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ABSTRACT
The Sybil attack is very challenging in the context of dis-
tributed systems; Sybil nodes with multiple identities try
to deviate the behavior of the overall system from normal
behavior. Recently, there have been a lot of interests in
social-network based Sybil defenses weighing the trust in so-
cial networks to detect Sybil nodes. Such defenses use some
algorithmic properties relating to the topological structure
of the social networks. However, the use of those proper-
ties without validating them in realistic settings makes their
applicability impossible in the real-world applications.

In this paper, we discuss such inapplicability by analyzing
MobID, a recently proposed defense for mobile environments
which claims that existing defenses have largely been de-
signed for peer-to-peer networks. MobID uses the between-
ness, a graph-theoretic property in the social graph, as a
metric of the goodness of nodes in order to defend against
the Sybil attacks. By using this betweeness, MobID operates
on two fundamental assumptions: i) highly enmeshed nodes
in the social graphs have a nonzero betweenness, and ii) ver-
ifiers and suspects in an honest social graph have common
friends. However, extensive experiments and detailed anal-
ysis with real-world social network traces show that these
assumptions do not hold well. Accordingly, MobID does not
work for a great portion of the network, which is in some
cases greater than 50% of the network size, even when not
using a threshold on the betweenness. By setting a very
low, highly-precise threshold of the betweenness (e.g., less
than 10−4), we observe a dramatic loss in the performance
of MobID, which corresponds to 8% − 30% overall accep-
tance rates of honest nodes (and the remaining nodes are
rejected). On the other hand, we observe that existing work,
as well as other recently proposed work that is based on the
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community structure, can be used as an alternative for Sybil
defenses in the same context.
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1. INTRODUCTION
The Sybil attack is very challenging in the context of dis-

tributed systems [5]. In the simple form of this attack, a
single node in the distributed system pretends and acts as
if she is multiple nodes—by generating multiple identities of
the same physical entity, and trying to deviate the behav-
ior of the overall system from normal behavior. The attack
is known to be very effective in many settings, including
peer-to-peer systems [5, 2], sensor networks [20, 33, 22], file
sharing systems [10], and mobile networks [34, 8, 21], among
others.

The main challenge facing defenses against the Sybil at-
tack is the lack of a centralized authority which can bind
users identity to other credentials. Indeed, if one is to as-
sume the existence of such centralized entity, defending against
the Sybil attack is straightforward [20, 2, 26]. However, for
that no such an authority exists in a decentralized and fully
distributed system—in most deployment scenarios, the cen-
tralized solution for the problem is costly and unrealistic.

A more appealing solution to the problem in the context
of distributed systems is a distributed defense that meets
the structure and assumptions of the distributed systems
on top of which the defense operates. Recently, there have
been a lot of interests in the research community about the
potential of using social networks for defending against the
Sybil attack in a fully decentralized manner and using local
information at each node [31, 32, 30, 3]. The basic idea of



this class of defenses is to weigh the trust exhibited in social
graphs and a topological (or algorithmic) property that is
known to be in the honest region—the region in which all
honest nodes are. The existence of some Sybil nodes with
many Sybil identities associated with these nodes, in what
is called the dishonest region, would disrupt the algorithmic
property of the overall graph (the honest and dishonest re-
gions put together). This disruption can be used to isolate
and detection the Sybil nodes, using property of the graph
and random walk theory. Furthermore, one can bound the
number of the Sybil identities introduced by the Sybil nodes,
also in a distributed manner. Variations of the basic defense
idea are used in many state-of-the-art social network-based
defenses, as reported in [31, 32, 29, 30, 13, 3, 23].

Most recently, Quercia et al. in [21] introduced MobID,
yet another design of the Sybil defenses that use social net-
works. This design has recently attracted attention because
it newly provides a robust defense for mobile network envi-
ronments while existing defenses have largely been designed
for peer-to-peer networks. While it is similar to other de-
signs in literature in the sense that it uses social networks
as bootstrapping graphs, MobID differs to many of these
designs in the sense that it uses the betweenness, a graph
theoretic measure, as the algorithmic property for ranking
the“goodness”of nodes in social graphs. The authors of Mo-
bID believe that other designs in literature, which assume
a fast mixing social graph [19] and use the random walk
theory, are not suitable for mobile networks. In short, [21]
shows a circumstantial evidence that MobID works and de-
tects Sybil nodes in mobile network environment. However,
to reach this conclusion, the authors contradict the “trust
assumption” in similar designs for defending against Sybil
attack proposed in literature, and use traces of mobile en-
counters, which have less value of trust. Put it another way,
while the design might be of a great value to defend against
the Sybil attack, the use of mobile encounter traces is mis-
leading. Whether MobID can operate in a general context
and when using trust-possessing social graphs is untested.

