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Abstract—Mobile devices and technologies have become in-
creasingly popular, offering comparable storage and computa-
tional capabilities to desktop computers allowing users to store
and interact with sensitive and private information. The security
and protection of such personal information are becoming more
and more important since mobile devices are vulnerable to
unauthorized access or theft. User authentication is a task of
paramount importance that grants access to legitimate users at
the point-of-entry and continuously through the usage session.
This task is made possible with today’s smartphones’ embedded
sensors that enable continuous and implicit user authentication
by capturing behavioral biometrics and traits. In this paper,
we survey more than 140 recent behavioral biometric-based
approaches for continuous user authentication, including motion-
based methods (28 studies), gait-based methods (19 studies),
keystroke dynamics-based methods (20 studies), touch gesture-
based methods (29 studies), voice-based methods (16 studies), and
multimodal-based methods (34 studies). The survey provides an
overview of the current state-of-the-art approaches for contin-
uous user authentication using behavioral biometrics captured
by smartphones’ embedded sensors, including insights and open
challenges for adoption, usability, and performance.

Index Terms—Sensor-based Authentication, Continuous Au-
thentication, Mobile Sensing, Smartphone Authentication.

I. INTRODUCTION

SMARTPHONES have been witnessing a rapid increase in
storage and computational resources, making them an in-

valuable instrument for activities on the internet and a leading
platform for users’ communication and interaction with data
and media of different forms. Moreover, the current edge and
cloud computing services available to users have increased the
reliance on mobile devices for mobility and convenience, revo-
lutionizing the landscape of technologies and methods of con-
ducting transactions [1]. The continuous user authentication
is an implicit process of validating the legitimate user based
on capturing behavioral attributes by leveraging resources and
built-in sensors of the mobile device. Users tend to develop
distinctive behavioral patterns when using mobile devices,
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which can be used for the authentication task. These patterns
are implicitly captured as users interact with their devices
using behavioral features calculated from a stream of data,
such as interaction and environmental information and sen-
sory data. Continuous authentication methods are also called
“transparent, implicit, active, non-intrusive, non-observable,
adaptive, unobtrusive, and progressive” techniques [2], [3].
Traditionally, continuous authentication methods operate as
a support process to the conventional authentication meth-
ods, e.g., using secret-based authentication or physiological
biometrics, such as prompting users to re-authenticate when
adversarial or unauthorized behavior is detected.

Recently, the field of continuous authentication has been
gaining increasing interest, especially with the expansion of
storage and computational resources and the availability of
sensors that can make the implicit authentication very accurate
and effective. Using sensors-based authentication methods
offers convenient and efficient access control for users. This
paper surveys recent and state-of-the-art methods for contin-
uous authentication using behavioral biometrics. We aim to
shed light on current state and challenges facing the adoption
of such methods in today’s smartphones.
Conventional vs. Biometric Approaches. To date, vendors of
mobile devices have adopted both knowledge-based schemes
and physiological biometrics as the primary security method
for accessing the device. Knowledge-based approaches rely
on the knowledge of the user; i.e., the user must provide
certain information such as numeric password, PIN, graphical
sequence, or a picture gesture [4], to access a device [5].
Despite their simplicity, ease of implementation, and user
acceptance, such approaches suffer from several shortcomings
such as the inconvenience of frequent re-entering (especially
when the knowledge used are long enough to convey strong
security) and several adversarial attacks (e.g., shoulder surfing
and smudge attacks) [6]–[10]. Another issue with knowledge-
based authentication is the underlying assumption of having
equal security requirements for all applications [11]. For exam-
ple, accessing financial records and texting are given the same
level of security. Using a knowledge-based authentication on
smartphones falls short on delivering application-specific secu-
rity guarantees [12], especially observing the recent emergence
of adaptable biometric authentication that account for envi-
ronmental factors to adapt and select the suitable sensors for
authentication (e.g., using fingerprint sensor when the lighting
condition does not allow for face recognition) [13]. Even
when using more complicated implementations of knowledge-
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based approaches, e.g., Yu et al.’s [14] implementation of 3D
graphical passwords which can be easier to remember and
possibly providing larger password space, they still inherit
the same drawbacks. In fact, in a study by Amin et al. [9],
graphical sequences (2D patterns) are shown to be as easier to
predict as textual passwords since 40% of patterns begin from
the top-left node and the majority of users use five nodes out of
the nine nodes. Another example of sophisticated knowledge-
based schemes is introduced by Shin et al. [15], which includes
changing the colors of six circles by touching them repeatedly
up to seven times. Once all the circles’ colors fit the correct
combination, user authentication is granted. Even though this
allows for harder security (especially when enabling a larger
number of circles and colors), it still requires memorizing
such complex combinations, which is the main disadvantage
in knowledge-based approaches. To overcome the need for
memorizing complex combinations, Yang et al. [16] proposed
free-form gestures (doodling) as a user validation scheme,
where users are to enter any draw with any number of
fingers. The authors showed that using free-form gestures
enabled a log-in time reduction reached 22% in comparison
to textual passwords while maintaining higher usability and
search space. However, the authors have not addressed other
security concerns such as shoulder surfing and smudge attacks.

Many researchers have attempted to overcome the core
problems of knowledge-based authentication by coupling such
methods with biometric-based methods. Using biometric infor-
mation improves both the accuracy and usability of the authen-
tication process. Such integration can be done by measuring
the keystroke dynamics or gestures when connecting, changing
the order, or selecting images [17]. The shortcomings of
knowledge-based authentication approaches motivate for using
stronger and easier authentication schemes such as biometrics.
Physiological biometrics provide unquestionable precision of
user authentication with a convenient and simple approach.
For example, most current smartphones are equipped with
a fingerprint recognition module as reliability and a cost-
effective method for user authentication [3], [18], [19].

Physiological biometrics-based authentication techniques
show high efficiency, accuracy, and user acceptance [3], [12],
[20]. However, all of these techniques necessitate the user’s
knowledge of the service since the user must interact with
the biometric sensor and be aware of the biometric capturing
process. Similar to knowledge-based authentication schemes,
physiological biometrics, e.g., face, fingerprint, periocular, and
iris, can provide point-of-entry authentication and fall short of
offering implicit and transparent authentication.
Motivation. It is obvious that knowledge-based and phys-
iological biometric-based methods are successful for user
validation, but they fall short on delivering continuous and
transparent authentication. Moreover, physiological biometrics
are mostly hardware-dependent. Behavioral biometrics show
higher potential to meet all requirements for an efficient
authentication system. In addition to all benefits of adopting
behavioral biometrics, they are a suitable solution for “user
abandonment” [21] protection, or when the legitimate user of
the unlocked device is not present. These many advantages of
behavioral biometrics-based authentication have shown to be

influential for user adoption since a survey by Crawford and
Renaud [10] demonstrated that 90% of the study’s participants
favored behavioral biometrics-based transparent authentica-
tion. Hence, the literature shows a remarkable interest in
adopting various behavioral modalities, such as keystroke
dynamics, touch gestures, motion, voice, etc., for transparent
user authentication on mobile devices.

This paper focuses on behavioral continuous authentication
and multimodal methods that may incorporate physiological
biometrics to harden security and boost the performance of
the authentication scheme. For readability, we list the abbre-
viations used in this paper in Table II.
Other Related Surveys. There are several surveys that have
addressed specific modalities, e.g., keystroke dynamics [22]–
[24], voice-based speaker identification [25], multimodal au-
thentication [2]. Moreover, there are surveys that address tra-
ditional biometric-based, i.e., [8], [26], general authentication
schemes, i.e., [2], [3], and authentication protocols and OS-
related security [27]. This study provides a contemporary
survey for sensor-based continuous authentication on smart-
phones, differing in scope, time, and range of surveyed works.
Table I shows a summary of features of several surveys in the
field of user authentication, highlighting scope and modalities.
Contribution. This work contributes to the mobile continuous
user authentication in several aspects:
• Survey more than 140 works on continuous user authenti-

cation methods, categorizing them into six behavioral and
physiological biometrics groups (motion, gait, keystroke
dynamics, gesture, voice, and multimodal).

• Present the studies of each biometric modality in a table
format, comparing works by the modality, sensors, and
the used authentication algorithm, in addition to the data
collected, user sample size, and six evaluation metrics. Such
comparison provides ease in understanding each work and
how it compares to others in the field.

• Give insights and challenges for different biometric meth-
ods, highlighting the possible future work and existing
common gaps within the literature.

Organization. This survey is organized as follows: we dis-
cuss the system design of continuous user authentication,
including biometric modalities, user enrollment, and verifi-
cation techniques, and evaluation metrics in Section II. The
user authentication system is categorized into six groups:
motion-based authentication is discussed in Section III, gait-
based authentication in Section IV, followed by keystroke
dynamics-based authentication in Section V. Touch gesture-
based and voice-based authentication methods are described
in Section VI and Section VII, respectively. The multimodal-
based authentication is described in Section VIII. Finally, we
conclude in Section IX.

II. CONTINUOUS AUTHENTICATION: DESIGN

Numerous studies have explored various methods for con-
tinuous user authentication leveraging modern mobile tech-
nologies and embedded sensors to model users’ behavior. The
deployment of sensors on today’s mobile devices have enabled
a variety of applications, such as modeling human behavior
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TABLE I: Summary of the related surveys in the field of user authentication, highlighting the features for each work.

Year Refereces System
Design

Protocols
and

Security

Traditional
Methods

Motion-based
Modalities

Gait-based
Modalities

Keystroke
Dynamics-based

Modalities

Touch
Gestures-based

Modalities

Voice-based
Modalities

Multiple
Modalities

[8] 2005 19 7 3 3 7 7 7 7 7 7
[24] 2011 72 3 7 7 7 7 3 7 7 7
[22] 2013 163 3 3 3 7 7 3 7 7 7
[23] 2013 56 7 7 3 7 7 3 7 7 7
[2] 2016 150 3 3 3 7 7 7 7 7 3
[26] 2016 33 7 7 3 7 7 7 7 7 7
[3] 2016 191 3 7 3 3 3 3 3 3 3
[25] 2017 214 3 7 7 7 7 7 7 3 7
[27] 2018 36 3 3 3 7 7 7 7 7 7

Ours 2020 187 3 3 3 3 3 3 3 3 3
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Fig. 1: Biometric-based authentication modalities are catego-
rized into physiological biometrics, behavioral biometrics, and
user profiles.
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Fig. 2: Behavioral biometrics are categorized into several
modalities. The combination of the modalities provides a
multimodal user authentication.

