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Abstract—Bitcoin is the leading example of a blockchain
application that facilitates peer-to-peer transactions without the
need for a trusted third party. This paper considers possible
attacks related to the decentralized network architecture of
Bitcoin. We perform a data driven study of Bitcoin and present
possible attacks based on spatial and temporal characteristics of
its network. Towards that, we revisit the prior work, dedicated
to the study of centralization of Bitcoin nodes over the Internet,
through a fine-grained analysis of network distribution, and
highlight the increasing centralization of the Bitcoin network over
time. As a result, we show that Bitcoin is vulnerable to spatial,
temporal, spatio-temporal, and logical partitioning attacks with
an increased attack feasibility due to the network dynamics. We
verify our observations by simulating attack scenarios and the
implications of each attack on the Bitcoin network. We conclude
with suggested countermeasures.

I. INTRODUCTION

Blockchain is a new paradigm for distributed computing,
with Bitcoin being its most popular application [41], [48]. Due
to its high market share of over $110 billion USD [10], Bitcoin
has been a lucrative target of attack for adversaries, who have
been mainly targeting Bitcoin’s exchanges, the blockchain
fabric, and nodes involved in Bitcoin’s network.

In this paper, we analyze the peer-to-peer model of cryp-
tocurrencies and associated security. In particular, through
network data analysis (§IV), we uncover and exploit the
increasing centralization of Bitcoin nodes over the Internet,
the non-uniform consensus among peers, and the software
diversity of Bitcoin clients to devise and optimize partitioning
of the Bitcoin network. We outline spatial, temporal, spatio-
temporal, and logical attacks, exploiting various aspects of
Bitcoin dynamics. Some of those attacks are not new. For
example, in 2014, an attacker from a malicious ISP hijacked
IP prefixes of 19 Internet providers to isolate Bitcoin traffic and
steal $83,000 USD worth of bitcoins [29], as an instance of the
spatial attack. This attack has been formalized and examined
in [3]. Our work shows that the network has become more
vulnerable due to increasing centralization.

In 2017, 13 ASes hosted 30% Bitcoin nodes while 50 ASes
hosted 50% Bitcoin nodes [3]. In our analysis, started on
February 28, 2018, we found that only 8 ASes host 30% of
Bitcoin nodes and 24 ASes host 50% of Bitcoin nodes. At
the organization-level, we found that only 13 organizations
host 50% of the Bitcoin nodes. Among them, only two orga-
nizations host 65.7% of Bitcoin hashing rate, with the lead-
ing organization (AliBaba) having a 59.4% share of Bitcoin
hashing rate. At the network level, we exploit the increasing
centralization (§V-A) to show empirically that an adversary can
easily partition the network spatially through BGP hijacking,
causing a “hard fork” by controlling a limited number of ASes.
At the AS level, we show a pattern of IP prefix distribution:

in some cases, hijacking as little as 20 prefixes would give the
adversary control over more than 80% of the Bitcoin nodes
residing within this AS. At the organization-level, we uncover
that multiple ISPs control more than one AS, amplifying the
centralization effect, and facilitating new attack avenues.

Unique to our study, we exploit the non-uniform consen-
sus among peers for optimized temporal attacks (§V-B). We
observed that—due to latency and malicious peer behavior—
there is a lag in consensus and block propagation. Through our
analysis, we found that even 5 minutes after the publication
of a block, ≈62.7% of nodes in the network remain behind
the latest block by one or two blocks. We show that such
a behavior can be exploited to optimize an attack in which
the adversary can feed false blocks to nodes and temporally
partition the network. Considering the ethical ramifications of
launching these attacks in practice, we instead use simulation-
based models to validate our findings. Through simulations,
we show that an attacker with ≈ 30% hash power can mislead
nodes that are behind the main chain.

To optimize spatial and temporal attacks, we explore the
spatio-temporal attack vector (§V-C). By observing that only
5 ASes hosted ≈30% of synchronized nodes, this attack
considers them as more valuable targets, thus reducing the
attacker’s effort. Observing the presence of more than 200 Bit-
coin software versions, demonstrating high software diversity,
we outline a logical attack, in which an adversary manipulates
the client behavior to partition the network (§V-D).

Little work has been done on measuring temporal behaviors
in the Bitcoin network for attacks. Apostolaki et al. [3]
performed a data analysis on Bitcoin to understand AS-
level centralization of nodes and miners, and presented the
possibility of routing attacks. However, their work was limited
to spatial attacks at vantage points on the Internet, which we
demonstrate more effective due to network centralization.
Contributions and Roadmap. In summary, we make the
following contributions. 1) Through data-driven analysis, we
provide deeper insights into the Bitcoin network by outlining
characteristics, distribution, location, and performance of full
nodes. 2) Embracing various characteristics of the network, we
propose several directions of attacks and validate them through
data analysis and simulations. We outline, demonstrate, model,
optimize, and evaluate spatial, temporal, spatio-temporal, and
logical attacks. 3) We discuss possible countermeasures to
address those attacks. Through the rest of the paper, in §II,
we outline the Bitcoin network model, and in §III, we outline
the threat model and adversarial capabilities. We provide our
preliminary analysis in §IV. In §V, we discuss the partitioning
attacks on Bitcoin network and in §VI, we explore the possible
countermeasures for each attack. That is followed by related
work and conclusion in §VII and §VIII, respectively.
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Fig. 1. Bitcoin illustration with full nodes and lightweight nodes. Lightweight
nodes only have the view that their associated full nodes provide. Full nodes
F1, F2, and F5 have updated views while F3 and F4 are 1-2 blocks behind.

II. THE BITCOIN NETWORK MODEL

The Bitcoin network consists of nodes connected in a peer-
to-peer model. Upon joining the network, nodes connect to
each other using public IP addresses, and use the gossip
protocol to exchange network information such as transactions,
blocks, and addresses. There are special nodes in the network,
called miners, that are responsible for extending the blockchain
by creating new blocks [44].

Ideally, all the participating nodes in the network need to
have an updated copy of the blockchain, but the growing
size of the chain makes it infeasible to be used on smart
devices. For example, the current blockchain size in Bitcoin
is approximately 150GB [52], and if a user wants to use
Bitcoin’s services on his smart phone, he might not be able
to download the complete blockchain and become part of the
network. To address this problem, third party services such as
Blockchain.info [33] provide an easy access to such clients by
downloading Blockchain and providing access to smart device
users. Blockchain.info maintains an active node in Bitcoin that
keeps track of all transactions and blocks, and replicates the
network view to all of its customers. Therefore, the current
Bitcoin network is structured into full nodes that are active
in the main network, and lightweight nodes that use services
of full nodes. In Figure 1, we provide an illustration of this
model. For more information regarding the full nodes and the
lightweight nodes, we refer the reader to [26].

