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ABSTRACT
Social networks provide interesting algorithmic properties that can
be used to bootstrap the security of distributed systems. For exam-
ple, it is widely believed that social networks are fast mixing, and
many recently proposed designs of such systems make crucial use
of this property. However, whether real-world social networks are
really fast mixing is not verified before, and this could potentially
affect the performance of such systems based on the fast mixing
property. To address this problem, we measure the mixing time
of several social graphs, the time that it takes a random walk on
the graph to approach the stationary distribution of that graph, us-
ing two techniques. First, we use the second largest eigenvalue
modulus which bounds the mixing time. Second, we sample ini-
tial distributions and compute the random walk length required to
achieve probability distributions close to the stationary distribution.
Our findings show that the mixing time of social graphs is much
larger than anticipated, and being used in literature, and this im-
plies that either the current security systems based on fast mixing
have weaker utility guarantees or have to be less efficient, with less
security guarantees, in order to compensate for the slower mixing.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – Security
and Protection; C.4 [Performance of Systems]: Design studies

General Terms
Security, Design, Experimentation

Keywords
Social networks, Sybil defenses, Mixing time, Measurement

1. INTRODUCTION
Popularity of social networks have stimulated many ideas for us-

ing these networks to build revolutionary systems in many areas,
including security and communication [24, 31, 3, 30, 12, 32, 11,
23, 25, 22, 29]. The systems built on top of social networks ex-
ploit algorithmic properties of the social graph, as well as the social
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trust. For instance, some security designs exploit the “fast mixing”
property, an indicator of how quickly a random walk on a graph ap-
proaches the stationary distribution, to build Sybil [4] defenses [31,
3, 30, 12, 32, 11, 23]. Some other designs use node betweenness,
an indicator of how a node is well-situated on the path between
other nodes in the graph, for building Sybil defense as well [19].
There are also designs which use betweenness and similarity for
building routing algorithms in disconnected networks [2], among
many other designs based on different assumptions.

The applicability and effectiveness of these designs are critically
dependent on the quality or degree of these properties in under-
lying social graphs. But, while they base their constructions and
designs on these properties—assuming a high quality of the prop-
erties in the social graphs, they do not give conclusive evidences
of the quality of these properties. It is claimed that these proper-
ties hold, based on mathematical models and indirect experiments,
but it is hard to find a single work that evaluates the qualities of
such properties directly in actual social networks. But doing that, it
will be then possible to determine the exact quality of the property
required for these designs to work.

For example, the mixing time of the social graph, which mea-
sures how quick a random walk on the graph reaches the stationary
distribution, is claimed to be fast. Such claim implies that social
graphs are well-enmeshed and any arbitrary destination in the so-
cial graph is reachable, with a probability driven according to the
stationary distribution—a distribution that is proportional to nodes’
degrees, from each possible source with a relatively small number
of intermediaries. Furthermore, this property has been used widely
without careful measurement of the mixing time [31, 3, 30, 12]. For
example, Yu et al. [31] proposed SybilGuard, a Sybil defense pro-
tocol that exploits the fast mixing property of social graphs. Even
though they performed experiments on social networks, their ex-
periment was not about actual measurement of the mixing time
of these graphs (see Section 2). Danezis and Mittal [3] proposed
SybilInfer to detect Sybil nodes in social graph basing their design
on the fast mixing property of social graph and cited [18] as an ev-
idence to prove that social networks are fast mixing. We notice,
however, that findings in [18] do not support the mixing time with
the guarantees needed by SybilInfer. Lesniewski-Laas et al. [12]
introduced Whānau, a Sybil-proof routing protocol that uses the
fast mixing property and, while citing the existence of the property
to a large body of previous work, they have attempted to estimate
the mixing time in a few social graphs. However, their evidence is
only circumstantial and it does not directly follow that these social
graphs are really fast mixing (see Section 2).