[28], [29], user authentication [30]–[34], activity and action
recognition [28], [35], [36], and healthcare monitoring [37],
[38], among others [39], [40]. In this paper, we show recent
user authentication methods that use mobile sensory data to
capture users’ behavioral biometrics.

A. Used Biometric Modalities

Several modalities are used for biometric-based authentica-
tion, including physiological biometrics (e.g., face, fingerprint,
iris, etc.) and behavioral biometrics (e.g., keystroke dynamics,
touch gestures, voice, motions, etc.). Figure 1 shows a catego-
rization of used modalities for user authentication tasks. Figure
2 shows the modalities and features of several behavioral
biometrics that are commonly used for user authentication
tasks. All these modalities are made possible by the embedded
mobile sensors, e.g., camera, microphone, accelerometers, and
gyroscopes, which contribute to the enrolment phase and the
verification part of the authentication process. Such sensors
provide sufficient information for accurate and secure au-
thentication, and adopting the proper utilization mechanism
would play an essential role in delivering efficient and usable
user authentication [41]. Using biometrics for authentication,
there are enormous studies that demonstrated the benefits and
security aspects of using such information to explore “on-the-
move biometry” [42].

B. User Authentication

Biometric-based user authentication leverages users’ behav-
ioral patterns for the identification or/and validation task using
a pattern recognition method. The authentication is commonly
referred to as a verification task in mobile security since the
authentication method validates the legitimate user given cer-
tain biometrics. The general framework for the authentication
system is illustrated in Figure 3.
Enrolment. There are two common approaches for user
enrollment in the user authentication system. For simplic-
ity purposes, we categorize enrollment techniques to 1
template-based enrollment and 2 model-based enrollment.
For template-based enrollment, the user submits several sam-
ples to establish templates for future comparison. This method
is popular among authentication methods using physiological
biometrics, where features can be more robust to intra-class
variations and more distinctive and scalable for a large popula-
tion. Once users’ templates are established, a similarity-based
technique is used to validate users after passing a similarity
threshold. Many considerations should be taken to ensure
the quality of templates for supporting the performance of
the system, such as the robustness and distinguishability of
features across users, removing outliers, and reducing noise
and redundancy. Moreover, security concerns should be ad-
dressed to ensure the security and privacy of users’ templates,
whether during enrollment and template registration, storing,
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Fig. 3: General framework of biometric-based authentication system. The framework includes two operations: user enrollment
and user verification. Both operations require data acquisition and feature extraction. User enrollment includes modeling of
the extracted data and storing, while user verification feed the extracted features to authentication algorithm to grant access
for legitimate users periodically.

retrieving, and processing for user authentication. For model-
based enrollment, users’ biometrics are collected for training
a machine learning model for user authentication, where the
authentication model decides whether the input data belongs to
the legitimate user. The common machine learning approaches
are used to establish users’ models, including data acquisition
and preprocessing, feature extraction and selection, and mod-
eling. The quality of features plays a significant role in the
performance of model-based authentication. Therefore, most
efficient methods include a feature evaluation and selection
process to extract the most distinctive features across a large
population. Recently, model-based approaches have been gain-
ing success for the user authentication task. However, several
challenges should be tackled for efficient adoption, such as
data collection size, training time, model size, and robustness
against possible adversarial attacks.
User Verification. After the user enrollment, the system
validates the legitimate user based on extracted features. The
verification can be at the point-of-entry and continuously
through the usage session. For continuous authentication, the
user verification process occurs periodically to grant access
to the legitimate user and to deny access to impostors. The
frequency of verification should be carefully selected to allow
sufficient biometric data acquisition and features extraction
process and to manage energy consumption. Depending on
the enrolment approach, the authentication algorithm follows
a similarity-based or probability-based scheme for user vali-
dation. Similarity-based techniques are used for measuring the
similarity of input data in comparison to a stored template for
a certain user. Traditionally, the verification implies a match
between a given data and a stored template to a certain degree.
The authentication system is responsible for giving access
to the legitimate user when presenting a biometric data that
matches the supposed template with similarity check higher
than a predefined threshold. The threshold is for accounting for
environmental and processing errors that could affect the read-
ing or calculating of the biometric data. Mathematically, a veri-
fication process can be viewed as C = True if f(x, y) ≥ t

and False otherwise, where f is a similarity measurement
between an input x and a template y, and t is a predefined
threshold. The genuine match is shown when C evaluates to
True, while the impostor match is when C is False.

Probability-based algorithms are used for model-based en-
rolment, where the authentication model signals a probability
for granting access to the legitimate user based on the input
data, the verification process is similar to the template-based
algorithm, except for using a pre-trained model for decision
making. The decision of the model C = True if g(x) ≥ th
and False otherwise, where g is the objective function of the
probability-based algorithm and th is a predefined threshold.
The user verification process runs periodically for continuous
user authentication, however, the frequency freq higher bound
is limited by minimum verification time to, where freq = 1

to
,

and to = td + tp + tc, where td is the time needed to acquire
sufficient data for verification, tp refers to the time required
for data preprocessing, and tc is classification period. While tc
can be mitigated by overlapping td and tp with tc, it should
be taken into account the computational power and battery
consumption needed for the verification process.

C. Authentication Evaluation Metrics
Biometric-based authentication systems are evaluated by

their ability to be generalized to a large population. This em-
phasis becomes more obvious when addressing mobile secu-
rity since the authentication system should account for a very
large and different population. There are several evaluation
metrics for evaluating authentication system performance. The
three most common metrics are the false accept rate (FAR),
the false reject rate (FRR), and the equal error rate (EER).
For the authentication task on a mobile device, a false accept
indicates that false access is granted to an intruder, while a
false reject indicates that the legitimate user is denied access
to the device. FAR is represented as Number of False Acceptance

Total Number of Attempts and
FRR is equal to Number of False Rejections

Total Number of Attempts . The EER is where the
FAR is roughly similar to the FRR, and it is a very popular
metric for interpreting system error.
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TABLE II: List of abbreviations in alphabetical order.

Term Definition

Ac Accelerometer
ANN Artificial Neural Network
Ca Camera
CC Cross-correlation
CI Confidence Interval
CNN Convolutional Neural Network
Co Compass
CPANN Counter Propagation Artificial Neural Network
CRM Cyclic Rotation Metric
DAE-SR Deep Auto Encoder and Softmax Regression
DSP Digital Signal Processing
DTW Dynamic Time Wrapping
EEH Electromagnetic Energy Harvester
EER Equal Error Rate
El Elevation
FA-NN Fast Approximate Nearest Neighbor
FAR False Acceptance Rate
FC Fuzzy Commitment
FFT Fast Fourier Transform
FLD Fisher Linear Discriminant
FPOS Frequent Pattern Outlier Score
FRR False Rejection Rate
FSR Force Sensing Resistor
GA Genetic Algorithm
GMM Gaussian Mixed Model
GPS Global Positioning System
Gr Gravity sensor
Gy Gyroscope
HMM Hidden Markov Model
HWS Healthcare Wearable Sensors
I-F Isolation Forest
KL Kullback-Leibler
k-NN k-Nearest Neighbor
KRR Kernel Ridge Regression
LDA Linear Discriminant Analysis
Li Light sensor
LMC Leap Motion Controller
LSTM Long Short Term Memory
Ma Magnetometer
MCF Multi-Classifier Fusion
MGGN Multivariate Gaussian Generative Model
MHD Modified Hausdorff Distance
Mi Microphone
MLP Multilayer Perceptron
MRC Cyclic Rotation Metric
Or Orientation
PCA Principle Component Analysis
PEH Piezoelectric Energy Harvester
Pr Pressure
PSO Particle Swarm Optimization
RBF Radial Basis Function
RBFN Radial Basis Function Network
RF Random Forest
SOM Self Organizing Maps
Sp Speaker
SRC Sparse Representation Classification
SVM Support Vector Machine
To Touch
VR Virtual Reality

Additional evaluation metrics for the authentication system
include true positive rate, true negative rate, false positive rate,
false negative rate, accuracy, precision, recall, and F1-score.
True positive rate and true negative rate indicate the rate of
correctly validating a legitimate user and denying an impostor,
respectively. False positive rate and the false negative rate is
the rate of which the system denies access for the legitimate
user and allows access for the impostor, respectively. Accuracy

is the proportion of true positives and negatives to the overall
tested data, including (true positives, true negatives, false pos-
itives, and false negatives). Precision indicates how frequently
the system correctly produces positive classifications, which is
calculated as the ratio of true positives to both true and false
positives. Recall indicates how frequently the system correctly
validates positive data, which is calculated as the ratio of true
positives to both true positives and false negatives.

D. Behavioral Biometrics and Smartphones’ Capabilities

Behavioral biometrics enable efficient implementation of an
authentication system that operates beyond the point-of-entry
access and continuously authenticate users without explicitly
asking their input. Therefore, behavioral biometrics improve
mobile security by providing user continuous and transparent
authentication process throughout the entire routine session.
Various techniques have been proposed for mobile user au-
thentication using behavioral usage and features by taking
advantage of the embedded sensors. Using sensory data,
a background process continuously and implicitly captures
user’s behavior to perform an active and transparent authen-
tication, e.g., using motion patterns [28], [43]–[47], gait [35],
[48]–[52], touch gestures [43], [53]–[57], electrocardiography
(ECG) [33], keystroke dynamics [19], [55], [58], [59], voice
[60]–[62], signature [63]–[65], and profiling [29], [31], [66].