This paper analyzes MobID and shows several fundamen-
tal findings. The contributions of the paper are as follows

• We first analyze MobID, a recently proposed social
network-based Sybil defense, and show several funda-
mental shortcomings of it. Our analysis emphasize
that the shortcomings come from the fact that Mo-
bID puts constraints on the nodes in the honest (and
dishonest) region that are hard to meet, even with hon-
est nodes. These shortcomings make the operation of
MobID in realistic social network settings almost im-
possible.

• By experimenting with several real-world social net-
work traces, we quantitatively show the extent to which
MobID is inapplicable.

Complementary to the contributions above, we suggest
that a large body of previous work can be used as a solution
for the Sybil attack in the context of mobile networks. These
works are not proposed by us in the first place, and their
sufficiency (and shortcomings as well) can be found in the
paper where they are proposed.

The rest of this paper is organized as follows. In section 2
we discuss the preliminaries required for understanding the
rest of this paper. In section 3 we review the details of Mo-
bID and its operation. In section 4, we analyze MobID and

show the fundamental shortcomings that make its applica-
bility in realistic settings impossible. In section 5 we provide
empirical evidence of our analysis of MobID, by experiment-
ing with several real-world social graphs. In section 6 we dis-
cuss the implication of the findings and look for alternatives
to MobID by recalling other solutions from the literature.
In section 7 we review some of the related work. Finally, we
draw concluding remarks in section 8.

2. PRELIMINARIES
In the section we review the preliminaries needed to un-

derstand the rest of this paper. We formalize the settings of
the problem by formally describing the social network as a
graph, and define the betweenness and related definitions.

2.1 Network model
The social network can be viewed as an unweighted undi-

rected graph G = (V,E) where V is the set of nodes in the
graph, representing the set of people in the social network,
and E is the set of edges in the graph, representing the set of
interdependencies between people in the social network. For
convenience, we set V = {v1 . . . , vn} (meaning that |V | = n)
and E = {eij} where eij ∈ E if and only if vi and vj in V
are adjacent in G—we also assume |E| = m. We define A
as the adjacency matrix, where A = [aij ]

n×n and

aij =

{
1 vi ∼ vj
0 otherwise

. (1)

A random walk on G is defined using the transition matrix
P . The transition matrix P captures the transition proba-
bility from any node to any other node in G. In particular,
P = [pij ]

n×n where pij is the transition probability for mov-
ingfrom node i to node j in one-hop defined as:

pij =

{
1

deg(vi)
vi ∼ vj

0 otherwise
(2)

Notice that the movement here is conceptual; imagine a ran-
dom walk capturing the flow of data over a network, then
the event of moving is the propagation from node vi to vj
using the link between them. This formulation of the tran-
sition matrix can be viewed as the norm of the adjacency
matrix A by the row norm of A itself (row representing the
row sum of A). In other words, let A be the adjacency ma-
trix defined above and define D as a diagonal matrix with
the diagonal element dii in D equal to deg(vi) =

∑
j Aji,

then P is defined as

P = D−1A (3)

2.2 The Betweenness Centrality
Centrality measures in general capture the significance of

nodes in graphs. The betweenness centrality, as defined by
Freeman [7], captures the significance of nodes to the flow
between other nodes. Two types of betweenness centrality
are known and defined in literature: shortest-path between-
ness and random walk-based betweenness.

The shortest path based betweenness, as the name im-
plies, weighs the significance of nodes as a result of their oc-
currence at the shortest path between other nodes. Let w :
E → R be a weight function that assigns real-valued weights



to edges in G1. The weight of path p = 〈v1, v2, . . . , v`〉 is

w(p) =
∑̀
r=1

w(vr−1, vr). (4)

The shortest path between nodes vi and vj is then defined
as:

δ(vi, vj) =

{
min{w(p) : vi

p
; vj} path from vi to vj

∞ otherwise
.