In this paper, we evaluate the mixing time of social graphs. We
systematically measure the mixing time of social graphs in a vari-
ety of real-world small to large-scale social networks (see Table 1),



with designs based on these properties in mind. We use two meth-
ods for measuring the mixing time. First, we compute the Second
Largest Eigenvalue Modulus (SLEM) of the social graphs which
bounds the mixing time. Also, we sample initial points and com-
pute the random walk with varying walk lengths. We find that in
many actual large-scale social networks, the mixing time is much
larger than suggested by those papers, which apply the fast mix-
ing of social networks to design security systems. By experiment-
ing with one of these systems—SybilLimit [30], we unveil that the
quality of the mixing time required for such design is not as being
claimed, yet in some real-world social graphs higher than antic-
ipated, which calls for further investigation of the theory beyond
these designs.

The rest of the paper is organized as follows. In section 2, we re-
view some of the related work in literature. In section 3, we review
the preliminaries including the network model, the random walk,
and the mixing time. In section 4, we introduce the main results
followed by discussion in section 5. Finally, in section 6 we draw
concluding remarks and future work.

2. RELATED WORK
There are many systems built on top of social graphs and their

properties. Daly et al. [2] proposed a social network-based scheme
for routing in disconnected delay-tolerant mobile ad-hoc networks
which uses both of the betweenness and similarity properties. Quer-
cia et al. [19] used the betweenness property to defend against the
Sybil attack in mobile networks. Yu et al. [30, 31] used the fast
mixing property of a graph to build a defense mechanism against
the Sybil attack. Danezis and Mittal [3] used the fast mixing prop-
erty to build an inference (detection) mechanism for Sybil nodes
in peer-to-peer Systems. Lesniewski-Laas et al. [12] introduced
a routing protocol that uses the fast mixing property of the social
graph. Kaustz et al. introduced ReferralWeb [7], a referral sys-
tem that combines social networks and collaborative filtering and
assumes a well-connected social network graph, a property that is
very tied to the mixing time of the graph [6].

Schemes like SybilGuard [31] and SybilLimit [30] of Yu et al.,
and Whānau of Lesniewski-Laas et al. [12] are based on the fast
mixing property of social networks, and they did perform experi-
ments on some real social networks. But their experiments did not
directly measure or estimate the mixing time of these social net-
works. Let us summarize contents of their experiments as follows.

Yu et al. [30] performed some experiments based on real-world
social graphs. They ran their scheme with fixed, small walk length
(e.g., 10 or 15), and checked whether their scheme works as well
as expected (thereby indirectly trying to confirm that the graph is
fast mixing). But, there are some deficiencies in their methodology.
First, they manipulated the social graphs by trimming lower degree
nodes in order to improve the mixing time. Second, their method
used several parameters chosen heuristically without showing how
these parameters are related to the mixing time. Last, they evalu-
ated only three social graphs which would be too small for making
a general conclusion for all social graphs. We would also like to
point out that they measured only the false acceptance rate (i.e., the
rate of accepted sybil nodes per honest nodes) and not other char-
acteristics, like the rejection rate of honest nodes, which would be
expected to increase with insufficient walk lengths. Experiments
done in the SybilGuard [31] paper are similar.

Lesniewski-Laas et al. [12] also performed experiments on four
large-scale social graphs. They produced CDF of tail edges of ran-
dom walks with varying walk lengths, and expected that as the walk
length approaches O(logn), probabilities that a random walk ends
at a certain edge tend to approach 1/m, the uniform probability

over edges. But the convergence is very loose; they claim that as
the walk length approaches 801, each CDF approaches the ideal
uniform distribution, but among the social networks in their mea-
surement, at least the LiveJournal result shows the distribution is
very far from uniform at the walk length 80. The other three results
also allow a lot of deviations from the uniform distribution which
make it unlikely that the total variation distance between the dis-
tribution and the uniform distribution is close to 0. In short, they
provided raw measurements but did not relate the distribution of
the sampled tails to the stationary distribution itself, in terms of the
variation distance.2

Recently, and concurrent to this work, Viswanath et al. con-
ducted an experimental analysis of sybil defenses based on social
networks in [27]. Their study aimed at comparing different de-
fenses (namely, SybilGuard [32], SybilLimit [30], SybilInfer [3],
and SumUp [23]) independent of the data sets being used, by de-
composing these defenses to their cores. They show that the dif-
ferent Sybil defenses work by ranking different nodes based on
how well-connected are these nodes to a trusted node (the verifier).
Also, they show that the different Sybil defenses are sensitive to
community structure in social networks and community detection
algorithms can be used to replace the random walk based Sybil de-
fenses. In conclusion, results on the poor performance of Sybil
defenses when applied to community structure possessing social
graphs agree with our findings, where we show that such networks
are slow mixing.