Since today’s smartphones are well-equipped with a variety
of embedded sensors, such as motion sensors (e.g., gravity,
accelerometer, gyroscope, and magnetometer), environmental
sensors (e.g., light, temperature, barometer, and proximity),
and position sensors (e.g., GPS and compass), numerous
studies have leveraged these sensors for user authentication
[28], [31], [67], [68]. A study by Crawford et al. [69] shows
that behavioral biometrics reduce the demand for legitimate
authentication by 67% in comparison to knowledge-based
methods, i.e., adding a remarkable improvement in usability.
In terms of exploiting access privilege, the authors showed
that an intruder could perform more than 1,000 tasks if
successfully gain access to a mobile device using a knowledge-
based authentication scheme; however, the intruder can hardly
achieve one task if the mobile device uses a multimodal
behavioral biometrics-based method [69].
Smartphone Hardware and Software Capabilities. The
rapid advancements in mobile technologies have increased
the performance of smartphones by multiple folds in the
recent years. The computational capabilities of mobile de-
vices, including multi-core processors, GPUs, and Gigabytes
of memory, are comparable to those of normal-use desktop
computers. Hardware acceleration units, that are available
on most smartphones’ chipset platforms, e.g., Qualcomm,
HiSilicon, MediaTek, and Samsung, have enabled smartphones
to run sophisticated applications that go far beyond standard
and built-in phone functions. Moreover, today’s smartphones
are equipped with a variety of sensors, e.g., motion sensors, en-
vironmental sensors, and position sensors, that can provide an
accurate usage profiling for enhanced user experience. While
standard applications are no longer a challenge with such
capabilities, there are many performance requirements and
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TABLE III: Summary of the related work for motion-based user authentication. Each work is identified by the used modalities,
utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[70] Motion Gesture Ac SVM 8 7 3.67% 7 7 92.83% 7 GoogleG3 (A-4.4)
[71] Picking-up Motion Ac, Gy, Ma SVM 31 6.13% 3 3 7 7 7 7
[72] Motion & keystroke Ac, Gy, Pr SVM 100 1.25% 3 3 7 99.13% 7 7
[73] Motion Gesture Ac SVM 8 7 7 7 7 95.83% 7 GoogleNexus5 (A-4.0)
[74] In-air Handwriting LMC SVM 100 0.6% 3 3 7 7 7 7

[75] In-air Handwriting Ac, Gy RF 5 7 7 7 7 32.8†% 7 LG R Watch (A-Wear)
[76] Shacking Motion Ac, Gy DTW-LSTM 150 7 0.1% 7 7 96.87% 7 GoogleNexus4 (A-5.1)
[77] Free-form Gesture Ac, Gy DTW 7 3% 0.02% 10% 7 7 7 SamsungGalaxyS3 (A-4.3)
[78] In-air Handwriting Ac DTW∗ 34 2.5% 3 3 7 7 7 7
[79] In-air Handwriting Ac, Gy, Or MLP 7 7 7 7 84.5% 7 7 GoogleNexus6 (A-7.1.1)
[44] Pick-up Motion Ac CC 10 7 1.46% 6.87% 7 7 7 HTC-x
[80] Motion Gesture Ac, Gy Naı̈ve Bayes 10 7 7 7 7 83.6% 7 MotorolaMotoG (A-10.0)

k-NN 10 7 7 7 7 89.8% 7 MotorolaMotoG (A-10.0)
MLP 10 7 7 7 7 92.7% 7 MotorolaMotoG (A-10.0)
SVM 10 7 7 7 7 92.2% 7 MotorolaMotoG (A-10.0)

[81] Hand-movement Ac, Gy Naı̈ve Bayes 50 7 2% 7 7 89% 7 7
Ma, Or, Gy SVM 50 7 18% 7 7 74% 7 7

I-F 50 7 0% 7 7 93% 7 7
[82] Free motion Ac, Ma, Or SVM 4 7 7 7 7 90% 20s GoogleNexus5 (A-4.4)
[28] Free motion Ac, Ma, Gy SVM 10 3 7 7 3 97.95% 180s SamsungGalaxyS2 (A-2.3)
[67] Free motion Ac, Gy LSTM 47 7 3 3 3 96.7% 20s GoogleNexus5X (A-8.1)
[83] Free motion Ac, Gy SVM 100 8.33% 7 7 7 7 5s SamsungGalaxyS4 (A-4.4)
[47] Free motion Ac, Gy, Ma LSTM 84 0.09% 0.96% 8.08% 3 97.52% 0.5s 7
[84] Eye movement Ca SVM 20 10.61% 3 3 3 88.73% 10s GoogleNexus4 (A-5.1)
[32] Eye movement Ca SRC 30 6.9% 3 3 3 93.1% 130s RaspberryPi3ModelB

Ac: Accelerometer, Gy: Gyroscope, Ma: Magnetometer, Pr: Pressure, LMC: Leap Motion Controller, Or: Orientation, RF: Random Forest,
SVM: Support Vector Machine, DTW: Dynamic Time Wrapping, LSTM: Long Short Term Memory, MLP: Multilayer Perceptron,
CC: Cross-correlation, k-NN: k-Nearest Neighbor, I-F: Isolation Forest, SRC: Sparse Representation Classification.

challenges related to adopting continuous behavioral-based
authentication on smartphones, especially when using machine
learning approaches. Such challenges include the following.
1 OS-related Development Tools: The availability of such
tools to access and take advantage of the embedded processing
acceleration units plays a key role in developing continuous
authentication methods. Most the of surveyed systems are
implemented on Android-based platforms for the ease of
access to a variety of developing tools. Studying the effects
of the running OS system on obtaining and analyzing behav-
ioral biometrics for continuous authentication is an interesting
direction for future work that is out of scope of this study. 2
Machine Learning-based Authentication: While the current
computational and memory power of smartphones allow for
model inference, the enrolment phase can be a challenge
and may require a server-side training phase. Through our
survey of behavioral-based continuous authentication methods
using different modalities, we highlight insights and challenges
to advance the application of the addressed modality. We
note that an efficient implementation of behavioral biometric-
based authentication method should account for hardware-
and software-independent operation and network connectivity
differences to allow for successful system adoption [85].

Built-in Methods. Most of the built-in authentication methods
are intended for Point-of-Entry level, as continuous implicit
authentication is still evolving to meet a specific level of
standards. To the best of our knowledge, and based on our
survey, there has not been any commercial offering of a ded-
icated built-in continuous authentication method in customer-
grade smartphones, making the development of such methods
a possible gap to fill with research and development. We note
the barrier to the mass production of built-in authentication

capabilities in smartphones is that they need to meet a high
standard of security (e.g., FAR of 0.01% in the European
Union), which is not met by the current technology. In our
survey, we highlight a variety of challenges that can be
pursued to improve the current methods to rise to this level of
standards. As standards are clearly outlined for Point-of-Entry
authentication, there is still a lack of guidelines for adopting
continuous behavioral biometrics as an integral component
of the smartphone. However, many of the covered methods
are applicable as a running application, given today’s devices’
resources such as sensors, multi-core processors, and GPUs.

III. MOTION-BASED AUTHENTICATION

Most of today’s mobile devices are equipped with motion
sensors such as accelerometers and gyroscopes, which can be
a valid source for modeling users’ behavior. The accelerom-
eter provides the gravitational acceleration in three spatial
dimensions (axes), x, y, and z, measured in meter per second
squared, where the axes denote the vertical, and left-to-right
dimensions [86]. The gyroscope measures the angular rotation
in three dimensions, x, y, and z, in radians per second along
the axes [77]. Such sensory data provides a feature space that
enables the modeling of users’ movement and usage; therefore,
a variety of methods revolve around utilizing such data for
authentication and security.

Early exploitation of motion sensors includes air-written
signatures [44], [78] for which the user holds the device and
performs an air-written signature as the application is running
and recording the user’s motion. Traditionally, signatures are
well-known behavioral biometric commonly used for conduct-
ing official or commercial transactions [87]–[89]. However,
air-written signatures, while providing a valid method for user
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authentication, they operate as a point-of-entry authentication
and fail to offer covert, transparent, or continuous authentica-
tion. Laghari et al. [44] showed that a motion-based signature
had achieved a 1.46% FAR and 6.87% FRR when tested on
a dataset collected from motion sensors of ten participants’
smartphones. While such methods are robust against shoul-
der surfing attacks [90], they 1 require the user input and
engagement once authentication is required, 2 fail to offer
a continuous transparent authentication, and 3 are secret-
and knowledge-based since the user must memorize the used
signature. Similar implementations include waving gestures
[70], free-form gestures [77], and “picking-up” movement (i.e.,
picking the phone and raising it for answering a call) [71].

Ehatisham et al. [28] proposed a continuous authentication
system that identifies mobile users based on their activity pat-
terns using embedded sensors, i.e., accelerometer, gyroscope,
and magnetometer. The authors reported an analysis of the
system performance when the smartphone is placed at five
different locations on the user’s body. Amini et al. [67] intro-
duced DeepAuth, an LSTM-based user authentication method,
which uses sensory data extracted from the accelerometer
and gyroscope to model users’ behavioral patterns. The ex-
periments, which were carried out on data collected from
47 users with 10–13 minutes each, have shown an average
accuracy of 96.7% for 20 seconds authentication window. Zhu
et al. [91] introduced a technique based on users’ phone-
skating behavior captured by motion sensors. The experiments
reported an average EER of 1.2% using data of 20 users.
Lee et al. [82] introduced an SVM-based system for user
authentication using readings from three motion sensors to
achieve an average accuracy of 90% when using data collected
from four participants.

Exploring the effects of using different sensory data aug-
mentation process, Li et al. [83] examined five data augmen-
tation methods to authenticate users with SensorAuth. The
overall results of SensorAuth have shown an EER of 4.66%
when using 5 seconds window.

Using different motion-based modality, Zhang et al. [32]
introduced an eye movement-based implicit authentication
method based on eye movement in response to visual stimuli
when using a VR headset. The authors reported imposters’
detection accuracy of 91.2% within 130 seconds. Song et
al. [84] conducted a similar study on smartphones to track
individual eye movement with the built-in front camera to
investigate using gaze patterns for user authentication [84].
The authors reported an average system accuracy of 88.73%
when tracking users’ eye movement for 10 seconds.