III. THREAT MODEL

In this section, we outline the basics of partitioning attacks
on Bitcoin and describe our threat model. Through data-driven
analyses, we establish the modus operandi of the Bitcoin
network, and describe capabilities needed by the adversary
to partition the network spatially and temporally. Towards
that, we revisit Apostolaki et al.’s work [3] (referred to as
the “classical attack”), providing a baseline for partitioning
attacks. We highlight new targeted attacks on the network, by
introducing temporal, spatio-temporal, and logical partitioning
attacks, which have not be identified before.

For the spatial partitioning, we assume the adversary to
be an autonomous system (AS), an ISP organization, or a
nation-state. An AS hosting a fewer Bitcoin nodes can launch
a BGP attack on another AS that hosts more nodes. As a
result, it can hijack the Bitcoin traffic, isolate the mining
power, or simply harm the reputation of the target AS. For
temporal attacks, we assume a malicious mining pool that
attempts to fork the network and deprive an honest miner
from block rewards. With soft forks, the adversary aims to
create a temporary imbalance in system ramifications, such
as transaction processing, and by hard forks it attempts to

permanently split the network with diverging views. Finally,
for logical attacks, we assume the adversary to be a software
developer capable of exploiting bugs in the Bitcoin software
client. Additionally, due to the centralization of Bitcoin traffic
and a shift in country-level policies towards Bitcoin, we do not
exclude the possibility of a nation-state adversary. As such, a
nation-state can partition the network by blocking the flow
of traffic through its ASes and organizations. Countries such
as Bolivia, Kyrgyzstan, and Nepal have permanently banned
Bitcoin and its exchanges [54]. If China, for example, decides
to ban Bitcoin, it will have a significant impact on the health
of the Bitcoin network since 60% of the mining traffic goes
through China (as shown in Table IV).
Adversarial View. We assume that the adversary has a consis-
tent view of the network similar to the one available to us for
conducting our analysis. The adversary will have access to the
following information. 1) The top ASes and organizations that
host a maximum number of nodes and their distribution over
time. 2) The temporal spread of block information among all
nodes in the network upon block broadcast. 3) The vulnerable
nodes in the network based on their location, uptime, latency,
consensus time, and neighboring peers. 4) The vulnerable
network entities (ASes and organizations) based on their public
information such as BGP prefixes, neighboring ASes, location,
and routing information.
Adversarial Capabilities. In the threat model, adversaries
have unique capabilities. For example, a malicious AS or
organization will have the ability to announce false routing
information to other ASes and separate the target AS from
neighboring nodes. This, in turn, can disrupt the exchange of
transactions, blocks, and mining information, thereby affecting
full nodes, lightweight nodes, and mining pools.

For temporal partitioning, the adversarial mining pool will
have a consistent view of the network, which will allow it to
identify nodes that are behind the blockchain. Obtaining this
information is not challenging since various Bitcoin crawlers
are available and can be used to access the blockchain view of
nodes in Bitcoin [15]. This can be exploited by the malicious
mining pool to identify vulnerable nodes that are 1–5 blocks
behind. A malicious miner, for instance, can mislead those
nodes by propagating false information in the network. Doing
so may create a temporary or even a permanent partitioning in
the network, where a group of nodes are misled into following
a counterfeit blockchain.

IV. PRELIMINARY ANALYSIS

A. Data Collection
For our analysis, we crawled data from Bitnodes [15], which

is a Bitcoin service supported by Earn.com [16]. Bitnodes
maintains a persistent connection with all reachable nodes by
running a full node that connects to the rest of the network. Af-
ter connecting with all nodes, Bitnodes uses inventory message
(inv) and data messages (getdata, getblock, gettransaction) to
get recent blocks and transactions from each node (for more
information regarding these protocol messages, we refer the
reader to the Bitcoin protocol documentation [13]). For each
node, Bitnodes records the response time to calculate useful
information such as the latency, the uptime, and the latest
block etc. From IP addresses, it determines the corresponding
AS, organization, and location of a node.

We used the information provided by Bitnodes to develop
another crawler, atop Bitnodes, to acquire data and store it in



our local database. We ran the crawler on our campus server
for two months, and our complete dataset spans two months of
Bitcoin network information with an aggregate size of 80GB.
In summary, we were able to collect the Bitcoin network
information sampled at every 10 minutes to analyze consensus
distribution after each published block, and at every 1 minute
to observe consensus pruning in the network in-between the
publication of two successive blocks.

B. Methodology
In our initial experiments, first we cross-validated the infor-

mation provided by Bitnodes. We mapped the crawled IP ad-
dresses to a commercial-grade geo-mapping dataset obtained
from Digital Envoy (DE) [42]. The DE dataset mapping of
Bitnodes IP addresses validated the information in our dataset
regarding ASes and organizations. After establishing data
reliability, we performed a series of experiments to analyze
the configuration of the network, and the distribution of nodes
across ASes and organizations. The initial results gave us a
holistic view of the network and its centralization, which we
used to describe spatial partitioning attacks.

Next, we analyzed the consensus distribution among nodes,
based on their view of the blockchain. We recorded the latest
block published by miners in the network and the most recent
block that every node had. The difference between the two
denoted how far behind the node was from the network. As
shown in Figure 1, nodes F3 and F4 are 1-2 blocks behind
the main chain. Therefore, they provide an outdated view of
network to their lightweight nodes. This information can be
used by the attacker to lure them into a counterfeit network
by feeding them bogus blocks or a different blockchain. We
leveraged this information to outline temporal partitioning
attacks that can be launched on Bitcoin network to isolate
nodes based on their outdated view. Our results showed that
dynamics of Bitcoin network are not consistent over time and
there are vulnerable spots for an attacker who can connect to
a group of nodes and partition them.
Experiments and Simulations. We modelled and simu-
lated partitioning attacks on Bitcoin based on the data, the
network view, and adversarial capabilities. Our simulations
accurately reproduced the vulnerable state of the network that
was observed in our data analysis. By causing non-targeted
communication errors, forks were created that resembled those
occurring naturally when the network is not synchronized.
Bitcoin forks have been observed up to a height of 13, and
can enable double-spending [35]. As in the real network, the
simulator resolved forks within two or three block intervals,
with all nodes joining the longest chain. The simulation
showed that partitioning attacks can create and exploit such
forks using targeted communication disruption, holding them
open long enough to achieve attack objectives.

C. Measurements and Observations
Below, we discuss some key observations we made during

the preliminary analysis on the Bitcoin network on February
28, 2018. We show the number of full nodes in the network
and their distribution with respect to IP addresses, link speed,
latency, and block index.