3. PRELIMINARIES
In this section, we formalize the network model. We define the

mixing time of a random walk on a graph, and we also define the
fast mixing property of a graph.

3.1 Network model
The social network can be viewed as an undirected graph G =

(V,E) where V is the set of nodes (social actors) in the graph and
E is the set of edges (relationships or interdependencies) between
the nodes. The size of the graph n = |V | and the number of edges
in G is m = |E|. We define the degree of a node vi ∈ V as the
number of nodes in V adjacent to vi and denote it by deg(vi). For
G, we define the stochastic transition probability matrix P = [pij ]
of size n × n where the (i, j)th entry in P is the probability of
moving from node vi to node vj defined as

pij =

{
1

deg(vi)
if vi is adjacent to vj ,

0 otherwise.
(1)

3.2 Mixing time
In this subsection we recall definitions of some notions about

random walks on graphs. For more detailed exposition, see [21].
The “event” of moving from a node to another in the graph is

captured by the Markov chain which represents a random walk over
the graph G. A random walk R of length k over G is a sequence
of vertices in G begining from an initial node vi and ending at
vt, the terminal node, following the transition probability defined
in (1). The Markov chain is said to be ergodic if it is irreducible
and aperiodic. In that case, it has a unique stationary distribution
π and the distribution after random walk of length k converges to

1While 80 is much larger than lognwhen n is close to one million,
one possibility is that this may be due to the hidden constant.
2While [12] uses a different measure, called the separation dis-
tance, and does not require ε to be too small, the necessary quality
of the mixing time is not measured in [12].



π as k → ∞. The stationary distribution of the Markov chain is
a probability distribution that is invariant to the transition matrix
P (i.e., πP = π). The mixing time of the Markov chain, T is
defined as the minimal length of the random walk in order to reach
the stationary distribution. More precisely, Definition 1 states the
mixing time of a Markov chain on G parameterized by a variation
distance parameter ε.

DEFINITION 1 (MIXING TIME). The mixing time (parameter-
ized by ε) of a Markov chain is defined as

T (ε) = max
i

min{t : |π − π(i)P t|1 < ε}, (2)

where π is the stationary distribution, π(i) is the initial distribution
concentrated at vertex vi, P t is the transition matrix after t steps,
and | · |1 is the total variation distance. We say that a Markov chain
is rapidly mixing if T (ε) = poly(logn, log 1

ε
) where n = |V |.

In literature, the rapid mixing of the Markov chain is cited as “fast
mixing” for the graph [3, 12, 30, 31]. In this work, we follow the
tradition of referring to this bound as “fast mixing”. Also, again
following these previous work, we strengthen the definition by con-
sidering only the case ε = Θ( 1

n
), and requiring T (ε) = O(logn).

THEOREM 1 (STATIONARY DISTRIBUTION). For undirected
unweighted graphG, the stationary distribution of the Markov chain
over G is the probability vector π = [πvi ] where πvi = deg vi

2m
.

This is,

π =

[
deg(v1)

2m

deg(v2)

2m

deg(v3)

2m
. . .

deg(vn)

2m

]
(3)

Notice that π is uniform for a regular graph with degree d since
m = n×d

2
and π = [ d

2×n×d
2

] = [ 1
n

].

THEOREM 2 (SECOND LARGEST EIGENVALUE [21]). LetP
be the transition matrix of G with ergodic random walk, and λi for
1 ≤ i ≤ n be the eigenvalues of P . Then all of λi are real num-
bers. If we label them in decreasing order, 1 = λ1 > λ2 ≥ · · · ≥
λn−1 ≥ λn > −1 holds. We define the second largest eigen-
value µ as µ = max (|λ2|, |λn−1|). Then, the mixing time T (ε) is
bounded by:

µ

2(1− µ)
log(

1

2ε
) ≤ T (ε) ≤

log(n) + log( 1
ε
)

1− µ (4)

Mixing time versus connectivity: The mixing time is tightly re-
lated to the connectivity of the graph. This is, strongly-connected
graphs are fast mixing (i.e., have small mixing time) while the
weakly connected graphs are slow mixing and have large mixing
time [21]. Also, the second largest eigenvalue used for measuring
the mixing time bounds the graph conductance, a measure for the
community structure [27]. In short, the conductance is Φ ≥ 1− µ.