The summary of the related work associated with motion-
based user authentication is listed in Table III. In this table,
the performance metrics and authentication time are reported
based on the original referenced paper. We follow this ap-
proach for all the following tables. Most of the studies use
embedded motion sensors such as accelerometer, gyroscope,
and orientation sensors. Using motion-based methods for user
authentication allowed an authentication accuracy of up to
99.13% using SVM trained on sensory data collected from
motion sensors [72].
Insights and Challenges. While motion-based user authen-

tication methods can detect and classify legitimate users, it
has been shown that using the motion-based authentication
alone achieves a relatively lower accuracy (up to 96.87%) in
comparison with methods that incorporate multiple modalities.
For example, using the keystroke dynamics along with motion
sensors, i.e., as an indication of active usage of the device,
enables a higher authentication accuracy [72]. Note that some
motion-based modalities, e.g., waving gestures, free-form ges-
tures, motion-based signature, in-air writing, fail to offer a
covert continuous authentication. Therefore, numerous studies
have explored other modalities that rely on behavioral biomet-
rics captured by the motion sensors and wearable devices to
implement a transparent continuous authentication. Handling
information from multiple sensors and sources, e.g., wearable
devices, for an implicit authentication is a challenging task
that requires several on-device data preprocessing techniques,
temporal data alignment, and accurate modeling and matching.

Common open challenges of using motion-based continu-
ous authentication on smartphones include the following. 1
Power Consumption: Intuitively, continuous authentication
schemes, in general, consume power. This consumption is due
to multiple processing components of the adopted method, data
collection and sampling, feature extraction, model inference,
and matching algorithms. For example, a study by Lee et al.
[68] shows that continuously querying of sensors data at 50Hz
sampling rate for 12 hours can consume up to 5% of the battery
life even without active usage (i.e., the device is locked).
Using a higher sampling rate can result in significantly higher
power consumption [68], [108]. Note that power consumption
varies from a device to another, considering the hardware
configurations and processing units. For example, a study by
[108] shows that the power consumption of running RiskCog
for three hours with a 50Hz data sampling rate on three devices
as follows: Samsung N9100 (4.4%), Sony Xperia Z2 (3.6%),
and MI 4 (4.2%). 2 Computation and Memory Overhead:
Motion-based continuous authentication requires continuous
collection and processing of data as well as high-frequency
authentication via model or matching algorithm inference.
Moreover, data records within the collection timeframe and
predefined operational thresholds increase the memory over-
head. Optimizing the computational and memory requirements
for motion-based schemes is considered an open challenge. 3
Adversarial Attacks: Motion-based authentication schemes
can be vulnerable to attacks, including observation-based
attacks (e.g., observing and reproducing in-air handwriting
and gestures) [109]–[111], and sensor-based inference at-
tacks (e.g., sensor-based side-channel inference attacks) [112]–
[116]. While behavioral biometrics can be accurately captured
by sensors, sensors data can be collected by a variety of
applications that may present a threat to the adopted modality.
Addressing such attacks is an interesting and an open research
direction.

IV. GAIT-BASED AUTHENTICATION

Gait recognition has gained increased interest in recent
years, especially with the vast adoption of mobile and wearable
sensors. Gait recognition is defined as the process of identi-
fying an individual by the manner of walking using computer
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TABLE IV: Summary of the related work for gait-based user authentication. Each work is identified by the used modalities,
utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[92] Gait Camera k-NN 20 3.54% 3 3 7 87.5% 7 7
[93] Gait MRC – ankle k-NN 21 5% 3 3 7 85.7% 7 7

MRC – hip k-NN 100 13% 3 3 7 73.2% 7 7
MRC – pocket k-NN 50 7.3% 3 3 7 86.3% 7 7
MRC – arm k-NN 30 10% 3 3 7 71.7% 7 7

[94] Gait FSR FLD 10 7 5.07% 7 7 88.8% 0.127s ComputerSimulation
[86] Gait Ac Guidelines 7 7 7 7 7 7 7 7
[95] Gait Ac SVM 11 7 7 7 7 92.7% 7 GoogleNexusOne (A-2.1)
[96] Gait Ac SVM 14 7 7 7 7 91.33± 0.67% 7 LGOptimusG (A-4.1.2)
[97] Gait Ac CC 36 7% 3 3 7 3 7 7
[98] Gait Ac DTW-SVM 51 33.3% 3 3 3 53% 7 GoogleG1 (NA)
[99] Gait Ac CRM 48 21.7% 3 3 3 53% 30s MotorolaMilestone (A-2.2)
[100] Gait Ac k-NN 36 8.24% 7 7 7 7 1.7m MotorolaMilestone (A-2.2)
[101] Gait Ac FC 38 3.5% 0 16.18% 7 7 7 7
[102] Gait Ac–In-hand CC 31 17.2% 7 7 7 7 7 7

Ac–Chest CC 14.8% 7 7 7 7 7 7
Ac–Hip CC 14.1% 7 7 7 7 7 7
Ac–In-hand FFT 14.3% 7 7 7 7 7 7
Ac–Chest FFT 13.7% 7 7 7 7 7 7
Ac–Hip FFT 16.8% 7 7 7 7 7 7

[103] Gait Ac HMM 48 6.15% 3 3 3 7 33s MotorolaMilestone (A-2.2)
[104] Gait Ac, Gy, Co, PEH, EEH PMSSRC 20 6–12.1% 3 3 3 96% 1.6ms SensorTag (Contiki-3.0)
[105] Gait Ac, Gy, Camera Matching 10 7 3 3 3 91% 15-75s ComputerSimulation

20 20.8% 3 3 3 81.3%
30 7 3 3 3 7

[106] Gait Ac, Gy, Ma SVM & RF 50 7 7 7 7 3 6.4s GoogleNexus5 (A-4.4)
[107] Gait Ac, Gy, Ma CC–FC 15 5.5% 3 3 7 95% 12s ComputerSimulation

MRC: Cyclic Rotation Metric, FSR: Force Sensing Resistor, Ac: Accelerometer, Gy: Gyroscope, Co: Compass, PEH: Piezoelectric Energy Harvester,
EEH: Electromagnetic Energy Harvester, Ma: Magnetometer, SVM: Support Vector Machine, RF: Random Forest, DTW: Dynamic Time Wrapping,
CC: Cross-correlation, k-NN: k-Nearest Neighbor, FLD: Fisher Linear Discriminant, CRM: Cyclic Rotation Metric, FC: Fuzzy Commitment,
FFT: Fast Fourier Transform, HMM: Hidden Markov Model, PMSSRC: Probability-based Multi-Step Sparse Representation Classification.

vision and/or sensory data collected from environmental and
wearable sensors [117]. Computer vision approaches for gait
recognition include segmenting the individual’s images while
walking and capturing the features that enable accurate recog-
nition [92]. While using sensory data, including 1 adopting
floor sensors where the gait-related features are captured once
the person walks on them [93], [94], 2 adopting wearable
sensors that aims to collect information that enables gait
recognition [93]. For mobile security and authentication, gait
recognition is usually done using wearable sensors, especially
the reading of the motion sensors (e.g., accelerometer) of the
mobile device, to enable continuous transparent authentication.

The general approach to gait recognition includes four steps,
1 data acquisition step in which the device is placed in a
certain way that enables the walk activity recording, 2 data
preprocessing step for reducing the introduced noise by the
data collection method or other environmental factors, 3 walk
detection step using either traditional cycle or machine learn-
ing techniques, and 4 analysis step [86]. Handling the data
acquisition process requires accurate readings from motion
sensors as the user places the device in a predefined manner
such as carrying the device inside of a pouch [100], in the
pants pocket [86], [101], or in hand [102]. Studies conducted
for mobile security using gait-based biometrics usually include
data collection from a population of size equal to or less
than 50 participants [100]–[102], and processed in controlled
conditions to minimize the effects of outside factors [103].
Even though some studies have attempted to capture gait-
related metrics from a real-world collection of sensory data,
such as the study by Nickel and Busch [103], generally, the
data collection requires an ideal setting at least in one aspect

(e.g., walking patterns or floor condition) [3].

The second step after acquiring the data, the preprocessing
step takes place to clean, reduce the noise, and normalize
the data. The major task in this regard is the noise reduction
considering various possible noise sources, such as environ-
mental and gravitational factors, floor conditions, and the
users’ shoes or other wearable materials. Since the gait-related
features rely heavily on readings from motion sensors, such
as the accelerometer, which are very sensitive, the adopted
method should account for further noise [101]. Such noises
can be handled using linear interpolation and filtering tech-
niques, while environmental noise adds much complexity to
the walk detection task, which can be minimized using activity
recognition to remove any irrelevant data [100]. For the walk
detection, cycles (i.e., the time between two paces bounded by
maximum and minimum threshold across the three axes) or
machine learning techniques are both utilized in the literature.
Cycle-based approaches are commonly used since the average
cycle length is easily and simply calculated to detect cycles by
moving forward or backward in intervals of the average cycle
length with some correction measurement. On the other hand,
machine learning-based approaches have shown to be accurate
for automatic walk detection [103]. Such techniques require
1) data collection module for sensory data readings, 2) data
preprocessing stage for handling and reducing possible noise,
and 3) walk detection model.

The final step of gait recognition is the analysis of the time
intervals, frequencies, or both. Using time intervals analysis,
some metrics can be extracted and studied, such as cycle statis-
tics, including the minimum, average, maximum acceleration
values, and cycle lengths and frequencies. Moreover, cycle



IEEE INTERNET OF THINGS JOURNAL 9

variance and stability are measured by acceleration moments
[86], [117]. Using frequency analysis, usually conducted using
Discrete or Fast Fourier Transforms, it has been shown that
the first few coefficients resulting from each conversion are
highly relevant for detecting distinctive gait patterns [86].

Wang et al. [92] and Gafurov et al. [93] used a k-NN model
to classify legitimate users using gait-based features, where
Wang et al. uses the camera to capture the user movement,
and Gafurov et al. captures the user movement using cyclic
rotation metric device attached to different places of the body
(ankle, hip, pocket, arm). Both studies achieved an accuracy of
above 85%, with EER of 3.54% and 5%, respectively. Multiple
studies used accelerometer as a standalone sensor to capture
user movement for user authentication task [86], [95]–[103].