The network snapshot showed that there were 13,635 full
nodes in the Bitcoin network. This shows that the size of the
actual network is small compared to SPV clients, considering
that Blockchain.info alone hosts 2.3–5 million users [32]. At

TABLE I
OVERVIEW NODE CHARACTERISTICS OBSERVED ON FEB 28, 2018. NOTE
THAT THE IPV4 AND IPV6 NODES ARE SIMILAR IN LINK SPEED (MBPS),
LATENCY AND UPTIME INDEX, WHILE TOR NODES HAVE MUCH HIGHER

LINK SPEED AND LOW LATENCY.

Link Speed Latency Index Uptime Index
Type Count µ σ µ σ µ σ
IPv4 12,737 25.04 258.80 0.70 0.45 0.68 0.44
IPv6 579 23.06 245.36 0.86 0.35 0.67 0.42
TOR 319 432.67 1046.5 0.24 0.25 0.76 0.37

the time of data collection, 11,382 (83.47%) nodes were up
while 2,253 (16.52%) nodes were down. Only 6,155 (45.14%)
nodes had the most updated copy of the blockchain while
7,480 (54.86%) were 1 or more blocks behind. We also make
use of peer information maintained by Bitnodes to characterize
certain properties of nodes, including the latency index, the
uptime index, and the block index. Each of these indicators
can be used to profile the given node in the network.

Among the full nodes, 12,737 (93.41%) had IPv4 address,
while 579 (4.24%) had IPv6 address. The remaining 319
(2.33%) full nodes had onion addresses, meaning that they
were using TOR services to run Bitcoin. The average link
speed of the IPv4 and IPv6 was 25.04 Mbps and 23.06 Mbps,
respectively. Their latency index, block index, and uptime
index were also similar to one another. On the other hand,
TOR nodes had a high average links speed of 432.67 Mbps;
approximately 17 times higher than the average link speed of
IPv4 and IPv6 nodes, respectively. Consequently, they also had
low latency and higher uptime index. We report our findings
from preliminary analysis in Table I.

V. PARTITIONING ATTACKS ON BITCOIN

Based on our preliminary analysis, we propose four types
of partitioning attacks that can be launched on the Bitcoin
network. The fundamental premise of each attack is related to
the spatial positioning of nodes, the topological symmetry of
the network, the temporal consensus over the blockchain state,
or the client side software used by nodes to run Bitcoin. We
define these attacks as spatial, temporal, spatio-temporal, and
logical partitioning attacks, respectively.

A. Spatial Partitioning
In this section, we analyze the centralization of full nodes

and mining pools across ASes and organizations. Towards that,
we revisit the prior work to evaluate the classical attack, and
demonstrate that over time, the Bitcoin network has further
centralized and become more vulnerable.
Attack Objectives. The objective of spatial partitioning is to
isolate Bitcoin nodes. The objective can be purely to isolate
miners, and restricting their access to the network, or eclipsing
an entire AS that hosts a large fraction of nodes. A mining pool
might launch such an attack against its competitor to increase
its chances to publish more blocks. A competing cryptocur-
rency can launch this attack to affect Bitcoin’s reputation.
Attack Procedure. In Figure 2, we provide an illustration
of a BGP attack, which can be launched by a malicious
organization or an AS. In this attack, the malicious AS
announces prefixes that belong to the victim AS. As shown
Figure 2, organizations D and E can launch BGP attacks
against organization F and B, respectively, by broadcasting
more specific prefixes. Moreover, the attack can be made
more targeted by announcing prefixes addressing only Bitcoin
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Fig. 2. Network topology consisting of organizations, ASes and full nodes.
Organizations D and E can launch BGP attacks against F and B respectively.

TABLE II
A VIEW OF TOP TEN ASES AND ORGANIZATIONS IN BITCOIN ON

FEBRUARY 28TH 2018. THE TABLE SHOWS THAT BITCOIN IS MORE
CENTRALIZED WITH RESPECT TO ORGANIZATIONS THAN ASES. AS24940

INTERCEPTS THE MAXIMUM BITCOIN TRAFFIC.

ASes # of Nodes Total Nodes % Organizations # of Nodes Total Nodes %
AS24940 1,030 7.54% Hetzner Online GmbH 1,030 7.54%
AS16276 697 5.11% Amazon.com, Inc 756 5.54%
AS37963 640 4.69% OVH SAS 700 5.13%
AS16509 609 4.47% Hangzhou Alibaba 640 4.69%
AS14061 460 3.37% DigitalOcean, LLC 503 3.69%
AS7922 414 3.04% Comcast Communication 414 3.04%
AS4134 394 2.89% No.31, Jin-rong Street 394 2.89%
TOR 319 2.34% TOR 319 2.34%
AS51167 288 2.11% Contabo GmbH 288 2.11%
AS45102 279 2.05% Alibaba (China) 279 2.05%

nodes. This attack relies on two major factors: the total number
of ASes and organizations, and the total number of nodes
hosted in each of them. In particular, if the total number
of ASes and organizations hosting full nodes is large, the
attack becomes costly. Similarly, if the number of nodes is
concentrated within a few ASes, that makes a better target
rather than attacking arbitrary ASes with fewer nodes. To
evaluate that, we carried out two experiments to observe
the total number of ASes hosting Bitcoin nodes and the
distribution of nodes among those ASes.
Practical Considerations. Our results show that the full
nodes in Bitcoin are highly centralized at the AS and organi-
zation level. Compared to [3], the network has become even
more centralized, and more vulnerable to BGP hijacking and
routing attacks. In particular, we observed that among the total
of 84,903 ASes in the world [45], only 8 (0.0094%) ASes
host 30% Bitcoin nodes. 24 (0.028%) ASes host 50% while
1,660 (1.95%) ASes host 100% Bitcoin nodes. This shows a
significant difference in the number of ASes that host 50% and
100% full nodes. To understand that, we plot CDF of ASes
that host the traffic of full nodes in Figure 3.

Similarly, we observed that the top 8 organizations in-
tercepted 30% Bitcoin traffic and the top 13 organizations
intercepted 50% traffic, collectively. We also noticed that each
organization controlled one or more ASes, alluding to the
possibility of a fine-grained partitioning attack.

In Table II, we show the top 10 ASes and organizations
along with the percentage of total nodes that they host. We
group TOR nodes and treat them as a single AS. AS24940
hosts 7.54% nodes and its corresponding organization Hetzner
Online also hosts 7.54% nodes, meaning that the Bitcoin traffic
routed by Hetzner Online entirely goes through AS24940.
On the other hand, Amazon.com routes 5.54% of the traffic
while AS16276 intercepts 5.11% traffic. This shows that
Amazon.com owns another AS besides AS16276 that also
routes traffic. This model can be observed in Figure 2.