3.3 Measuring the mixing time of social graphs
Measuring the mixing time, especially of large graphs, is a cum-

bersome task and that might be the reason why fewer efforts are
made to measure this essential property in large social graphs. In
order to measure the mixing time of a social graph, we begin by the
definition itself in (2). We follow the definition, by starting from
an initial distribution concentrated on a node vi, and compute the
distribution after the random walk of length t with t large enough
so that the variation distance between the distribution after random
walk and the stationary distribution is within ε. We repeat this for
different initial points. This approach is feasible for not too small ε,
because we may then expect long walk length for this computation.

Since the mixing time is defined as the maximum necessary walk
length to achieve ε distance for different initial states, one such

random walk would be enough to establish a lower bound of the
mixing time. Since we are interested in how large the mixing time
should be, in principle only one random walk could be enough, if
the walk length is sufficiently large. But in order to understand the
general tendency and distribution of walk lengths, we repeat this
many times (i.e., 1000) by picking an initial node randomly and
perform the above computation. The end result obtained using this
technique gives intuition about the tendency of the mixing time.

As a complementary method for bounding the mixing time (for
even smaller ε and also for comparing with the previous results), we
also use the method described in Theorem 2. First, we compute the
second largest eigenvalue modulus (SLEM) of the transition matrix
P . Given that the matrixP is sparse, we found that the computation
of SLEM is feasible for graphs with a million nodes (as is the case
for largest graphs we used). Once we compute SLEM, we use the
lower bound in (4) to bound the mixing time of the graph.

3.4 Social graphs—the data sets
The social graphs used in our experiments are in Table 1. These

graphs are selected to feature two models of knowledge between
nodes in the social networks. These networks are categorized as
follows. (1) social networks that exhibit knowledge between nodes
and are good for the trust assumptions of the Sybil defenses; e.g.,
physics co-authorships and DBLP. These are slow mixing, as we
will see later. (2) Graphs of networks that may not require face-to-
face knowledge but require interaction; e.g., Youtube and Livejour-
nal. Closely related to those is the set of graphs that may not require
prior knowledge between nodes or where the social links between
nodes are less meaningful to the context of the Sybil defenses; e.g.,
Facebook and wiki-vote, which are shown to be fast mixing.

Table 1: Datasets, their properties and their second largest
eigenvalues of the transition matrix

Dataset Nodes Edges µ
Wiki-vote [8] 7,066 100,736 0.899418

Slashdot 2 [10] 77,360 546,487 0.987531
Slashdot 1 [10] 82,168 582,533 0.987531
Facebook [26] 63,392 816,886 0.998133

Physics 1 [9] 4,158 13,428 0.998133
Physics 2 [9] 11,204 117,649 0.998221
Physics 3 [9] 8,638 24,827 0.996879

Enron [9] 33,696 180,811 0.996473
Epinion [20] 75,879 508,837 0.998133
DBLP [13] 614,981 1,155,148 0.997494

Facebook A [28] 1,000,000 20,353,734 0.982477
Facebook B [28] 1,000,000 15,807,563 0.992020

Livejournal A [14] 1,000,000 26,151,771 0.999387
Livejournal B [14] 1,000,000 27,562,349 0.999695