Since it may not be unique, a shortest path between vi and vj
is any path with weight w(p) = δ(vi, vj). Now, suppose that
σst = σts

2 is the number of the shortest paths from the node
vs to node vt and let σst(i) be the number of shortest paths
from vs to vt that pass through the node vi. Accordingly,
we define the shortest path betweenness of the node vi as

bi =
2

(n− 1)(n− 2)

∑
s 6=t6=i

σst(i)

σst
(5)

While the shortest path betweenness requires a global
knowledge of the whole topology—an issue that raises a lot
of concerns in social network-based applications, the random
walk based betweenness can be implemented at a fully de-
centralized settings. Recall the random walk defined earlier
and recall that the random walk connecting nodes vi and

vj , denoted as vi
pr; vj , is the set of nodes where each node

on the random walk is selected uniformly at random by its
prior node. Similarly, we define the betweenness for a node
vi as the normalized expected number of times it is hit by
the random walk. In short, the same model of the shortest
path-based betweenness model can be used to compute the
random walk-based betweenness by replacing the short path
component in the first one by the random walk in the latter
one as a measure of connecting nodes.

Note that the betweenness is one of the centrality mea-
sures. Other measures include closeness (which also uses the
shortest path), degree centrality (which ranks nodes based
on their degrees), and eigenvalue centrality (which ranks
nodes based on their corresponding eigenvalues of P ).

3. MOBID SCHEME
The scheme around which is rest of the paper is proposed

in [21] for defending against Sybil attack using social net-
works. The main motivation of this scheme is that exist-
ing social network-based Sybil defenses (such as SybilGuard,
SybilLimit, SybilInfer and others with the same flavor) are
not suitable for mobile networks. In this section, we review
the details of the scheme in question (MobID).

The basic idea of MobID is to use a decentralized de-
fense mechanism that weighs the value of friends and tries
to blacklist some others as foes. This would not be possi-
ble without the use of a social “bootstrapping” graph. The
bootstrapping graph represents a graph of offline relation-
ships that govern what people initially know about the whole
network—or the list of people that they initially know in

1In case of undirected unweighted graphs, the weight will
be equal to 1 across all edges. This happens to be the case
in [21] and many other social network based designs.
2The equality results from the optimality of the shortest
path; if a shortest path between two nodes is the shortest
one then it is optimal and does not matter what order is
used for computing it.

advance. Once a user - marked as a suspect - in the net-
work wants to interact with another user - marked as the
verifier, the verifier asks the the suspect to prove his hon-
esty. The suspect exchanges some attestation information by
sending his list of contacts to the verifier. The verifier then
uses this information to compute the suspect’s betweenness
when plugging the suspects sub-network within the verifier’s
network of friends, where shared friends between both the
suspect and verifier are only considered. If the suspect’s
betweenness, computed as the shortest path based between-
ness, is greater than some threshold then the verifier accepts
him as an honest user. Otherwise the verifier marks the sus-
pect as a foe. Without any further due, we now review the
detailed description of MobID.

1. Establishing trust relation: For those nodes where
the verifier is a friend in reality, trust is established us-
ing the bootstrapping graph and maintained using an
authenticated public key. For other unknown friends,
measuring the extent to which the node is trusted is
done indirectly. In particular, the suspect sends to
the verifier a set of “links” that represent the suspect’s
friends signed by those friends. Used signatures are
typical RSA-like signatures. Given that the verifier al-
ready has the set of authenticated public keys for his
own friends, he can easily verify what is being sent
to him by the suspect if it is reporting a relationship
with a common friend. By doing so, the verifier ver-
ifies and incorporates edges between the suspect and
the verifier’s friends.

2. Reasoning about the friends and foes networks:
after the first step, the verifier incorporates the list
of valid links of the suspect into his network of friends
and foes. This excludes two sets of the suspect friends:
friends unknown to the verifier and friends who are
known to the verifier but their signatures did not verify
against their public keys, which is authenticated and
known to the verifier. Then, the verifier ranks the
suspect into both networks; the network of friends, and
network of foes. The ranking in the network of friends
is referred to as GoodRank and the ranking in the
network of foes is referred to as the BadRank.

3. Deciding whether to accept or reject a suspect:
Depending on both of suspect ranks in the good net-
work and bad network, the verifier decides whether
to accept or reject the suspect node: if the GoodRank
gives a betweenness greater than a particular value, re-
ferred to as the betweenness threshold bt, the suspect
is accepts the suspect, and rejected otherwise.