Both Thang et al. [95] and Hoang et al. [96] collected data
of 11-14 users and used SVM-based models for capturing
user patterns, achieving nearly the same accuracy of 92%.
In addition, Hoang et al. [101] achieved an EER of 3.5%
by using a fuzzy commitment algorithm on a study sample
of 38 users, outperforming its counterparts. Others [104]–
[107] incorporated different sensors to capture the motion
aspects of the users, achieving an accuracy of up to 96% by
using accelerometer, gyroscope, compass, piezoelectric energy
harvester, and electromagnetic energy harvester [104]. The
summary of the gait-based user authentication methods is
shown in Table IV.
Insights and Challenges. Similar to motion-based user au-
thentication methods, gait-based methods do not achieve a
high relative accuracy nor precision in user authentication
tasks. Generally, gait-based user authentication methods are
feasible in specific applications, which requires capturing the
user’s gait traits while moving, e.g., player detection in a team-
based sport via wearable sensing devices. Applying gait-based
authentication for smartphone users requires addressing a
variety of challenges, such as the following. 1 Data Sources:
Collecting gait-related sensory data requires visual information
as well as motion information from multiple sensors. 2
Sensors Placement: As changing the placement of the device
can significantly change the sensory readings. 3 Adopting
Alternatives: As gait-based authentication fails to provide
continuous authentication when the user is not moving. 4
Usability: As the user state at the enrollment stage may differ
from the state the inference stage. Moreover, the gait-based
traits are highly dependent on the user’s physical state when
capturing the data. Such challenges may explain the relatively
low accuracy of the gait-based authentication methods.

V. KEYSTROKE-BASED AUTHENTICATION

One of the earliest behavioral authentication methods is
based on studying the keystroke dynamics. Most keystroke
dynamics-based methods are cost-effective and do not require
additional modules to operate [24]. During the usage of
the device, when a key input is required (e.g., texting), the
keystroke dynamics-based authentication method continuously
validates the user since behavioral dynamics can be distinctive
across users. Conducting authentication via keystroke dynam-
ics requires analyzing and capturing the distinctive features

and patterns of users’ keystrokes when using the device [22],
[23]. Common features include: 1 Keypress frequency, which
calculates the frequency of keypress events. 2 Key release
frequency, which calculates the frequency of key release
events. 3 Latency and hold time, which calculates the rates
of press-to-press, press-to-release (which is also known as the
hold time), release-to-release, and release-to-press events. 4
Finger’s pressure while touching the screen. 5 Pressed area
size by the user’s fingers. 6 Error rate, which is the frequency
of using backspaces or deletion option.

Using keystroke dynamics for authentication or user vali-
dation has been adopted on traditional computers before their
application to smartphones [118]. Even though it seems to
be an easier task to implement a keystroke dynamics-based
authentication on computers due to the less complex feature
space, Joyce and Gupta [119] showed the uniqueness of both
written signatures and typing behavior are originated from the
physiology of the neurological system.

Recent application of keystroke dynamics takes advantage
of embedded sensors (e.g., motion sensor on smartphones),
to improve the authentication accuracy, especially when there
the key-based input is unavailable [115], [129]. Another dis-
tinction between applying keystroke dynamics-based methods
on smartphones and computers is the large space of key-
based input in the smartphone since it includes touches and
swipes that meant for interacting with the applications without
typing textual content [120]. Several studies have addressed
the generalization of these methods to different types of input.
For instance, McLoughlin et al. [120] showed that using key
press and release frequencies and the latency between two
presses contribute greatly to establishing distinctive keystroke
behavior for users. The authors showed that the application
should account for the inconsistencies in recorded data by
introducing weights based on the variance of data (i.e., lower
variance gets higher weights). Their results show an accuracy
of more than 90%, establishing the validity of using keystroke
dynamics as a biometric for authentication with minimal
computational overhead and increased usability.

Buriro et al. [130] designed an authentication scheme based
on the user’s hand movements and timing features as they enter
ten keystrokes. The authors conducted experiments using data
collected from 97 participants and reported an authentication
accuracy of 85.77% and FAR of 7.32%. Similarly, Zahid et
al. [121] studied keystroke behavior of 25 users, including
features such as the hold time, error rate, and latency. The
authors suggested a fuzzy classifier to account for the diffused
features space and argued that presenting the classification task
of keystroke behavior as an optimization problem benefits the
robustness of the model when compared to similarity-based
methods [122]. Using a fuzzy classifier with Particle Swarm
Optimization and Genetic Algorithms, their proposed method
showed 0% FRR and 2% FAR, suggesting high security and
usability potential. However, keystroke dynamics are often
incorporated with other modalities for improving performance
and accuracy. For instance, Hwang et al. [123] suggested
including rhythm and tempo as components for studying
keystroke dynamics, i.e., a user is required to follow a distinct
and consistent timing pattern for accurate keystroke-based
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TABLE V: Summary of the related work for keystroke dynamics-based user authentication. Each work is identified by the
used modalities, utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[118] Keystroke Dynamics NA k-NN 63 7 7 7 7 83.22–92.14% 7 7
[119] Keystroke Dynamics NA Matching 33 7 0.25% 16.36% 7 7 7 7
[120] Keystroke Dynamics NA Distance & CI 3 7 3 3 7 7 7 RenesasH8S-2377
[121] Keystroke Dynamics NA RBFN

Fuzzy
PSO-Fuzzy
GA-Fuzzy

PSO-GA Fuzzy

25
25
25
25
25

7
7
7
7
7

36%
18.6%
8.09%
8.79%
2.07%

26.6%
19%

7.58%
7.94%
1.73%

7
7
7
7
7

7
7
7
7
7

7
7
7
7
7

7
7
7
7
7

[122] Keystroke Dynamics NA Distance 15 7 12.97% 2.25% 7 7 7 7
[123] Keystroke Dynamics NA Distance 25 4% 7 7 7 7 632-2151ms SamsungSCH-V740 (NA)
[124] Keystroke Dynamics NA SVM 10 7 7 7 98.7% 98.6% 7 7
[125] Keystroke Dynamics Ac, Gy k-NN 20 0.08% 7 7 7 7 200ms 7
[126] Keystroke Dynamics NA MLP 32 7 6.33% 4.89% 95.11% 94.81% 7 SamsungGalaxyS5 (A-4.4.2)
[19] Keystroke Dynamics NA SVM 24 1.42% 2% 1% 99% 99% 7 SamsungGalaxyS5 (A-4.4.2)
[127] Keystroke Dynamics Ac SVM 5 5.1% 7 7 7 97.9% 7 HuaweiP10 (A-7.0)
[128] Keystroke Dynamics NA DAE-SR 10 5% 7 7 91.8% 95% 7 7
[43] Keystroke Dynamics NA MLP 13 7 14% 2.2% 7 86% 7 7
[58] Keystroke Dynamics NA MCF 64 7 7 7 7 89.7% 7 7

Ac: Accelerometer, Gy: Gyroscope, CI: Confidence Interval, RBFN: Radial Basis Function Network, PSO: Particle Swarm Optimization, k-NN: k-Nearest Neighbor,
GA: Genetic Algorithm, DAE-SR: Deep Auto Encoder and Softmax Regression, MCF: Multi-Classifier Fusion, SVM: Support Vector Machine, MLP: Multilayer Perceptron.

authentication. For example, a given term can be entered digit
by digit separated with subsequent short and long pauses that
are controlled by tempo cues, e.g., a metronome for counting
pause intervals. In their study, the authors showed an average
improvement of about 4% in the EER evaluation metric when
using artificial rhythmic input with tempo cues in comparison
to natural rhythms. However, adopting such methods adds
complexity to the usability aspect.

Using smartphone embedded sensors to support keystroke
dynamics-based authentication has been repeatedly suggested
to improve the performance and to provide transparent authen-
tication. [124] proposed incorporating velocity-related metrics
to reach an accuracy of 98.6% for classifying data from ten
users using an SVM classifier. Similarly, Giuffrida et al. [125]
proposed incorporating keystroke data with motion sensors
data, namely, accelerometer and gyroscope, to conclude that
metrics obtained from the accelerometer data are more useful
than those obtained from the gyroscope. The authors showed
that combining features from motion sensors with keystroke
metrics provides similar results as adopting only the motion
sensors-related features alone, i.e., the study shows that sensor-
related features can be more useful than keystroke dynamics
in terms of authentication. However, obtaining and analyzing
high-frequency sensory data can be power consuming. Table V
shows a list of authentication methods based on keystroke dy-
namics. The proposed approaches show a promising direction
for using this modality for user authentication, achieving an
accuracy of up to 99% by Cilia et al. [19].

Insights and Challenges. Keystroke dynamics-based methods
have several advantages, such as (a) their high authentica-
tion accuracy that can reach up to 99%, (b) high power-
efficiency in comparison with other methods, and (c) hardware
independence, since these methods can operate with either
physical or on-screen keyboards. However, implementing a
keystroke dynamics-based approach can be challenging for
several reasons. 1 User Behavioral Changes: Capturing
keystroke dynamics as a behavioral modality under uncon-
trolled conditions, e.g., user’s activity (standing, walking, etc.),

user’s emotional or physical state change, and the in-use
application, is challenging and requires testing under these
non-trivial scenarios. 2 Feature Extraction and Selection:
The extracted metrics should be robust against noise and
behavioral changes. Considering the limited space of features,
recent studies have considered incorporating other modalities
to extend the feature space, thus allowing for the selection of
a distinctive user representation that can be generalized to a
relatively large population. 3 Adopting Alternatives: Since
these methods operate only when the user interacts with the
keyboard, the implicit authentication module should allow for
possible alternatives when the user uses the device without
typing (e.g., watching a video, placing a call, etc.). Other chal-
lenges can be related to typing with different languages and
whether the user’s typing behavior changes across languages,
which require further attention through further research.

VI. TOUCH GESTURE-BASED AUTHENTICATION

Using touch gestures as a biometric modality extend land-
scape of transparent authentication applications to include a
variety of devices with touchscreen unit (e.g., smartwatches,
digital cameras, navigation systems, and monitors) [3]. Several
studies have investigated the touch gestures as a behavioral
biometrics for continuous authentication since it can be conve-
nient and cost-effective. Touch gestures include swipes [131],
[148], flicks [132], [133], [136], slides [134]), and handwriting
[149]. The distinction between keystroke dynamics and touch
gestures can be summarized in the input form for users and
the method of input. The commonalities between the two
modalities are the space of improvement when accounting for
motion sensors [132], [135]. Therefore, many studies have
incorporated motion-based features to gesture-based meth-
ods [136]. Considering features from touch gestures enables
accurate authentication with an accuracy reaching to 99%
and minimal EER such as 0.03% when applying k-Nearest
Neighbors classifier or other distance-based classifiers [135].