Youtube [14] 1,134,890 2,987,624 0.997972

4. RESULTS
Equipped with the mathematical tools explained in section 3, we

measure the mixing time of the different social graphs shown in
Table 1. In order to apply the tools in section 3 for measuring the
mixing time, we first convert directed graphs to undirected, which
is similar to what is performed in other work [27, 3, 12, 11, 23,
30, 31, 32]. We further compute the largest connected compo-
nent in each graph and use it as a representative social structure
for measuring the mixing time, as the mixing time is undefined for
disconnected graphs. For small to medium-sized graphs, we com-
pute SLEM directly from the transition matrix of the graph. On the
other hand, for feasibility reasons, we sample the representative



subgraphs from each of the four large data sets (Facebook A, B and
Livejournal A, B) using the breadth first search (BFS) algorithm
beginning from a random node in the graph as an initial point.3 We
perform this sampling process to obtain graphs of 10K, 100K and
1000K nodes out of 3 to 5 million nodes in each original social
graph. Bearing the different social graphs sizes in mind, as shown
in Table 1, we proceed to describe the results of our experiments.

Figure 1 and Figure 2 plot the lower bound of the mixing time for
the different graphs in Table 1. We choose to use the lower-bound,
but not the upper bound, because it is more relevant to the context
of our study. In particular, as we observe that the lower-bound of
the mixing time to satisfy a given ε is large, it is obvious that the
mixing time for social graphs is slower than anticipated. As shown
in Figure 1, we also observe that the mixing time is very slow, in
particular for social graphs that require physical acquaintance of
the social actors, as can be seen in the general tendency of these
graphs. For example, physics co-authorship, Enron, and Epinion,
though the social network is small, a mixing time of 200 to 400 is
required to achieve ε = 0.1. Similarly for larger social graphs, as
shown in Figure 2, the mixing time to achieve ε = 0.1 is varying
and depends on the nature of the data set. For example, while it is
about 1500 to 2500 in case of Livejournal, it ranges from 100 to
about 400 in case of DBLP, Youtube, and Facebook.
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Figure 1: Lower bound of the mixing time for the different data
sets used in our experiments — the case of small data sets.
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Figure 2: Lower bound of the mixing time for the different data
sets used in our experiments — the case of large data sets

To see how tight are these measurements we perform the follow-
ing experiment. We first compute the lower bound of the mixing
time for the physics co-authorship data sets, which are also reason-
ably small and feasible to do exhaustive computations. Then we
measure the mixing time using the model in (2) from every pos-
sible source in the graph (the CDFs of the raw measurements are
3Note that BFS algorithm may bias the sampled graph to have
faster mixing. Since our goal is to show that the mixing time is
slower than expected, this only strengthens our position.

shown in Figure 3 for small t and and in Figure 4 for large t). We
aggregate these measurements into Figure 5, by sorting ε at each t
and averaging values in various intervals as percentiles. We observe
that while the mixing time of most sources in social graphs is bet-
ter than that of the mixing time given by SLEM, the measurements
using SLEM are correct since the mixing time is by definition max-
imum of walk lengths for given ε as shown in (2). However, even
considering this effect, still for most sources the mixing time is
slower than used by other papers (10 and 15 in SybilLimit).
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(b) Physics 3
Figure 4: The CDF of mixing time (long walks) for the three
physics datasets in Table 1. The variation distance is computed
for every possible node in the graph, brute-forcefully.
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Figure 6: Lower-bound vs. the top the average mixing time for
a sample of 1000 nodes in each data set, where DBLP x means
the minimum degree in that data set is x.

To understand the relationship between the network size and the
mixing time (of the same social graph) we use the different pre-
viously sampled subgraphs, using BFS, from Facebook and Live-
journal data sets (10K, 100K, and 1000K). We further measure the
mixing time using SLEM and the model in (2) for 1000 initial dis-
tributions. We further aggregate the top 10, median 20, and lowest
10 percentile of ε corresponding to the given random walk, and
plot them along with the mixing time derived using SLEM where
the results are shown in Figure 7. We observe that for a million
nodes graph, while the mixing time in the top 10% in the sample
we computed is 100 for an averaged ε = 10−5—an excellent value
to the “theoretical” guarantees of the Sybil defenses, the SLEM-
based mixing time results in only ε = 10−2 as shown in Figure 7(i).
We attribute this difference to similar scenario as in the physics co-
authorship graphs. Similar observations can be seen in each of the
different large social graphs. It is worth mentioning that Livejour-
nal (Figure 7(k) and Figure 7(l)) present poor mixing in relation
with Facebook data sets, which are shown to be fast mixing.