To this end, MobID makes several assumptions about the
underlying bootstrapping graph and the key distribution
model. In the following we summarize the major used as-
sumptions.

First, people have offline relationships that govern their
“friendship”. Initially each node in the graph has a list of
nodes adjacent to it which the node trusts without inter-
action and has some attestation information about each of
them.

Second, the attestation information of friendship between
nodes is public keys. Public keys are shared between nodes
who are adjacent to each other in an offline phase, hence



not assuming or paying the cost of a centralized public key
authentication entity. MobID does not assume the existence
of a public key infrastructure but rather a manual public key
authentication mechanism that uses a face-to-face interac-
tion.

Third, people do not meet at random but have regular en-
counters, where such encounters are small in number. Also
people move in groups, where members of the same com-
munity move all together as a single group. That means
the encounter of a suspect implies that such suspect is more
likely to be in the list of people that the verifier had an ear-
lier encounter with, or with whom the verifier already has a
relationship through the bootstrapping graph.

Last but not least, honest nodes are well-connected in
social networks while Sybil nodes are sitting at the outlier
part of the graph, with less connectivity to the rest of the
graph.

While three of these assumptions are regularly assumed
previous related work, some of these assumptions are sim-
ply contradicting the conventional literature. In particular,
the first assumption is widely used as in [30, 31, 32, 3, 29,
13, 18, 25], the second assumption is being used in [9] and
the last assumption is being the assumption in almost all
other work that uses social networks for security and com-
munication designs, including the work in [31, 32, 29, 30,
13, 3, 18, 25, 23]. However, the third assumption contra-
dicts other work where mobility is assumed to be a uniform
random walk on the graph in relation with prefixed locations
as shown in [6]. It is worth noting that the assumption is
not conventional in the context of social network-based de-
signs, which makes our analysis even more conservative, by
being less critical to the assumption of MobID. Although,
challenging this assumption is not the concern of this study.

It is worth noting that the first assumption makes it nec-
essary to use a bootstrap graph where the relationships, ac-
cording to which trust is realized, exist in an offline and
prior deployment phase. Though the social network appli-
cation is used in mobile network context, the bootstrapping
graph, with the first assumption in mind, can be any ar-
bitrary social structure. We use this fact, in section 5 to
experiment with several real-world social graphs and show
the shortcomings of MobID as pointed out earlier.

4. ANALYSIS
Now we are in a position to analyze MobID, according to

the description we have provided earlier. MobID has two
major shortcomings that make its applicability in the con-
text of real-world social networks almost impossible. In the
following, we elaborate on these problems in more details.

The first problem in MobID is what we refer to as the
“common friend(s) problem”. In order for a verifier to ver-
ify a suspect—this chance by itself is not a guarantee for
accepting the suspect as we will see by examples—the sus-
pect has to have a friend with the verifier himself. Not only
that, but also the number of friends common to both of the
suspect and verifier has to be large enough so that some of
the shortest paths between the verifier and the list of his
friends flow through the suspect. For example, it is always
easy to show that when the verifier and the suspect have one
friend in common that it is impossible for verifier’s flows to
go through the suspect. This impossibility follows from the
fact that the shortest path is optimal and incorporating a
new node in the verifier’s social graph would make the path

between the verifier to any other nodes in his graph 1-hop
longer than previously known shortest path.

To understand how subtle is this problem for the deploy-
ment of MobID in real social network-based design context,
consider the following example. In a network with n nodes,
each node can have the role of the suspect and the verifier,
thus the number of suspect-verifier pairs is n(n − 1). At
anytime, and without considering an attacker in the honest
bootstrapping graph, the only condition needed for telling
whether the performance of MobID is acceptable or not is
that (almost) all honest nodes are accepted with high prob-
ability by any and every verifier. From the point of view of
the designer, any node must accept any other node requir-
ing any node to have at least “some” friends with every other
node in the bootstrap social graph. The constraint requires
the social graph to be of a special form where the radius and
diameter are too small (e.g., a diameter of at most 2, where
most nodes are reachable in almost one hop)—the definition
of diameter and radius are in section 5. This conservative
condition required for the operation of MobiID might not be
possible in reality, as the case with all of the social graphs
we considered in our experiments—in Table 1.