As outlined in Figure 3, 50% of the Bitcoin network
is hosted by 21 organizations and 24 ASes, respectively.
Moreover, 30% of the traffic is hosted by 8 organizations and
ASes, respectively. Prior work [3] done in 2017, showed that
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TABLE III
DISTRIBUTION OF BITCOIN FULL NODES OVER TIME.

2017 2018 Change %
ASes with 50% nodes 50 24 52%
ASes with 30% nodes 13 8 38%

50% of the network was hosted by 50 ASes and 30% of the
network was hosted by 13 ASes. To understand the change
in the network, let N1 be the number of nodes comprising
p% of the network in 2017. Let N2 be nodes comprising
the same p% of the traffic in 2018. We define the change
in the centralization of the network as C = (N1−N2)×100

N1 ,
and provide the results of change in Table III. Notice that
over one year, 50% nodes have been centralized by a factor
of 52%. The prior work did not look into the distribution of
network with respect to organizations, so we do not have a
baseline for comparison. Although, it can be observed from
our data and plots, that full nodes are more concentrated at
the organization level.

Mining pools are another important part of Bitcoin, since
they are responsible for extending the blockchain and main-
taining its state. Mining pools consist of miners on the Internet
communicating via a special mining protocol known as the
“Stratum Mining Protocol” [14]. All miners compute PoW and
send the result to the stratum server address specified by the
mining pool. The stratum address is made public by the mining
pool. As such, if the link to the stratum server is compromised,
the mining pool gets disconnected and its aggregate hash rate
decreases. To analyze the distribution of stratum servers, we
carried out two experiments. First, we gathered information
about major mining pools in Bitcoin and their hash rate from
Blockchain.info [8]; results are reported in Table IV. Next
we selected the top 5 mining pools, which had an aggregate
hash rate of 65% of the total in the Bitcoin network. We then
collected the stratum address of the selected mining pools from
their websites and traced the IP address corresponding to each
stratum address [9], [2], [22]. We mapped each IP address to
the AS hosting the stratum server. We found that 3 ASes had
65% of Bitcoin mining pool traffic while one organization
“AliBaba” alone had more than 50% of the Bitcoin mining
pool traffic. We report our results in Table IV. In the light
of our threat model, and given an adversary capable of BGP
hijacking, policy enforcement at an organization level, or
collusion, having an organization hosting more 50% of the
mining power makes such an attack even more effective.
Attack Validation. In this section, we will validate our
observations and hypothesis regarding BGP hijacking on Bit-
coin ASes and organizations. BGP routing attacks on Internet
happen frequently. In 2008, a service provider from Pakistan
hijacked Youtube traffic by announcing more specific BGP
prefixes than the ones announced by Youtube [28]. Similarly,



TABLE IV
TOP 5 MINING POOLS PER HASH RATE, ASES, AND ORGANIZATIONS.
65.7% MINING DATA GOES THROUGH ONLY THREE ORGANIZATIONS.
ALIBABA HAS A VIEW OF AT LEAST 60% OF THE MINING DATA. WE

EXCLUDE THE REMAINING 12 MINING POOLS FROM THE STUDY AS THEIR
TOTAL CONTRIBUTION TO HASH RATE IS MINIMAL.

Mining Pool H. Rate % ASes Organizations
BTC.com 25% AS37963 Hangzhou Alibaba

AS45102 AliBaba (China)
Antpool 12.4% AS45102 AliBaba (China)
ViaBTC 11.7% AS45102 AliBaba (China)
BTC.TOP 10.3% AS45102 AliBaba (China)

F2Pool 6.3% AS45102 AliBaba (China)
AS58563 Chinanet Hubei

12 others 34.3% — —

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160

 F
ra

c
ti
o
n
 o

f 
N

o
d
e
s
 H

ija
c
k
e
d
 

Number of BGP Hijacks

AS24940 (51 prefixes)
AS16276 (104 prefixes)
AS37963 (454 prefixes)

AS16509 (2969 prefixes)
AS14061 (1430 prefixes)

Fig. 4. CDF of top 5 ASes vulnerable to BGP attacks. The key shows total
BGP prefixes announced by AS. For 8 ASes, 80% nodes can be isolated by
hijacking 20 BGP prefixes.

in 2014, a Canadian ISP hijacked prefixes of 19 organiza-
tions hosting Bitcoin traffic including Amazon, OVH, Digital
Ocean, LeaseWeb, and Alibaba [29]. In 2017 alone, 14,000
BGP attacks were launched against major ASes [46].

To validate the attack and its impact, we selected the top
5 ASes from Table II, and enumerated the IP addresses of
full nodes hosted by these ASes. Next, we grouped the IP
addresses based on the BGP prefixes announced by each AS.
We then calculated the number of BGP prefixes required to
isolate a percentage of full nodes hosted by the AS. As a result,
a group of full nodes sharing the same BGP prefix can all
be compromised if the BGP prefix is hijacked. We report our
findings in Figure 4, where we show that except for AS16509,
95% of full nodes in all other ASes are vulnerable, once
fewer than 40 BGP prefixes are hijacked. AS24940, which
hosts 1,030 nodes can be compromised by hijacking only 15
BGP prefixes, while it takes more than 140 BGP prefixes
to compromise AS16509, which hosts 609 nodes. Taking the
number of isolated nodes as an advantage and the number of
prefixes to be hijacked as an effort, AS24940 will be more
costly with smaller advantage than AS16509.
Implications. Spatial partitioning is detrimental to the Bitcoin
network as it facilitates other major attacks including double-
spending attacks, eclipse attacks, and the 51% attack. As
shown in Table IV, if an attacker hijacks 3 ASes, he can isolate
more than 60% of the Bitcoin hash power. As Figure 4 shows
that by hijacking 15 BGP prefixes, the attacker can cut 95%
traffic of AS24940 that hosts 1,030 full nodes. By isolating the
hash power, an attacker can cause delays in the block creation
and the transaction confirmation.

If the attacker is a mining pool with lower hash rate, it
can launch the attack on competing mining pools and deprive
them of their mining rewards. By isolating a majority of the
network’s hash power, the attacker can launch the 51% attack
on Bitcoin which will grant him a permanent control over
the blockchain. Furthermore, in peer-to-peer settings, nodes
are responsible to relay blocks and transactions to each other.

By hijacking a subset of nodes, the attacker can introduce a
cascade effect in which propagation of blocks and transactions
can be stalled; the attacker does not have to isolate all nodes by
hijacking all BGP prefixes in an AS. Isolating a major subset
of nodes can eclipse the entire AS.