Leveraging the abundance of information generated by the
operating system of smartphones, a large number of features
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TABLE VI: Summary of the related work for gesture-based user authentication. Each work is identified by the used modalities,
utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[131] Swipe Gesture NA ANN-CPANN 71 7 0.08% 0 7 7 7 7
[132] Flick Gesture AC, Gy SOM NA 7 7 7 7 92.8% 7 7
[133] Flick Gesture Or k-NN 16 6.85% 3 3 7 7 <100ms HTCWildfire (A-2.2)
[134] Slide Gesture NA SVM 60 0.01–0.02% 0.03% 0.05% 7 7 0.3s MotorolaME525 (A-2.2)
[135] Swipe Gesture Ac, Or MHD

DTW
104
104

0.31%
1.55%

3
3

7
7

3
3

7
7

7
7

SamsungGalaxyS2 (A-2.3)
SamsungGalaxyS2 (A-2.3)

[136] Flick Gesture Ac Naı̈ve Bayes 10 7 1.3% 8% 92% 98% 7 HTCDesire600 (A-4.3)
[137] Touch & keystroke NA k-NN 10 1% 7 7 7 99% 20ms SynapticTouchpad (NA)
[138] Keystrokes/Touch/Handwriting NA SVM-RBF 32 0.75–8.67% 7 7 7 3 7 SamsungGalaxyS2 (A-4.1.2)
[139] Gesture NA MGGM 20 3 7 7 7 89% 53ms GoogleNexus4 (A-4.3)
[140] Gesture NA PSO-RBFN 20 8.1% 2% 8.2% 7 7 7 SamsungGalaxyS2 (A-4.0.1)
[141] Swipe Gesture Or RF 40 0.2% 7 7 7 7 7 GoogleNexus7 (A-4.1.2)
[53] Touch Gesture NA RF 14 7 7 7 99.9% 99.9% 12.6s SamsungGalaxyS4 (A-4.4)
[142] Swipe Gesture NA RF 34 16.22–22.94% 7 7 7 7 7 7
[143] Touch Gesture NA DTW-k-NN 23 3 7 7 91% 7 7 SamsungGalaxyS3 (A-4.3)
[144] Touch Gesture NA RF 71 1.8% 0.1% 18.52% 7 7 0.77s HuaweiAscendMate (A-4.4)
[145] Touch Gesture NA RF 71 5.4% 7 7 7 7 7 SamsungTab210 (A-4.1)
[146] Touch Gesture NA RF NA 7 2.54% 1.98% 7 99.68% 7 7
[147] Touch Gesture NA Matching 30 7 7 7 93.01% 93.76% 7 7

Ac: Accelerometer, Gy: Gyroscope, Or: Orientation, ANN: Artificial Neural Network, CPANN: Counter Propagation Artificial Neural Network, RBFN: Radial Basis Function Network,
SOM: Self Organizing Maps, k-NN: k-Nearest Neighbor, SVM: Support Vector Machine, MHD: Modified Hausdorff Distance, RF: Random Forest,
DTW: Dynamic Time Wrapping, RBF: Radial Basis Function, MGGN: Multivariate Gaussian Generative Model, PSO: Particle Swarm Optimization.

can be extracted from touch gestures such as the reading from
the accelerometer, pressure, gravity, velocity, touch area, and
time-related measurements. Such features allow for accurate
calculation of the gesture statistics and developing patterns
for user authentication [116], [137]–[140]. Antal et al. [141]
extended the feature space of swipe gestures to include touch
duration, trajectory length, acceleration, average speed, touch
pressure, touch area, and gravity readings. Using data from
40 users, including 58 samples, the authors performed one and
two-class classification using multiple classifiers such as Bayes
Net, k-Nearest Neighbor, and Random Forests. The authors
reported that Random Forests showed an EER of 0.004%.
Their results showed that the device motion and positioning
are important factors in distinguishing users.

Since touch gestures are commonly known as soft bio-
metrics that could enable the recognition of gender and
proportional measures such as physical attributes including
hand size, forearm length, and height, they are beneficial in
criminal investigations. Miguel et al. [150] proposed studying
the swipe gesture for gender prediction using a variety of
features including the swipe’s length, width, touch area, pres-
sure, velocity, acceleration, start-to-end angle, and others. The
authors showed that applying a multi-linear logistic regression
classifier for gender prediction achieves an accuracy of 71%
when the direction of the swipe is down-to-up. Using a fusion
of swipe direction-based decision, the accuracy reaches 78%.
Similarly, Bevan and Fraser [151] investigated the relationship
between swipe gestures, thumb length, and gender. Using data
from 178 users performing one-hand gestures using the thumb,
the authors collected 21,360 samples of swipes in various
directions. Among the calculated features, the results showed a
strong correlation between thumb length and gestures, and they
reflected in the velocity, acceleration, and completion time.
Moreover, the study also showed that male users completed
the gestures at a higher speed than female users.

The landscape of using touch gestures as behavioral bio-
metrics for user authentication includes devices designed for

users with disabilities. For example, Azenkot et al. [152]
proposed PassChords, which designed for authenticating users
with vision impairments using a predefined sequence of screen
taps. Another application is proposed by [53] for users with
finger injuries, which uses the finger’s trajectory and posture
before touching the screen using its positioning and proximity.
For this application, the direct touch gesture (i.e., the contact
with the screen) is not fully required, and only the proximity-
related measurement is possibly feasible to authenticate users.

Several studies have shown that gesture-based authenti-
cation schemes are application-dependent, and gesture-based
data can vary significantly from one application to an-
other, which makes the generalization aspect of gesture-
based schemes for continuous authentication across differ-
ent applications is limited [142]–[144], [153]. Therefore, a
“context-aware” approach is a potential solution to generalize
gesture-based methods. Khan and Hengartner [12] showed
that the performance of gesture-based methods could be
improved by allowing context-aware implementation where
different applications control the tuning of features. To this
end, the authors used the Kullback-Leibler (KL) divergence
metric, which is shown to differ by application indicating
the importance of accounting and tuning the features based
on the used application. Using data of 32 users who were
instructed to use four different applications during the data
collection process, the experimental results showed that using
the “context-aware” approach improves the accuracy of the
device-centric approach.

Table VI shows a list of proposed gesture-based authenti-
cation methods using varieties of touch gestures and machine
learning models. Random forest, in particular, is among the top
achieving and adopted models in this modality-based method,
with an accuracy above 99% as shown in [146] and [53].

Insights and Challenges. Similar to keystroke dynamics-
based methods, gesture-based authentication methods have
several advantages, including (a) their high authentication ac-
curacy, which can reach up to 99.9%, (b) operating efficiently
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TABLE VII: Summary of the related work for voice-based user authentication. Each work is identified by the used modalities,
utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[154] Voice Ca, Mi Matching 27 7 7 3% 7 93% < 24.7s iPhone5S (iOS7)
[155] Voice Sp, Mi CC 21 1% 1% 7 7 99.34% 0.5s SamsungGalaxyNote5 (A-6.0)
[156] Voice Sp, Mi GMM 104 7 7 7 99% 95% 7 SamsungGalaxyS6 (A-5.0)
[157] Voice Mi PCA-SVM 18 5.4% 2% 7 93% 93.5% 7 ComputerSimulation
[158] Voice Mi DTW 15 7 1% 15% 7 88.6% 7 XiaomiRedmiNote3 (A-5.5)
[62] Voice Mi HMM 54 21.58% 7 7 3 7 0.07s SamsungGalaxyS5 (A-4.4)
[159] Voice Mi GMM 50 6.24% 3 3 7 7 10.76s ComputerSimulation
[160] Voice Mi GMM 48 6% 3 3 7 7 7 ComputerSimulation
[161] Voice Mi Similarity 12 1.01% 1% 7 99% 99.3% 7 SamsungGalaxyNote3 (A-6.0)

Ca: Camera, Mi: Microphone, Sp: Speaker, GMM: Gaussian Mixed Model, PCA: Principle Component Analysis,
CC: Cross-Correlation, SVM: Support Vector Machine, DTW: Dynamic Time Wrapping, HMM: Hidden Markov Model.

in terms of both power and computation, (c) conveying high
resilience against mimicry attacks since gesture-based modal-
ity incorporates multiple independent features, restricting the
ability of an impostor to successfully reproduce one feature
given another. Moreover, using a high sampling rate (i.e., small
timeframe) makes it difficult to observe and replicate the touch
gestures. However, several challenges should be considered,
including understanding users temporal behavioral changes,
applications preferences, users activity, users mobility, etc.

VII. VOICE-BASED AUTHENTICATION

Speaker identification using voice-related features has been
investigated extensively in the literature [25], [87]. Voice-
related features combine both physiological aspects (e.g.,
vocal tract and lips characteristics) and behavioral traits (e.g.,
emotion- or age-related tones), allowing the speak/voice anal-
ysis over large feature space [162]. Based on [163], there are
two approaches for using voice to authenticate/identify the
speaker, which are as follows. 1 Text-dependent approach,
in which users are authenticated based on the matching of
speaking a predefined phrase. Since the users speak a certain
phrase for authentication, this method is straightforward and
very accurate. However, it does not allow for transparent or
continuous authentication, and it is not a secret-based method.
2 Text-independent approach in which users are authenticated
based on features extracted from the voice regardless of
the spoken words. This approach allows higher flexibility,
especially in offering transparent authentication, where users
are unaware of the service. However, accurate text-independent
authentication accuracy faces different challenges due to the
dynamic changes in the feature space of voice input accounting
for the user condition and other environmental factors.

Speaker recognition using voice features follows the typ-
ical pattern recognition system, starting from data collec-
tion and preprocessing, going through the feature extraction
and selection, and ending with the modeling and pattern
recognition. Similar to conventional machine learning-based
systems, the quality of features contributes considerably to
the accuracy of the speaker recognition. Such features include
short-term spectral features, temporal and rhythmic, voice
source, prosodic, and conversation-level features [3]. Short-
term spectral characteristics represent the resonance attributes
of the vocal tract and often extracted with high frequency from

20 to 30 ms timeframes. Prosodic and temporal traits include
intonation and rhythmic patterns extracted from long time-
frames. Conversation-level features are high-level properties
extracted from the textual contents of spoken words, such as
word or phrase frequencies.