Finally, to understand the methodology used for experimenting
in Sybilguard and SybilLimit, we perform the same trimming tech-
nique by iteratively removing lower degree nodes (for 1 up to 5)
from the DBLP data set and computed the mixing time of the re-
sulting graphs at each time (results shown in Figure 6). We observe
that the pruning of lower degree greatly improves the mixing time
of the social graph: for fixed mixing time of 100, by successive
trimming the variation distance is reduced from about 0.2 to 0.03
(Figure 6(a)), and from about 0.015 to 0.002 (Figure 6(b)). But this
is with huge reduction of the graph size: DBLP 1 is of size 614,981
but after trimming up to 4 degree nodes, DBLP 5 is of size 145,497.
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Figure 3: The commutative distribution function (CDF) of mixing time for the three physics datasets in Table 1. The variation
distance is computed for every possible node in the graph, brute-forcefully.
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Figure 5: Lower-bound of the mixing time compared to the mixing time when measured using the sampling method for the entire
graphs brute-forcefully — different measurements meet the guarantees.

This means that about 75% of nodes are denied joining the service
outright in order to boost the mixing time.

5. DISCUSSION
While the main finding in this study is that the mixing time of

social graphs is higher than has been used in literature, we also
conclude that different nodes approach the stationary distribution
at different rates. This is, while the majority of walks initiated
from different nodes reach closer to the stationary distribution at
“higher” rate than that of the mixing time, which is defined as the
maximum rate from any source, we still find—except in a few cases
of online social networks—that the mixing time of the majority of
nodes is larger than anticipated and used in the previous studies [30,
31, 12]. This has several implications and call for several actions.

First, since most of the theoretical guarantees of social graphs
consider the model in (2), and since the majority of nodes in the
social graphs measured in this paper have better mixing time than
the bound in that model, this calls for rigorous study by basing such
designs and analyses on the average case of the mixing, which is
relatively small, instead of the worst case of the mixing time.

Second, the obvious implication of our findings is that one has to
either give up some of the utility (service) guarantees—which are
implied by that almost all honest nodes admit other honest nodes—
by using relatively shorter walks, or give up part of the performance
and security by enabling longer random walks in order to reach
these isolated parts of the social graphs. Though this looks straight-
forward, going either way is not as simple as it seems. On the one
hand, if one uses longer random walks in order to reach such iso-
lated parts of the network it would be equally likely to escape to
the Sbyil region which has a cut similar in its nature to that of the
slower mixing part of the original social graph. On the other hand,
using random walks shorter than the mixing time of the majority of
nodes would also be at the expense of the utility; not only for the

isolated part but also the faster mixing part as well. The end detec-
tion guarantees of the design would work as long as g, the number
of attack edges is less than n

w
.

Third, papers introducing SybilGuard, SybilLimit, and Whānau
all did experiments on their schemes. Despite the short mixing
time that these experiments use, their results seem to support that
their schemes work as expected. The explanation of this is two part.
First, the trimming of lower-degree nodes would shorten the mixing
time. Second, although they claim that the social networks are fast
mixing and as a part of the definition—which is also used in parts of
the proofs for the theoretical guarantees—they insist ε = Θ(1/n),
this is a very strong burden to achieve and perhaps somewhat larger
ε might also be good enough for these schemes to work. Also, we
suspect that the difference between the average mixing time and the
worst-case mixing time may have some effects on the discrepancy
between the analysis and the experiment. In practice, the majority
of nodes with “fast” mixing would be served and those few other
nodes with very slow mixing would be denied service, which then
will not be a problem for the probabilistic average-case guarantees.

Finally, one of the assumptions in Sybil defenses based on social
networks is that the used trust model requires physical acquain-
tance, which is the case in social networks such DBLP and Physics
co-authorship networks, for which we show slower mixing time
than other “online social networks” which are known to possess
less strict trust models [5, 1], which by nature tolerate Sybil nodes.
This calls for considering the trust model resulting from the under-
lying social network as a parameter, along with the mixing time,
in order to evaluate the effectiveness of the social network-based
defenses according to their real value. Our work in [16, 15] is a
preliminarily result in this direction.
Performance Implications—the case of SybilLimit: in order to
quantitively measure the impact of the findings of slower mixing
time on the performance of Sybil defenses, we implement Sybil-
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Figure 7: Sampling vs. lower-bound measurements of the mixing time for 10K, 100K and 1000K of four large-scale datasets.