B. Temporal Partitioning
Temporal partitioning involves isolation of a group of nodes

in the network that are some blocks behind the rest of the
network. As shown in Figure 1, three nodes have the most
updated copy of the blockchain, while nodes F3 and F4 are 1–
2 blocks behind. These nodes might be behind the main chain
due to a number of reasons, such as the network latency, a low
bandwidth, software malfunctions, or a malicious peer. There-
fore, these nodes have an outdated view of the blockchain
and remain vulnerable to partitioning attacks. In Figure 5, we
provide an abstraction of the temporal attack that exploits the
vulnerable nodes, and introduces a soft fork in the network.
Attack Objectives. The objective of the temporal partitioning
is the isolation and subversion of nodes or a group of nodes
within the network. Latency in updating the blockchain is a
well known vulnerability of Bitcoin, which is confirmed in
our data. Propagation delays are known to be key contributors
towards the latency [19]. Propagation delays are influenced by
the number of hops between nodes due to sparse peering, and
the time required by software clients to verify and forward
a block. Solutions have been proposed that cluster nodes
to reduce latency [49], [23], but the authors note this may
increase the potential for partitioning attacks. This indicates
a trade-off between spatial and temporal vulnerability. Also
contributing to the node latency are communication failures
and the behavior of nearby peers. The adversary would seek
to disrupt communication and control peers where the attack
is launched. It is inexpensive to setup new nodes on the
Bitcoin network for this purpose. The adversary would want
to separate and control nodes which are not up to date with
the main network. Under normal operation, those nodes might
eventually catch up with the network, but an adversary will
prevent that from happening.
Attack Procedure. Analysis of Bitcoin nodes over a period
of days shows several times a day when a significant fraction
of nodes are not up-to-date. We report our findings in Figure 6.
In Figure 6, the x-axis denotes a time-index for network
observations (one observation every 10 minutes in Figure 6(a)
and Figure 6(b), and one every minute in Figure 6(c)). The y-
axis is stacked, meaning that curves are cumulative. The green
part shows nodes that are up-to-date, the yellow part shows
nodes that are 1 block behind, and the purple part shows nodes
that are 2-4 blocks behind. The remaining colors and their
descriptions are in the figure.

From Figure 6(a), we were able to make following obser-
vations. 1) Generally, a majority of nodes (≈ 50%) remains
synchronized on the blockchain state. These nodes do not lag
behind in the main chain for a long duration. 2) 10% nodes are
forever behind the main blockchain. They do not update their
blockchain and as such, they have no benefit in the network.
3) 30-40% nodes in Bitcoin occasionally waver in terms of
their view of the blockchain. Possibly due to network latency
or consensus delay, they lag behind the most recent block.

To further study the distribution of consensus in the net-
work, we take a single day snapshot of the network to observe
consensus pruning among all nodes. From the view of an
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Fig. 5. An illustration of the temporal attack. The attacker establishes connections with nodes and identifies vulnerable nodes that have an outdated view.
Vulnerable nodes have have not been provided new blocks by surrounding peers, which shows their weak relationship/connectivity. We annotate this weak
relationship with dotted lines. The attacker feeds his copy of blocks to vulnerable nodes, thereby partitioning the network into two conflicting chains.
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(c) Consensus between block propaga-
tion

Fig. 6. Temporal consensus in Bitcoin network. Y-axis denotes number of nodes in 1000. In each figure, green region denotes the up-to-date blocks. Yellow
region denotes 1 block behind. Purple, blue, and magenta regions represent nodes that are 2–4, 5–10, and ≥ 10 blocks behind respectively. Figure 6(a) shows
the overall network, Figure 6(b), shows a day (March 25) that offers greater attack opportunity, and Figure 6(c) shows consensus pruning during 10 minutes.

attacker, with higher granularity, there is a better vantage point
to attack a group of nodes. Focusing on a single day shown
in Figure 6(b), we observed that some yellow and purple spikes
are larger and wider than others. The height of a spike denotes
the count of nodes that are behind the updated nodes, while
the width indicates the length of time for which they remain
behind the updated nodes.

From Figure 6(b), with a closer look at the network, we
made the following observations. 1) Consensus pruning is not
uniform across the network. 2) The most frequent delay among
the blocks is 1 block indicated by yellow region, followed
2-4 blocks, indicated by the purple region. 3) On various
occasions, yellow and purple spikes can reach up to 7,000
nodes; approximately 90% of the network can be partitioned
if an attacker isolates them.

In Bitcoin, on average, a block is published after every 10
minutes. Once a block is published, ideally the network is
expected to be synchronized within 10 minutes before the
next block is computed. However, network synchronization
is an artifact of time and fairness of the network. In the
previous two experiments, we observed that with fine grained
sampling, on a given day, the attacker can isolate a group of
nodes which are behind the main chain. To further analyze
this behavior, we performed another experiment that involved
per-minute sampling of network. Our objective was to observe
the distribution of consensus among peers immediately after
broadcast of one block and before the broadcast of the next
one. We plot the results obtained from the third experiment
in Figure 6(c). It can be observed in the figure that there
are vulnerable spots in the network in which up to 90% of
the network is 1-4 blocks behind. As such, the non-uniform
consensus pruning presented itself as an attack opportunity
whereby an attacker can find a time window to isolate a
group of targeted nodes. In Figure 6(c), the width of nodes
that are behind show the attack time window while the height
represents the number of vulnerable nodes.

This becomes an optimization problem to find the moment
where a majority of nodes is behind for the longest attack

TABLE V
THE MAXIMUM NUMBER OF VULNERABLE NODES.

T (minutes) ≥ 1 block ≥ 2 blocks ≥ 5 blocks

5 6280(62.67%) 3206(31.99%) 966(9.68%)
10 1761(27.13%) 1189(11.87%) 955(9.53%)
15 1141(11.39%) 1083(10.81%) 952(12.00%)
20 1109(13.97%) 1023(15.76%) 947(11.93%)
25 1070(10.68%) 1013(15.61%) 942(9.40%)
30 1042(10.39%) 984(9.82%) 942(9.39%)
40 1040(10.37%) 984(9.82%) 940(9.38%)
70 1036(10.34%) 976(9.74%) 929(9.27%)

200 908(9.08%) 887(8.82%) 821(8.16%)

window. The attacker’s timing constraints include the time to
calculate false blocks and establish connections to vulnerable
nodes. Hence, to identify vulnerable nodes, we formulate the
temporal attack as an optimization model: Given a timestamp
t and a timing constraint T, find the maximum number of
vulnerable nodes whose lagging time L(t) is at least T.
Lagging time L(t) of a node is defined as minimum timing for
this node to catch up to the main blockchain if it lags behind
at t. The objectives of this formulation are as follows. 1) By
identifying maximum nodes that were lagging concurrently,
attacker could isolate them and mislead them with false blocks.
2) By investigating all possible timestamps, an attacker could
find an optimal time to attack those nodes.