The second problem is very much related to the first prob-
lem though more critical in theoretical and application con-
texts. The problem is due that the ranking used by MobID
assigns scores to nodes based on their betweenness, which is
computed based on the frequencies of a shortest path cross-
ing that node. Given that the shortest path is optimal, there
is no guarantee that a particular node—even those with high
degrees—will be located at the path of the shortest path be-
tween other nodes. Accordingly, there is no guarantee for
such nodes to have a valued (non-zero) betweenness.

In the following we give two simple examples to show
where the design of MobID does not work for normal-looking
nodes. In the first example we show the case of two nodes
with common friends but MobID does not work; for that
the betweenness being assigned to the suspect node is still
zero. In the second example, we show another case where
a suspect is not an edge node, yet it is identified as a Sybil
node for that it shares no common friends with the verifier.
Example 1: Consider the topology in Figure 1 where node
v17 is the verifier and node v14 is the suspect, with the cor-
responding neighbors of each node as shown. The common
neighbor among both nodes is the node v18. However, al-
though node v14 is not an edge node—it has a lot of friends
and located at the path between other nodes; in fact it has
more friends than the verifier himself—the verifier will al-
ways assign zero-valued betweenness to v14, because it uses
the shortest path betweenness and none of the shortest paths
from the verifier to its neighbors passes through the suspect.
Example 2: Consider the same topology but the different
order of verifier-suspect as shown in Figure 2. In this topol-
ogy, let the verifier be v17 and the suspect be v6. Even if
v6 is not an terminal node (a node that is connected to the
rest of the graph through a single link) and is significant
to the shortest path flows from the subgraph behind v5 to
the rest of the network, the node v6 is simply identified as a
Sybil node for that it does not share a common friend with
the verifier. Put it another way, whatever the value of the
betweenness of v6 that it gains from its location at the path
between other nodes, this value will not count when v6 is
introduced to v17 because v6 has no common friend with v17
through which it should be introduced.
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Figure 1: A social network topology scenario where
MobID is applied; in order for a suspect to be intro-
duced to the verifier in the social graph, both nodes
must have common neighbors. In this topology, de-
spite having common neighbors, the use of short-
est path betweenness makes verifiers identify hon-
est nodes as Sybil because none of verifier’s shortest
paths to other nodes in its network pass through the
suspect.

5. EMPIRICAL RESULTS
By experimenting with real-world social graphs, we show

that MobID has several shortcomings that prevent its appli-
cability in reality for defending against the Sybil attack. In
this section we introduce the results of our study. To gain
insight on the behavior of MobID, we relax the operation
settings of MobID by assuming that each node has a global
knowledge of the honest graph and tries to rank the different
nodes according to their betweenness.

Table 1: Social graphs with their size, diameter, and
radius. Physics 1, 2, 3 are relativity, high-energy,
and high-energy theory co-authorship respectively.
D stands for the dimeter and R stands for the radius
of the graph.

Social network Nodes Edges D R

Physics 1 [12] 4,158 13,428 17 9
Physics 2 [12] 11,204 117,649 13 7
Physics 3 [12] 8,638 24,827 18 10
Wiki-vote [11] 7,066 100,736 7 4

DBLP [15] 10,000 20,684 8 4
Enron [12] 10,000 108,373 4 2

Facebook [27] 10,000 81,460 4 2
Youtube [16] 10,000 58,362 4 2

5.1 Data sets
The data sets (social graphs) used in this study are shown

in Table 1 and a complementary degree distribution of each
of the graphs is shown in Figure 3. The different social
networks are selected “carefully” so that to reflect several
tendencies in the topological structures in the underlying
social graphs. First let’s define the eccentricity as the longest
shortest path from a source to every possible destination in
the social graph. The diameter is the longest eccentricity
and radius is the shortest, for a particular source. Then, we
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Figure 2: A social network topology scenario where
MobID is applied. The case of a verifier identifying
a suspect as a Sybil node for that they do not share
common friends, despite that the suspect is being
with high betweenness when considering it in its own
community.

list the tendencies of the different social graphs used in this
study into three types, as follows:

• Type 1: social graphs with large radius and diameter,
which exhibit strong community structure. This type
is represented by Physics 1, Physics 2, and Physic 3.

• Type 2: social graphs with medium radius and diame-
ter, which exhibit medium community structure. This
type is represented by Wiki-vote and DBLP.