The quality of features is measured by their distinctive
nature and their robustness against possible introduced noise
(e.g., the user condition and environment) [164]. In this regard,
a study by Reynolds [163] showed that spectral features
provide high-quality, simple, and discriminative feature space.

Using the extracted features, a variety of models are utilized
for voice/speaker recognition, such as SVM and Gaussian
mixture models [164]. Early applications for voice recog-
nition include access control, personalization, and forensic
and criminal investigations [163]. The application landscape
has increased to include online banking (i.e., conducting a
transaction via voice communication as the voice recogni-
tion system transparently and continuously authenticate the
customer) [3]. While voice-based user authentication methods
capture the voice using the microphone, different works can
be distinguished by the data preprocessing and the utilized
machine learning algorithm. Zhang et al. [155] achieved an
accuracy of 99.34% with EER and FAR of 1% using the
cross-correlation method with an authentication time of half
a second on a sample size of 21 users. Additionally, using
the Gaussian mixed model, Kim et al. [159] and Johnson et
al. [160] achieved similar EER of around 6% on a sample
size of 50 and 48 respectively. Similarly, Lu et al. [156]
achieved an accuracy of 95% and TPR of 99% in conducting
user authentication tasks using the Gaussian mixed model
with a sample size of 104 users. Multiple machine learning
methods may be incorporated for user authentication tasks,
Wang et al. [157] used principle components analysis with
support vector machine to train data collected from 18 users,
achieving an EER of 5.4% and overall accuracy of 93.5%.
Using a simple approach may outperform powerful machine
learning algorithms in user authentication tasks, as Zhang et
al. [161] achieved an accuracy of 99.3% with EER of 1.01%
and FAR of 1% using sample similarity method. Table VII
shows several voice-based user authentication methods. The
listed voice-based methods show the validity of using this
modality for the user authentication task.
Insights and Challenges. The high availability of voice recog-
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nition systems enables a simple and accurate implementation
of voice-based authentication schemes. However, there are
many shortcomings when relying solely on the voice-based
modality for user authentication. Therefore, many studies
have employed voice in multimodal authentication approaches
[18], [62], [65], [159], [165]. These shortcomings include the
following. 1 Background Noise: Voice samples captured
by mobile devices usually contain noises, considering the
mobility and uncontrolled environmental conditions. 2 User
Physical and Emotional State: Changes in the voice caused
by emotions or illness (i.e., throat-related conditions) may
affect the performance of the system. 3 Adversarial Attacks:
The rise of adversarial examples suggests the possibility of
successfully crafting samples to fool the authentication model
and force it to grant access to imposters. 4 System Over-
head: Continuous voice-based user authentication methods
require voice commands and signatures to be captured and
analyzed periodically through a sophisticated system with
multiple stages that include data collection, noise reduction,
and voice recognition. Such processes introduce overhead in
terms of both power and computation. 5 Usability: Con-
sidering the user and environmental changes and the variety
of possible noise sources, voice-based methods may result in
high false acceptance and false rejection rates. Depending on
the sampling rate, the high false rejection rates can degrade
the usability and user experience. All of those issues require
further attention through additional research efforts.

VIII. MULTIMODAL AUTHENTICATION

Multimodal authentication systems have become increas-
ingly popular since relying on multiple modalities on offer
robust and accurate results in comparison to unimodal systems,
that consider only a single biometric modality. Such systems
offer hardened security, especially against adversarial attacks,
and deliver a flexible method for authentication considering
possible changes of the input data that result in problems in
the enrollment and validation phase [87], [183].

The implementation of multimodal authentication could
require a fusion of multiple data sources, extracted features,
or/and used algorithms and models. The literature shows
that multimodal biometric-based authentication schemes have
used different fusion approaches such as feature-level fusion,
used modeling algorithms fusion, and decision-level fusion.
1 Feature-level fusion includes combining features from
different modalities to be considered together as an input to the
modeling algorithm. Accounting for possible heterogeneous
resulting feature space from different sources, a normalization
process usually takes place. 2 Algorithm-level fusion includes
constructing an ensemble of models that are built based on
an individual of multiple biometric modalities. The ensemble
combines outputs by considering matching scores or voting
mechanism to help with the decision. 3 Decision-level fusion
occurs when decisions are generated by individual modalities
separately. The final decision considers all outputs and adopts
certain rules or voting to generate the final output.

Using multimodal authentication on smartphones is a feasi-
ble solution since today’s devices are equipped with a variety

of sensors that support the reading of several biometrics
[165]. However, several challenges should be considered when
implementing multimodal authentication, such as the input
data quality generated by different sources since poor data
results in poor performance, and the inclusion of multiple
data sources requires reading from different sensors, which
could be computationally-hungry and energy-expensive [184].
Addressing such challenges effectively allows multimodal
authentication to offer robust and secure access control [185].

Vildjiounaite et al. [102] proposed combining gait and voice
biometrics to increase the performance of user validation.
Using data samples of 31 users, the authors reported a decrease
in the error rates from 2.82%–43.09% and 13.7–17.2% using
the individual voice and gait recognition, respectively, to
1.97%–11.8% for adopting a multimodal system incorporating
both biometrics. However, the proposed method is event-
dependent and performs differently when the user motion
or speaking is different since the results show that such a
method is ineffective if the user is not speaking or speaking.
Zhu et al. [108] proposed an SVM-based method called
RiskCog that can validate users within 3.2 seconds using
sensory data collected from mobile and/or wearable devices
including readings of the accelerometer, gyroscope and gravity
sensors. The authors reported an average system accuracy of
93.8% and 95.6% for steady and moving users, respectively,
using a large dataset of 1,513 users. Lee et al. [68] proposed
combining sensors’ readings from the user’s smartphone and
other wearable devices to improve authentication accuracy.
Their experiments on a dataset of 35 users have shown an
accuracy of 98.1%, FRR of 0.9%, and FAR of 2.8% by
combining data from users’ smartphones and smartwatches
when adopting an authentication window of six seconds.

Gofman et al. [165] suggested using face and voice bio-
metrics to tackle input data quality and training data scarcity
for mobile authentication. Considering the nature of the data
acquisition process on mobile devices, the authors argued that
data quality is usually in poor condition due to environmental
factors or the utilization of low-cost sensors. Moreover, the
authors stated mobile authentication systems face a training
data scarcity problem since users tend to provide small training
samples during the enrolment phase. Using a multimodal
system, the authors addressed these issues and enhanced the
potential of acquiring high-quality data samples during user
enrollment. The proposed approach incorporated the Fisher-
face method for face recognition since it is shown to be ef-
fective under changing environmental conditions, and Hidden
Markov Models (HMM) and Linear Discriminant Analysis
(LDA) for voice recognition (HMM was used for algorithm
score-level fusion and LDA was used for feature-level fusion ).
The authors used a quality-based weighting method to adjust to
samples’ quality and limit the impact of poor-quality samples
on the performance of the system. The results showed a
decrease in error rates from 4.29% for the face recognition
module and 34.72% for the voice recognition module to 2.14%
for the feature-level fused multimodal system. Similar work
has been proposed by Morris et al. [65] for combining voice,
face, and signature modalities for personal digital assistant
devices. The authors reported a decrease in error rates when
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TABLE VIII: Summary of the related work for multimodal-based user authentication. Each work is identified by the used
modalities, utilized sensors, dataset, modeling algorithm, and their performance.

Study Modalities Sensors Methods #
Users EER FAR FRR TPR Accuracy Auth.

Time Platform

[62] Face/Voice Ca, Mi LDA-HMM 54 21.58% 7 7 3 7 0.39s SamsungGalaxyS5 (A-5.0)
[159] Teeth Images/voice Ca, Mi HMM⊕GMM 50 2.13% 3 3 7 7 10.76s Computer Simulation
[165] Face/Voice NA LDA-Matching 54 2.14% 7 7 7 7 1.57s SamsungGalaxyS5 (A-5.0)
[65] Face/Voice/Signature NA GMM 60 0.56% 0.97% 0.69% 7 7 7 7
[166] Touch/Gaze To, Ca 7 13 7 7 7 7 65% 3.1s Computer (NA)
[167] Keystroke/Linguistic/Behavior NA MLP⊕RBF 30 3.3% 7 7 7 7 2–10m 7
[168] App/Bluetooth/Wi-Fi NA k-NN 200 7 7 7 7 85% 7 7
[115] Keystroke/Sensor dynamics To, Ac, Gy k-NN 20 0.14% 7 7 7 7 7 GoogleNexusS (A-2.3)
[129] Keystroke/Motion/Orientation To, Ac, Gy PCA-SVM 20 7.16% 3 3 7 7 20s SamsungGalaxyS4 (A-4.4)
[169] Face/Periocular/Iris Ca FA-NN 78 0.68% 3 7 7 3 7 SamsungGalaxyS5 (A-4.4.2)
[170] Face/Periocular Ca Matching 73 1.34% 0.01% 7 7 94.66% 7 SamsungGalaxyS5 (A-5.0)
[171] Face/Periocular Ca CNN 246 7 7 7 3 98.5% 7 7
[172] Keystroke/Gait To, Ac MLP 20 1% 0.68% 7% 7 99.11% 7 Xiaomi2S (A-5.0.2)
[173] App/Bluetooth/Wi-Fi/other NA FPOS 33 7 3 7 3 98.3% 2.3s Nokia7Plus (A-8.0.1)
[174] Touch/Motion/App/other To, Ac, Gy, Ma, Li SVM 48 3 3 3 7 97.1% 7 7
[175] App/Motion/Wi-Fi/other Ac, Wi-Fi, Li, other Ensemble 7 7 7 7 7 99.4% 122s Nokia6600 (Symbian-7.0)
[176] Motion/Gesture Ac, Gr, Or, Ma n-gram 20 7 31.1% 7 71.30% 7 4.96s 7
[177] Face/Touch/Motion Ca, To, Ac,Gy, Ma Ensemble 100 0.8-3.6% 7 7 7 7 3 ComputerSimulation
[178] Touch/Motion/other To, Ac, Gy, Ma, other Compound-Voting 30 7 0 0 7 100% 7 VivoX6 (A-5.0)
[179] Touch/Motion To, Ac, Gy SVM 100 15% 7 7 7 88% 7 SamsungGalaxyS4 (A-4.4)
[180] Touch/Motion To, Ac, Gy SVM 48 3 5.01% 6.85% 7 7 3 SamsungN7100 (A-4.4)
[18] Face/Voice Ca, Mi CNN-SVM 10 7 7 7 88.84% 94.07% 30ms SamsungGalaxyS9 (A-8.0)
[181] Touch/Motion Ac, Gy, Ma CNN-SVM 90 7 3 3 7 97.8% 1s SamsungGalaxyS4 (A-4.4)
[47] Touch/Motion Ac, Gy, Ma, El LSTM 84 0.37% 1.72% 8.47% 3 97.84% 1s 7
[31] Touch/Motion To, Ac, Gy, Ma, Or HMM 102 4.74% 3.98% 5.03% 7 7 8s SamsungG9208 (A-5.0.2)
[68] Wearable/Sensor dynamics Ac, Gy, Ma, Or, Li KRR 35 3 2.8% 0.9% 3 98.1% 3 GoogleNexus5 (A-4.0)
[108] Wearable/Sensor dynamics Ac, Gy, Gr SVM 1,513 7 7 7 73.28% 95.57% 3.2s ComputerSimulation
[182] Healthcare readings HWS SVM-RBF 37 2.6% 7.6% 9.6% 3 7 3 7