We identify nodes whose historical behaviors show their
vulnerability to temporal attacks, and record their results
in Table V. Note that, at any time, the total number of nodes
in Bitcoin fluctuates between 8k–13k. For any time window,
we are interested in finding the maximum percentage of
vulnerable nodes for that window. As such, the normalization
parameter, represented by the total number of nodes at that
time, may change, which results in an increasing percentage
for a decreasing number of nodes in Table V. For instance,
for 6,280 nodes, the total number of nodes was 10,020, which
is about 62.67%. On the other hand, for 908 nodes, the total
number of nodes was 10,000 which approximates to 9.08%.
We tested with a variety of timing constraints T and present
the results that best suit the attacker. The first column shows
different T values, the second/third/forth columns show the



maximum number of nodes that lag behind main chain for at
least 1/2/5 blocks respectively. The decreasing of maximum
number of nodes, along with the increasing of timing con-
straint, shows the fact that the longer time it takes to implement
an attack, the fewer choice of vulnerable nodes is available.
We noticed that there were moments in which a majority of
nodes in the network (≥ 50%) was at least 1 block behind for
more than 5 minutes, and up to 20% nodes lagged behind the
main chain for more than 15 minutes.

With this information, we perform a theoretical analysis
on the timing threshold T that is suitable for the attacker to
isolate a targeted set of m nodes. We assume the attacker
wants to isolate m nodes which requires the attacker to create
connections to these nodes and feed them its own version
of block. We model the required timing for this process as
an exponential distribution by rate λ. In 2015, the Bitcoin
community switched from a traditional gossip-style protocol
known as trickle spreading to diffusion spreading, in which the
information propagates with independent exponential delays.
This method of modeling Bitcoin connections has been used
in prior work as well, by Fanti et al. [24]. Using that, the
timing of the attacker to connect to a node is:

f(t) = λe−λt, F (t) = 1− e−λt (1)

where f(·), F (·) are probability density and cumulative dis-
tribution functions. Given timing assigned to isolate m nodes
is T = (t1, ...tm). The probability that an attacker isolates m
nodes under T , derived from Cauchy inequality theorem is:

ρ(T ) =
m∏
i=1

(1− e−λti) ≤
(
1−

∑m
i=1 e

−λti

m

)m
(2)

Theorem 1: (Cauchy Theorem) Let x1, x2, ...xn are n non-
negative numbers, then:

n∏
i=1

xi ≤
(∑n

i=1 xi
n

)n
≤
∑n
i=1 x

n
i

n
(3)

Both equalities occur if and only if x1 = x2 = ... = xn
Now, consider a timing constraint T, in which the attacker

wants to isolate all m nodes. This means that the timing
assignment T should satisfy

∑m
i=1 ti ≤ T. So:

ρ(T ) ≤ (1− e− λ
m T)m (4)

With timing constraint T, the attacker will have at most(
T
m

)
choices for timing assignment T . By union bound, the

probability p to isolate m nodes within T is bounded by:

p ≤ b(m, T) =

(
T

m

)
(1− e− λ

m T)m (5)

Given m, b() is monotonically increasing by T. Therefore,
given a successful probability p, we can infer a lower bound
of T by binary bisection. We experiment with the relationship
among values of m, T, and λ. We set the targeted successful
rate of attacker p as 0.8, and test it with various values of
λ. The results are recorded in table VI. Column labels show
different values of m nodes that the attacker aims to isolate,
and row labels show values of λ. Values in each cell denote
the bound of T such that within this bound, the attacker can
isolate m nodes under delay rate λ with probability of at least
0.8. For example, with λ = 0.8 and m = 500, it would take
only 589 seconds (approximately 10 minutes) to isolate all m

TABLE VI
MINIMUM TIMING CONSTRAINT T (SECONDS) TO ISOLATE m NODES

UNDER THE GIVEN RATE λ.

λ
m

100 300 500 800 1000 1200 1500

0.4 142 424 705 1127 1610 2313 3517
0.5 133 397 661 1057 1320 1851 2814
0.6 127 379 630 1007 1258 1545 2345
0.7 122 365 607 970 1213 1455 2010
0.8 119 354 589 942 1177 1412 1765
0.9 116 346 575 920 1149 1379 1723

nodes with probability at least 0.8. 500 is much smaller than
number of vulnerable nodes in 10 minutes timing constraint
(from table Table VI, there can be 1,761 vulnerable nodes
within T = 10 minutes). Therefore, we conclude that Bitcoin
is highly vulnerable to temporal attacks.
Simulation and Attack Validation. To validate the insights
obtained from our data and theoretical analysis, we developed
a simulation model in R to test temporal attacks. The simulator
was tested in base simulation scenarios, such as zero and per-
fect communication among nodes. As an internal error check,
and to make the simulation more realistic, each simulated node
maintains a 64-bit MD5 hash linked chain of values updated to
its current fork. By adjusting parameters, the simulation was
capable of accurately representing the state of the network as
we observed in our dataset.

The default number of Bitcoin peers is 8, which is used in
our simulation. Studies have shown that peers are distributed,
and can be associated with any AS [23]. Our experimental
data confirmed this distribution. Following this, the peers
were evenly distributed in terms of communication errors and
latency. Peer communication failure rate is represented by a
model parameter, typically around 10 percent failures. The
latency is represented by the number of communication time
steps per simulation block. This is scaled according to the
simulation size. Each time step represents one peer-to-peer
communication attempt for each node.

The simulation was used to model information flow through
the network under different attack scenarios. A network of
10,000 nodes can be simulated using a square grid of size 100.
We ran simulations using the entire network. For clarity a grid
of size 25 (1/16 of the active nodes) is shown in the figures.
This grid ran faster, is easier to read, and well simulated exper-
imental results. Using different scaled network simulations we
discovered that the upper limit of Decker and Wattenhofer’s
node propagation delay Tdelay can be expressed as a ratio of
the block interval divided by the network diameter. Taking the
inverse of this ratio we arrive at a non-dimensional parameter,
the span ratio representing how many times information can
travel from one side of the Bitcoin network to the other during
the block interval. Assuming a square grid, network diameter is
proportional to the square root of the number of nodes. A given
span ratio Rspan with the Bitcoin block interval Tblock thus
yields a maximum propagation delay to maintain the state of a
network of N nodes: Tdelay = Tblock/(Rspan ∗N0.5). As the
Bitcoin network grows, a smaller propagation delay is required
to synchronize peers. Specifically, Tdelay is inversely related to
the square root of the number of nodes. The maximum value
of Rspan in simulation was 2.0, corresponding to a 3 second
interval per peer communication in the actual network of
10,000 nodes. With reasonable values for the communication
failure, such a small time step resulted in a network that was
fully updated between blocks. Therefore, Rspan = 2.0 is a
good target for blockchain synchronization.
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Fig. 7. Simulation of temporal attack. Figure 7(a) shows fork B emerging at node [7,7]. Compare the color distribution to the peaks of Figure 6(c) above.
Two blocks later in Figure 7(b) fork B has control of 1/6 of the nodes. In Figure 7(c) the longer chain A overwhelms fork B but has lost synchronization
so cannot prevent emergence of a new fork C.