Limit and operate it on some of the different social networks with
the following settings. Since we already know the social graphs
size—both m and n, we select the proper r that guarantees high
probability of intersection. We set r to r0

√
m, where m is the

number of undirected edges in the graph and r0 is computed from
the birthday paradox to guarantee a given intersection probability.
In this experiment, we consider the case without an attacker, since
SybilLimit bounds the number of the Sybil identities introduced
based on the number of the attacker edges. We increase t until the
number of accepted nodes by a trusted node (the verifier) reaches a
almost all honest nodes in the social network. Then, with this t, we
find the (average) total variation distance required in each graph,
which is the necessary for the operation of these designs. It is then
easy to compute the number of accepted Sybil identities which is
t × g, where g is the number of attack edges. SybilLimit works
as long as t < n

w
. The result of this experiment is in Figure 8. In

some of these graphs, the length of random walk is much longer
than assumed previously. For more details, see [17].

6. CONCLUSION
In this paper, we measured mixing times of several on-line and

and information social networks which may be used for building
security defenses and communication systems. Our main finding
shows that these social networks generally have much slower mix-
ing time than the previous works anticipated. Meanwhile, we also
observed that the average mixing time is better than the worst-case
mixing time which is the standard definition of the mixing time of
a random walk on a graph, although the average mixing time is
again much higher than the ones being used. In the near future, we
will investigate building theoretical models that consider the aver-
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Figure 8: Admission rate of SybilLimit when using different t.
Facebook (A) and Slashdot (1) have 10,000 nodes each.

age case of the mixing time. We will also investigate cost models
that consider the different mixing times of social graphs and their
relation of the trust model exhibited in such networks to evaluate
the overall effectiveness of design based on social networks. The
latter part of the future work is motivated by observing that some
graphs are faster mixing than others while their trust is different.

Acknowledgement
We are grateful to Alan Mislove and Ben Y. Zhao for providing the
data sets used in this study, Nicholas Hopper, John Carlis, and the
anonymous reviewers for their useful feedback and comments, and
Haifeng Yu and Chris Lesniewski-Laas for answering our questions
about their schemes. This research was supported by NSF grant
CNS-0917154 and a research grant from Korea Advanced Institute
of Science and Technology (KAIST).



7. REFERENCES
[1] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your

contacts are belong to us: automated identity theft attacks on
social networks. In WWW ’09: Proceedings of the 18th
international conference on World wide web, pages 551–560,
New York, NY, USA, 2009. ACM.

[2] E. M. Daly and M. Haahr. Social network analysis for
routing in disconnected delay-tolerant manets. In MobiHoc
’07: Proceedings of the 8th ACM international symposium
on Mobile ad hoc networking and computing, pages 32–40,
New York, NY, USA, 2007. ACM.

[3] G. Danezis and P. Mittal. SybilInfer: Detecting sybil nodes
using social networks. In The 16th Annual Network &
Distributed System Security Conference, 2009.

[4] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on
Peer-to-Peer Systems, pages 251–260, London, UK, 2002.
Springer-Verlag.

[5] C. Dwyer, S. Hiltz, and K. Passerini. Trust and privacy
concern within social networking sites: A comparison of
Facebook and MySpace. In Proceedings of AMCIS, 2007.

[6] M. Jerrum and A. Sinclair. Conductance and the rapid
mixing property for markov chains: the approximation of the
permanent resolved (preliminary version). In STOC, pages
235–244. ACM, 1988.

[7] H. A. Kautz, B. Selman, and M. A. Shah. Referral web:
Combining social networks and collaborative filtering.
Commun. ACM, 40(3):63–65, 1997.

[8] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg.
Predicting positive and negative links in online social
networks. In M. Rappa, P. Jones, J. Freire, and
S. Chakrabarti, editors, WWW, pages 641–650. ACM, 2010.