AdaBoost 37 2.4% 7.6% 8.4% 3 7 3 7

Ca: Camera, Mi: Microphone, To: Touch, Ac: Accelerometer, Gy: Gyroscope, Ma: Magnetometer, Li: Light sensor, Gr: Gravity sensor, El: Elevation
HWS: Healthcare Wearable Sensors, LDA: Linear Discriminant Analysis, HMM: Hidden Markov Model, GMM: Gaussian Mixed Model,
MLP: Multilayer Perceptron, RBF: Radial Basis Function, k-NN: k-Nearest Neighbor, PCA: Principal Component Analysis, SVM: Support Vector Machine,
FA-NN: Fast Approximate Nearest Neighbor, CNN: Convolutional Neural Network, FPOS: Frequent Pattern Outlier Score, KRR: Kernel Ridge Regression.

combining all three modalities from 3.38%-29.87% to 0.56%,
which is considered a considerable improvement in the system
performance. Their implementation adopts a text-dependent
voice authentication approach since text-independent can bring
much complexity when addressing phonetic variations, which
can computationally-expensive and energy-draining when run-
ning locally on the device.

Kayacik et al. [175] proposed a data-driven approach with
an ensemble of classifiers to enable the authentication system
to be temporally and spatially aware of the user behavioral
usage and surroundings by taking advantage of several hard
and soft sensors such as the accelerometer, Wi-Fi, light sensor,
and others. The proposed method requires more than 122
seconds to allow the data to be collected for authenticating
users and about 717 seconds to detect an imposter. However,
the experiments report a high authentication accuracy of
99.4%. Similar work has been proposed by Li and Bours
[186] that incorporates sensory data of smartphones and Wi-Fi
information for enabling users to access an application within
three seconds, with an average EER of 9.19%. Similar stud-
ies combinations of multiple biometrics to incorporate face,
iris, and periocular recognition [169], [187], eye gaze, and
touch gestures [166], and user behavioral profiling, keystroke
dynamics, and linguistic features [167]. Another direction of
research studied users’ behavioral patterns using their usage
of applications and Wi-Fi traffic [168]. Table VIII shows
the multimodal-based user authentication methods by using
multiple modalities and machine learning algorithms.

Insights and Challenges. Multimodal-based user authentica-
tion methods are designed by implementing several modalities
that can include both behavioral and physiological biometrics

(e.g., face, voice, and keystroke dynamics) to conduct user
authentication tasks. Recent trends in the authentication space
show that multimodal methods are the favorable choice for
implementing authentication schemes due to their perfor-
mance and added security. Since multimodal authentication
schemes incorporate multiple modalities, they intrinsically
inherit some of the shortcomings and challenges of their
integrated components. However, adopting a multimodal au-
thentication scheme for continuous authentication on mobile
devices adds several additional challenges, among which we
mention the following. 1 Computation and Memory Over-
head: Incorporating multiple modalities requires continuous
collection and processing of data at a high sampling rate,
which can increase the computation and memory overhead
of the device. Moreover, combining the output of multiple
modalities for the authentication decision requires the infer-
ence of multiple models or matching algorithms to generate
the final output. Considering continuous authentication at a
high frequency can introduce major resources bottlenecks, in
terms of computations. Fortunately, current mobile devices
are equipped with multi-core processors, GPUs, and even
Gigabytes of RAM, making it feasible to run a wide range
of sophisticated applications such as multimodal-based con-
tinuous authentication schemes. Recent trends to secure in-
device operations take advantage of machine learning libraries
that utilize hardware acceleration units, using GPUs or Digital
Signal Processor (DSPs) which are available in most of today’s
mobile devices, to implement local inference of authentication
models. 2 Biometric Samples Quality Assurance: The
performance of a system is related to the quality of the
collected samples, as a biometric sample with a high quality is
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essential for an accurate identification. Due to the unreliable
features that could be obtained from a single biometric (i.e., the
changing emotional or physical state of the user or poor data
acquisition), and to overcome performance degradation caused
by these limitations, researchers have moved from the uni-
modal to multimodal biometrics. For instance, combining face
recognition and keystroke dynamics for user authentication
enhances the performance of each modality when considered
alone. However, recent trends in adopting biometric-based
authentication show it is also necessary to add a sample-
quality assessment module to the authentication system, after
the data collection and acquisition module, in order to guar-
antee the processing of valid samples in further processes.
3 Machine Learning-based Authentication: Recent studies
show the increasing reliance on machine learning techniques
to implement authentication systems. For multimodal-based
methods, researchers utilize an ensemble of machine learning
models to enable multiple pattern recognition per legitimate
user. This can result in a longer training time (i.e., extending
the user enrolment phase), greater model size and memory
overhead, and inference time (i.e., user authentication phase).
All of those are open directions worth exploring. Especially,
future authentication schemes should consider using hardware
acceleration units, such as GPUs or DSPs that are available in
most of today’s mobile devices.

IX. CONCLUSION

Mobile devices have become the most common platform
for communication and accessing the internet. The rapid en-
hancements of embedded technologies and resources of mobile
devices have enabled users to conduct varieties of activities
and transactions. Therefore, secure and accurate access control
is essential. To date, mobile devices’ manufacturers have
implemented knowledge-based and physiological biometric-
based authentication methods as the primary access control
scheme. While both approaches offer simplicity, efficiency,
and precision, they assume the same level of security to
all applications and fall short on delivering authentication
beyond the point-of-entry. Moreover, these approaches require
overt recognition, where the user explicitly enters the pass-
secret or the used biometrics, making them fail in delivering
implicit, transparent, and continuous authentication. Recently,
behavioral biometrics are used to offer efficient continuous
authentication on smartphones by leveraging the readings of
a variety of embedded sensors. This survey aims to high-
lights methods, approaches, benefits, and challenges associated
with using behavioral biometrics for user authentication. We
surveyed around 150 studies that conducted a behavioral-
based authentication and pointed out their used techniques,
sensors, performance measurements, and time needed for
authentication. As this field is rapidly evolving, there is still
a need to explore security-related aspects and implementation
considerations beyond familiar standards.

REFERENCES

[1] C. Jung, J. Kang, A. Mohaisen, and D. Nyang, “Digitalseal: a
transaction authentication tool for online and offline transactions,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 6956–6960.

[2] A. Al Abdulwahid, N. Clarke, I. Stengel, S. Furnell, and C. Reich,
“Continuous and transparent multimodal authentication: Reviewing the
state of the art,” Cluster Computing, vol. 19, no. 1, Mar. 2016.

[3] T. J. Neal and D. L. Woodard, “Surveying biometric authentication
for mobile device security,” Journal of Pattern Recognition Research,
vol. 1, pp. 74–110, 2016.

[4] Z. Zhao, G.-J. Ahn, and H. Hu, “Picture gesture authentication:
Empirical analysis, automated attacks, and scheme evaluation,” ACM
Transactions on Information and System Security (TISSEC), vol. 17,
no. 4, p. 14, 2015.

[5] D. Nyang, A. Mohaisen, and J. Kang, “Keylogging-resistant visual
authentication protocols,” IEEE Transactions on Mobile Computing,
vol. 13, no. 11, pp. 2566–2579, 2014.

[6] D. Nyang, H. Kim, W. Lee, S.-b. Kang, G. Cho, M.-K. Lee, and
A. Mohaisen, “Two-thumbs-up: Physical protection for pin entry secure
against recording attacks,” computers & security, vol. 78, pp. 1–15,
2018.

[7] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch
me once and i know it’s you!: implicit authentication based on touch
screen patterns,” in proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 987–996.

[8] N. L. Clarke and S. M. Furnell, “Authentication of users on mobile
telephones–a survey of attitudes and practices,” Computers & Security,
vol. 24, no. 7, pp. 519–527, 2005.

[9] R. Amin, T. Gaber, G. ElTaweel, and A. E. Hassanien, “Biometric
and traditional mobile authentication techniques: Overviews and open
issues,” in Bio-inspiring cyber security and cloud services: trends and
innovations. Springer, 2014, pp. 423–446.

[10] H. Crawford and K. Renaud, “Understanding user perceptions of
transparent authentication on a mobile device,” Journal of Trust Man-
agement, vol. 1, no. 1, p. 7, 2014.

[11] S. Furnell, N. Clarke, and S. Karatzouni, “Beyond the pin: Enhancing
user authentication for mobile devices,” Computer fraud & security,
vol. 2008, no. 8, pp. 12–17, 2008.

[12] H. Khan and U. Hengartner, “Towards application-centric implicit
authentication on smartphones,” in Proceedings of the 15th Workshop
on Mobile Computing Systems and Applications. ACM, 2014, p. 10.
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