.

[28] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious PowerShell
commands using deep neural networks,” in Proceedings of the Asia Con-
ference on Computer and Communications Security, AsiaCCS, Incheon,
Korea, 2018, pp. 187–197.

[29] Y. Li, J. Huang, A. Ikusan, M. Mitchell, J. Zhang, and R. Dai,
“Shellbreaker: Automatically detecting php-based malicious web shells,”
Computers & Security, vol. 87, p. 101595, 2019.

[30] J. W. Stokes, R. Agrawal, and G. McDonald, “Detection of malicious
vbscript using static and dynamic analysis with recurrent deep learning,”
in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 2887–2891.

https://tinyurl.com/yatod9zp
https://www.wired.com/story/github-ddos-memcached/
https://www.wired.com/story/github-ddos-memcached/
https://tinyurl.com/zxrfm36
https://nvd.nist.gov/vuln-metrics/cvss
https://tinyurl.com/y8ex6ltj
https://tinyurl.com/y8ex6ltj
https://upx.github.io/
https://upx.github.io/

11

[31] A. Anwar, H. Alasmary, J. Park, A. Wang, S. Chen, and D. Mohaisen,
“Statically dissecting internet of things malware: Analysis, characteri-
zation, and detection,” in International Conference on Information and
Communications Security, ICICS. Springer, 2020, pp. 443–461.

[32] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on linux-based iot devices
with honeycloud,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys.
ACM, 2019, pp. 482–493.

[33] C. D. McDermott, F. Majdani, and A. Petrovski, “Botnet detection in
the internet of things using deep learning approaches,” in International
Joint Conference on Neural Networks, IJCNN. IEEE, 2018, pp. 1–8.

[34] A. Kumar and T. J. Lim, “EDIMA: early detection of iot malware
network activity using machine learning techniques,” in 5th IEEE World
Forum on Internet of Things, WF-IoT. IEEE, 2019, pp. 289–294.

[35] E. Bertino and N. Islam, “Botnets and Internet of Things security,” IEEE
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[36] M. Hossain, R. Hasan, and S. Zawoad, “Probe-IoT: A public digital
ledger based forensic investigation framework for IoT,” in Proceedings
of the IEEE Conference on Computer Communications Workshops,
INFOCOM, 2018.

[37] R. Montella, M. Ruggieri, and S. Kosta, “A fast, secure, reliable, and
resilient data transfer framework for pervasive IoT applications,” in
IEEE Conference on Computer Communications Workshops, INFOCOM
, 2018, pp. 710–715.

[38] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing Linux malware,” in IEEE Symposium on Security & Privacy, S&P,
2018.

[39] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,

A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and Detecting
Emerging Internet of Things Malware: A Graph-based Approach,” IEEE
Internet of Things Journal, 2019.

[40] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based iot mal-
ware detection systems,” in 39th IEEE International Conference on
Distributed Computing Systems, ICDCS, 2019, pp. 1296–1305.

[41] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar,
D. Nyang, and D. Mohaisen, “Soteria: Detecting adversarial examples in
control flow graph-based malware classifier,” in 40th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2020, pp. 1296–
1305.

[42] J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen, D. Nyang, and
A. Mohaisen, “Honor among thieves: Towards understanding the dy-
namics and interdependencies in iot botnets,” in 2019 IEEE Conference
on Dependable and Secure Computing (DSC), 2019, pp. 1–8.

[43] Y. Jia, Y. Xiao, J. Yu, X. Cheng, Z. Liang, and Z. Wan, “A novel
graph-based mechanism for identifying traffic vulnerabilities in smart
home iot,” in 2018 IEEE Conference on Computer Communications,
INFOCOM. IEEE, 2018, pp. 1493–1501.

[44] Y. Wan, K. Xu, G. Xue, and F. Wang, “Iotargos: A multi-layer security
monitoring system for internet-of-things in smart homes,” in 39th IEEE
Conference on Computer Communications, INFOCOM. IEEE, 2020,
pp. 874–883.

[45] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “Iotgaze:
Iot security enforcement via wireless context analysis,” in 39th IEEE
Conference on Computer Communications, INFOCOM. IEEE, 2020,
pp. 884–893.

	I Introduction
	II Problem Statement and Approach Overview
	II-A Problem Statement
	II-B A High-level Overview of Our Approach

	III Our Detection System: ShellCore
	III-A Feature Extraction and Reduction
	III-A1 Term-level NLP-based model
	III-A2 Character-level NLP-based Model
	III-A3 Feature Representation
	III-A4 Bag-of-Words as Command Embedding
	III-A5 Encoding Syntax
	III-A6 Feature Reduction

	III-B Classification Methods
	III-B1 Deep Neural Networks (DNN)
	III-B2 Support Vector Machine (SVM)

	III-C Term- and Character-level NLP-based Approaches
	III-C1 Term-level NLP-based Model
	III-C2 Character-level NLP-based model

	IV Evaluation and Discussion
	IV-A Malicious Dataset and Commands Extraction
	IV-B Benign Dataset and Commands Extraction
	IV-C Evaluation Settings and Metrics
	IV-C1 Dataset
	IV-C2 Parameters Tuning
	IV-C3 K-Fold Cross-Validation
	IV-C4 Evaluation Metrics

	IV-D Detecting Malicious Commands
	IV-E Malware Detection
	IV-E1 Dataset
	IV-E2 Model Training and Detection Performance

	IV-F Discussion
	IV-F1 The Use of Shell as a Weapon
	IV-F2 Detecting Individual Shell Commands
	IV-F3 Malware Detection
	IV-F4 Limitations
	IV-F5 Applications

	V Related Work
	V-1 Shell Commands
	V-2 Web Shell
	V-3 IoT Malware Detection

	VI Conclusion
	References