[9] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In KDD ’05: Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery
in data mining, pages 177–187, New York, NY, USA, 2005.
ACM.

[10] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. CoRR,
abs/0810.1355, 2008.

[11] C. Lesniewski-Laas. A Sybil-proof one-hop DHT. In
Proceedings of the 1st workshop on Social network systems,
pages 19–24. ACM, 2008.

[12] C. Lesniewski-Lass and M. F. Kaashoek. Whānau: A
sybil-proof distributed hash table. In 7th USENIX Symposium
on Network Design and Implementation, pages 3–17, 2010.

[13] M. Ley. The DBLP computer science bibliography:
Evolution, research issues, perspectives. In String Processing
and Information Retrieval, pages 481–486. Springer, 2009.

[14] A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In Internet Measurement Comference, pages
29–42, 2007.

[15] A. Mohaisen, N. Hopper, and Y. Kim. Designs to account for
trust in social network-based sybil defenses. In 17th ACM
Conference on Computer and Communications Security,
Chicago, IL, USA, 2010. ACM.

[16] A. Mohaisen, N. Hopper, and Y. Kim. Keep your friends
close: Incorporating trust in social network-based sybil
defenses. Technical report, University of Minnesota, 2010.

[17] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing
time of social graphs. Technical report, University of
Minnesota, 2010.

[18] S. Nagaraja. Anonymity in the wild: Mixes on unstructured
networks. In N. Borisov and P. Golle, editors, Privacy
Enhancing Technologies, volume 4776 of Lecture Notes in
Computer Science, pages 254–271. Springer, 2007.

[19] D. Quercia and S. Hailes. Sybil attacks against mobile users:
friends and foes to the rescue. In INFOCOM’10:
Proceedings of the 29th conference on Information
communications, pages 336–340, Piscataway, NJ, USA,
2010. IEEE Press.

[20] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In D. Fensel, K. P.
Sycara, and J. Mylopoulos, editors, International Semantic
Web Conference, volume 2870 of Lecture Notes in Computer
Science, pages 351–368. Springer, 2003.

[21] A. Sinclair. Improved bounds for mixing rates of marcov
chains and multicommodity flow. Combinatorics,
Probability & Computing, 1:351–370, 1992.

[22] N. Tran, J. Li, L. Subramanian, and S. S. M. Chow. Brief
announcement: improving social-network-based
sybil-resilient node admission control. In A. W. Richa and
R. Guerraoui, editors, PODC, pages 241–242. ACM, 2010.

[23] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient
online content voting. In USENIX NSDI, 2009.

[24] E. Vasserman. Towards freedom of speech on the Internet:
Censorship-resistant communication and storage. PhD
thesis, UNIVERSITY OF MINNESOTA, 2010.

[25] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim.
Membership-concealing overlay networks. In Proceedings of
the 16th ACM conference on Computer and communications
security, pages 390–399. ACM, 2009.

[26] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Social Networks
(WOSN’09), August 2009.

[27] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An
analysis of social network-based sybil defenses. In
SIGCOMM, 2010.

[28] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y.
Zhao. User interactions in social networks and their
implications. In EuroSys ’09: Proceedings of the 4th ACM
European conference on Computer systems, pages 205–218,
New York, NY, USA, 2009. ACM.

[29] S. Xu, X. Li, and P. Parker. Exploiting social networks for
threshold signing: attack-resilience vs. availability. In
ASIACCS ’08: Proceedings of the 2008 ACM symposium on
Information, computer and communications security, pages
325–336, New York, NY, USA, 2008. ACM.

[30] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit:
A near-optimal social network defense against sybil attacks.
In IEEE Symposium on Security and Privacy, pages 3–17,
2008.

[31] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: defending against sybil attacks via social
networks. In SIGCOMM, pages 267–278, 2006.

[32] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman.
SybilGuard: defending against sybil attacks via social
networks. IEEE/ACM Trans. Netw., 16(3):576–589, 2008.


	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Network model
	3.2 Mixing time
	3.3 Measuring the mixing time of social graphs
	3.4 Social graphs—the data sets

	4 Results
	5 Discussion
	6 Conclusion
	7 References