Figure 7 shows a sample of results obtained from simula-
tion, where the attacker has 30% of the network hash rate.
Once a portion of the network is isolated, it can be sustained
with successive forks, since the isolated nodes naturally as-
sume that block delays are due to network issues. As such,
they do not know that new blocks are taking more time to
calculate due to the lower hash rate of the attacker. Meanwhile,
the main chain loses some of its hash rate and is therefore,
less capable of responding. Note that the cost of launching a
temporal attack is much less than the spatial attack, provided
that the attacker has the consistent view of the network as
shown in Figure 6.
Implications. Even a short term fork in the network would
cause sufficient disruption to invalidate transactions. Such
an attack is likely to result in significant loss to network
stakeholders. Quantifying the impact of adverse events on
Bitcoin has been inconclusive [25][20], and is dependent upon
user perception [43]. However, once the targeted nodes are
isolated, as shown in Figure 5, the soft fork will create a
temporary partition in the network. The isolated nodes will
be following a counterfeit blockchain with different transac-
tions from the main chain. Therefore, when nodes recover
from the fork, the attacker’s blocks will be rejected, and all
transactions belonging to legitimate users in those blocks will
also be reversed. This will require a major update on the set
of all UTXO’s at each node, and a system-wide check on
the transactions being reversed. Standing out in our analysis
is the observation that Bitcoin has a level of asymmetric
vulnerability. With a market capitalization of o(1011) USD and
network configuration of o(104) nodes, each full node is worth
o(107) USD. However, the cost of disrupting the network is
far less than the value being impacted, which makes Bitcoin
an economically attractive target for temporal attacks.

C. Spatio-temporal Partitioning
In this section, we analyze how an attacker can make use

of spatial and temporal distribution of nodes over time to
find vulnerable spots in the network, through which he can
effectively isolate a group of nodes. From our data analysis,
we found the feasibility and cost of this attack compared to
spatial and temporal partitioning. Saptio-temporal analysis also
provides insights into the general behavior of nodes within an
AS or an organization. Therefore, it is intuitive to investigate
the attributes of the overall topology of Bitcoin network in
relation to the ASes and organizations.
Attack Objectives. In this attack, the aim of the adversary
is to split the network based on the network’s vulnerability to
both the spatial and temporal partitioning. As shown in Fig-
ure 6(a) and Figure 6(b), the purple and yellow nodes are

vulnerable to temporal attacks. However, the attacker cannot
launch the same attack on nodes lying in the green region
(synced nodes), since they are up-to-date and will reject a false
block. These nodes can still be partitioned based on the BGP
attack presented in spatial partitioning. A combined effect of
both attacks will be an optimized and targeted attack that will
affect the entire Bitcoin network.

It is worth mentioning that for a BGP attack on nodes within
the green region, the attacker does not have to isolate all target
nodes. Since these up-to-date nodes are connected with each
other, therefore, an attack on a subset of nodes can have a
cascade effect, thereby compromising all other nodes.
Attack Procedure and Validation. For a successful attack,
the attacker will need information about the ASes and or-
ganizations of the synced nodes as well as nodes that are
behind. The feasibility of this attack depends on the adversarial
capabilities of the attacker. To analyze that, we elaborate the
network behavior from Figure 6(b) in Figure 8(a). The green
line indicates the number of nodes that are synced, while
yellow and purple lines show nodes that are 1 block and 2–4
blocks behind respectively.

Per our threat model, if the attacker is an AS, it will prefer
to hijack BGP prefixes to damage Bitcoin. As such, it will
prefer maximum nodes in the green region and minimum
nodes in yellow and purple region, to maximize the attack
severity. If the attacker is a mining pool, then it will launch
a temporal attack, and will prefer minimum nodes in green
region and maximum nodes in other regions. However, if
the attacker is a cloud service provider that has both routing
and mining capabilities, then it can launch both spatial and
temporal attacks. Therefore, the key aspect of spatio-temporal
attack is that it is adjustable to the capabilities of an attacker.

Although multiple attack scenarios and case studies can
be drawn for spatio-temporal partitioning but in the interest
of space, we illustrate one case study. From our simulations,
we observed that the temporal partitioning forks the network
at a faster rate than spatial attacks. Therefore, we assume a
case in which cloud provider waits for minimum number of
synced nodes, and launches a spatio-temporal attack. As seen
in Figure 8(a), at two instances, the number of synced nodes
falls as low as 3,000, while the number of nodes that are 2–
4 blocks behind go as high as 6,000 nodes. This can serve
as an ideal attack opportunity to launch the spatio-temporal
attack. To isolate synced nodes, the attacker needs to have
information about their ASes. To analyze that, we gathered
information about synced nodes and their corresponding ASes
and organizations. In Table VII, we enlist the top 5 ASes and
organizations that hosted most synced nodes in Figure 8(a).
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Fig. 8. Spatial and temporal distribution of nodes for the day defined in Figure 6(b). For the synced nodes in Figure 8(a), we outline their distribution across
top five ASes in Figure 8(b) and Figure 8(c). On average, AS4134 hosts most of the nodes.

TABLE VII
TOP 5 ASES THAT HOSTED ALL THE SYNCHRONIZED NODES

IN FIGURE 6(B) FOR 24 HOURS.