• Type 3: social graphs with small radius and diame-
ter, which are flat and exhibit less community struc-
tures. This type is represented by Enron, Facebook,
and Youtube.

For more details, see Table 1. It is also worth noting that
these graphs are sampled from larger graphs—using the breadth-
first-search algorithm beginning from an arbitrary node in
the original large graph. For more details on the original
graphs and their topological characteristics, see [18] and [19].

5.2 Measuring the betweenness of social graphs
Measuring the betweenness of a social graph is not any

harder than computing all pairs of shortest path, which has
a cubic complexity in terms of the input size. Using the
definition of the shortest path based betweenness explained
in section 2, we compute the betweenness of the different
social graphs in Table 1. The results are shown in Figure 4.
Each of the sub-figures in Figure 4 plots the CDF of the
betweenness for the given graph. We draw the following
observations on these experiments:

• In some of the graphs, particularly which have large
diameter and radius, the betweenness of almost half of
the nodes in the network is zero. This is understand-
able by understanding the definition of the shortest
path betweenness and imagining the existence of sev-
eral small communities within these networks, which
are connected to the rest of the network through a
few nodes. Nodes between communities have high be-
tweenness and nodes within communities have smaller
one.
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Figure 3: Degree distribution of the different social graphs used in our experiments follows the power-law
distribution (preferential attachment), which is the typical distribution in social networks.

• Even in those graphs with small to medium diameter
and radius which have less community structure, 20%
to 40% of the nodes have zero betweenness. One ex-
planation for this behavior is that the shortest path is
the optimal shortest distance between two nodes in the
graph and this implies that some nodes, even though
they are connected to other nodes in the graph, they
may not be used in the shortest path (see example 1
and example 2 in section 4).

6. IMPLICATIONS AND ALTERNATIVES
In this section, we discuss the implications of the raw mea-

surements and the implication when using a threshold in
ranking nodes as Sybil and non-Sybil according to MobID.
We also discuss some alternatives to the betweenness.

6.1 Implications
The implications of these measurements are striking. Con-

sidering even when a node has a global knowledge about the

list of good nodes in the social graph (represented by the
bootstrapping graph) there is 1/2 chance in some cases that
a good node is going to be labeled as a Sybil node, even
when considering a very low threshold for the betweenness.
This probability is even higher in some cases. For example,
even at the highest precision of the betweenness computed
for DBLP, Youtube, Physics 1, 2 and 3, as shown in Fig-
ure 4, with probability exactly 1/2, a good node is going
to be labeled as a bad node. What does that mean? In
other words, from the point of view of each node in the so-
cial graph, half of the social graph is Sybil, despite being
legitimate and honest nodes in the social graph.

6.2 Considering threshold on the betweenness
Is that the worst that MobID can achieve? In fact, MobID

assumes a threshold on the betweenness for accepting any
node in the social graph. In the previous subsection, we
considered the threshold to be any value greater than zero.
If we use a threshold, then how worse the result could be?
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Figure 4: The CDF of betweenness in the different social graphs where high percents of nodes have zero
betweenness. Notice the log (base 10) scale of the x-axis.

Figure 4 answers this question. Recall the best that MobID
can achieve in the settings of the social graphs used in our
experiments, as shown in Figure 4(a) to 4(h), which are as
follows: Epinion (80% at bt = 10−7), Facebook (85% at
bt = 10−7), Wiki-vote (65% at bt = 10−8), Youtube (48% at
bt = 10−9), Physics 1 (45% at bt = 10−8), Physics 2 (50% at
bt = 10−8), Physics 3 (50% at bt = 10−6), and DBLP (50%
at bt = 10−9).

What if one is to use a fixed threshold across the different
social graphs? How is the rate of acceptance of MobID? By
referring to Figure 4, we get the following: Epinion (20% at
bt = 10−4), Facebook (20% at bt = 10−4), Wiki-vote (25%
at bt = 10−4), Youtube (8% at bt = 10−4), Physics 1 (38%
at bt = 10−4), Physics 2 (30% at bt = 10−4), Physics 3
(40% at bt = 10−4), and DBLP (25% at bt = 10−4). While
none of these is an acceptable result for a Sybil defense in
realistic settings, we observe that originally bad-performing
social graphs are more resilient to the assigned threshold.

7. RELATED WORK
Up to now, we have shown that the operation of MobID is

almost impossible in the context of mobile networks, as well

as any other context—by showing that it mislabels nodes in
the social graph into foes when they are legitimate honest
nodes. Now, we discuss potential alternatives that one may
use instead of MobID. These alternatives are basically con-
ventional alternatives or social network-based alternatives.

Newsome et al. [20] discussed defenses for Sybil attacks
on sensor networks, a closely related networking context to
that of MobID’s environment. In short, such defenses may
include resources testing, which includes radio resource test-
ing, the use of pre-shared keys, position verification, and
code attestation. All of these can be used to replace Mo-
bID. The native environment of such defenses are sensor
networks, which share a lot of common characteristics with
general mobile networks; which makes the applicability of
these defenses in mobile networks possible.

Social network-based Sybil defenses, such as those pro-
posed in [31, 32, 29, 30, 13, 3, 23] can also be used. Such
deployment could be with some modifications to meet the
mobile environment. Also, other recent design based on
community detection in [25] might be a potential alterna-
tive.

There is a large body of work on social networks, their
analysis, and designs based on them. Many applications –



not only the Sybil defenses – capitalize on the trust exhibited
in these social networks and benefit from these networks in
trust-demanding settings. These applications include appli-
cations for routing, recommendation systems, access control,
and admission control, among others. We limit ourselves in
this position to the related work on Sybil defenses and anal-
ysis of Sybil defenses design. For a relatively recent survey
on related work, see [18].

Sybil defenses based on social networks are ever-increasing
and include SybilGuard [31], SybilLimit [30], SybilInfer [3],
SumUp [24], and Whānau [14]. Each of these designs uses
two different properties that are assumed to be in social net-
works: trust and an algorithmic property, namely the fast
mixing of the social graph. The fast mixing of the social
graph implies that there is no sparse cut in social graphs on
top of which the Sybil defense is built, or that the honest
region of the social graph is a single large community and
that random walks beginning from an arbitrary good node
in that region would reach every other node in the graph
with probability driven according to the “stationary distri-
bution” of the random walk. In [19] and [4], the mixing time
is measured, where it is shown in [19] that some of the so-
cial graphs are not as fast mixing as thought, and so social
network-based defenses that use the mixing time as an algo-
rithmic property may have weaker guarantees. This result
was supported by the work in [25] where such Sybil defenses
are shown to be sensitive to community structures in social
graphs, which correspond to slower mixing time.

Recent state-of-the-art online social network analysis can
be seen in [16] and [1], and other that measures the com-
munity structure of the social graphs can be seen in [12].
While these works measure different characteristics of the so-
cial graphs, none of them consider the betweenness of nodes
despite its importance. This lack of measurements of the
property is probably due to the complexity of computations
required for the betweenness, which as we have shown earlier
required computing all shortest paths between nodes in the
graph. Especially, this is a computationally non-trivial task
for very large social graphs (at the scale of millions of nodes)
which happens to be the case in most social graphs. While
our work is sufficient to the extent it’s proposed, we in prin-
ciple use breadth-first-search based sampling to perform the
measurements on a representiative graph. In further investi-
gations, we would like to study the possibility of measuring
the betweenness on larger graphs.

Last but also equally important, interaction in social net-
works and interaction graphs are studied in [27, 17] and
strength of links is modeled in [28], which all share the fla-
vor of measurements, and sometimes reasoning about sys-
tems built on top of social networks, with our work.

8. CONCLUSION AND FUTURE WORK
In this paper we revised MobID, a recently proposed de-

sign for defending against Sybil attack in mobile networks
using social networks. In particular, we show and empiri-
cally demonstrate that the applicability of MobID in realis-
tic contexts is almost impossible. Furthermore, we discuss
alternatives from literature that can be used instead of Mo-
bID in mobile environments. While there has been some
other work in the literature that tries to solve the problem
of Sybil defenses without using social networks, the solutions
are limited in many aspects, and further investigation of ele-
gant solutions that are practical and use social networks are

worthy of investigation. While the mean contribution of this
paper is refuting MobID, in the near future we will look for
alternatives that use social networks in mobile networks en-
vironments. Such alternative in part would consider proper-
ties that are robust against malicious behavior in the under-
lying social networks (such as infiltration attacks), hold for
the good nodes, and can be used to distinguish such nodes
from other dishonest nodes. We will consider the specific na-
ture of mobile networks dynamics and how to accommodate
for such dynamics when defending against the Sybil attack.
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