AS Organization Nodes Percentage
AS4134 No.31, Jin-rong 993 9.57%
AS24940 Hetzner Online 830 7.98%
AS16276 OVH SAS 530 5.22%
AS16509 Amazon.com 417 4.19%
AS14061 DigitalOcean 332 3.23%

We observed that 28% of synced nodes are hosted within
the top 5 ASes. We plot their hosting pattern over a full day
in Figure 8(b) and Figure 8(c). The cloud provider can spatially
attack synced nodes by hijacking five ASes and temporally
attack the remaining nodes.
Implications. Spatio-temporal attack is an optimized and
targeted attack that provides multiple attack opportunities to a
strong adversary to take down the network with minimal effort.
As demonstrated by our results in Figure 8, at a given time,
more than 50% of nodes can be behind the main blockchain
and vulnerable to temporal attacks. Moreover, at the same
time, the remaining synced nodes can be attacked by hijacking
BGP prefixes of their hosting ASes and organizations. The
attacker can select a suitable trade-off between the lagging
nodes and synced nodes, based on the attacker’s capabilities,
and disrupt the network. For a successful attack on synced
nodes, the attacker may just have to isolate a small number of
nodes that relay blocks to each other, and due to the cascade
effect, remaining nodes will eventually collapse. As such, if
the number of full nodes is small in a cryptocurrency such
as Bitcoin Cash or Litecoin, the attacker can compromise the
entire cryptocurrency by affecting the flow of valuable data
including transactions and blocks.

D. Logical Partitioning

The Bitcoin network is actuated by communication among
peers, each of which is a full node running software that
conforms to a protocol. The protocol is defined by an open
source software project, Bitcoin Core, initially published by
Satoshi Nakamoto on January 9, 2009 [12]. Since 2009, there
have been over 40 updates to Bitcoin Core, with the latest,
v0.16.0 released in February 2018. New versions build upon
previous ones with improved security, performance and func-
tionality. Since the Bitcoin network is open to any client that
satisfies the network protocol, peers can run modified software.
Optional features such as SegWit [1] are implemented in this
way, compatible with Bitcoin Core.

Table VIII shows the distribution of Bitcoin software at the
time of our data collection, along with their release date and
percentage of users. We observed that 288 Bitcoin software
variants are used by full nodes. The latest version of Bitcoin

TABLE VIII
TOP 5 SOFTWARE VERSIONS USED BY BITCOIN FULL NODES ALONG WITH

THEIR RELEASE DATE, LAG FROM THE DATE OF COLLECTION IN DAYS,
AND PERCENTAGE OF USERS.

Index Version Release Date Lag Users %
1 B. Core v0.16.0 02-26-2018 59 36.28%
2 B. Core v0.15.1 11-11-2017 166 27.52%
3 B. Core v0.15.0.1 09-19-2017 219 5.01%
4 B. Core v0.14.2 06-17-2017 313 4.67%
5 B. Core v0.15.0 04-22-2017 369 2.05%

Core, 0.16.0, is used by only 36% of the nodes while 27%
use version 0.15.1. The remaining 37% of the network uses
286 different software clients.
Attack Objectives. The objective of the attacker would be to
gain the confidence of full nodes. Changes may be subtle and
not perceived as threats. Diverse incentives may be employed
for adoption. In our scenario, the attacker’s influence over
the software would be sufficient to optimize and magnify the
effects of the attack.
Attack Procedure. Peer “democracy” in software selection
has served well, but is vulnerable to attacks. Over time, a
modified software variant might gain popularity by offering
better performance and features. One example is Falcon,
a custom Bitcoin client run by 10 nodes. Falcon provides
faster connectivity and minimum delay during transaction
propagation [55]. Falcon is not malicious, but it demonstrates
the independence of peers to run a client that is not part of
Bitcoin Core. A hypothetical client that economizes the cost
of running a full node might gain general acceptance, while
at the same time reducing the cost of controlling a significant
portion of the network.

In a more subtle scenario, a malicious entity with cooperat-
ing peers could modify the Bitcoin Core software after down-
load. The modifications may be surreptitious or proclaimed
to be enhancements. Nodes influenced by the attacker would
seem normal, but would be used to facilitate an attack. A
simple example of permissible client modification would be
to increase the number of peer connections [11], and help the
spread of malicious blocks.

In either case, the software would provide a platform to
enhance the partitioning attack. During the attack, modified
clients could steal bitcoins from connected wallets, isolate
peers from the network, propagate false information in the
network, and cause DoS attacks on neighboring peers. To
further analyze vulnerabilities associated with Bitcoin software
clients, we mapped known client versions to the National
Vulnerability Database (NVD). From NVD, we obtained 36
reported vulnerabilities along with the vulnerability ID, the
publishing date, and the CVSS severity. For instance, a
vulnerability with ID CVE-2018-17144, shows that Bitcoin
clients are vulnerable to a remote denial-of-service attack via



duplicate inputs. This vulnerability can be found in all client
versions, which puts the entire network at risk. Some other
notable vulnerabilities reported in NVD are CVE-2017-9230,
CVE-2013-5700, and CVE-2013-4627 [18]. For more details,
we refer the reader to [17].
Implications. Logical partitioning can be used to optimize
attacks and take advantage of nodes in the crippled network.
With each node valued at o(107) USD, incentives exist to
distribute and support software modifications, especially if
not obviously malicious. Logical partitioning proceeds along
several tracks: Bitcoin Core heterogenity and improvement
proposals, independent developer versions, and publicly an-
nounced hard forks, such as Bitcoin Cash. These collide
with spatial and temporal dimensions to create and optimize
opportunities for other network attacks.

VI. COUNTERMEASURES

To prevent spatial partitioning, mining pools should spread
stratum servers across various ASes. This can resist the cen-
tralization of stratum servers and raise the attack cost, since the
attacker will have to hijack more BGP prefixes to isolate the
targeted pool. Furthermore, large Bitcoin exchanges such as
Coinbase and Bitstamp should also host their full nodes across
multiple ASes to prevent spatial attacks. In Bitcoin, spatial
partitioning is an artifact of BGP hijacking and to counter
that, Zhang et al. [55] propose reactive and proactive defense
strategies that are based on the idea of “bogus route purging
and valid route promotion” that can prevent BGP attacks on
ASes across the Internet.

Temporal partitioning results from malicious peer behavior
towards nodes that are behind the main chain. Although nodes
can be behind due to various factors, the absence of a trusted
central authority, makes them unaware of their condition. To
counter that, we propose a simple yet effective scheme, called
BlockAware, which uses the expected block time to notify the
node about its blockchain view with respect to the network. In
BlockAware, a node compares the timestamp of its latest block
tl and the current time tc. Since the block time in Bitcoin
is fixed at 600 seconds, a difference between the two values
exceeding 600 seconds (tc−tl > 600) indicates a node has not
received the latest block. In such a situation, the node can try
to connect to other nodes, and query them for the latest block.
As part of our ongoing work, we are prototyping BlockAware
over Bitcoin Core to defend against the temporal attacks.

Vulnerability to logical partitioning is due to the open
network protocol. A central authority to regulate client partici-
pation would violate decentralization, a fundamental principle
of Bitcoin. To remain the favored client, Bitcoin Core must
continue to provide the best results for those who, typically
without direct compensation, accept the responsibility of run-
ning a full node. In Bitcoin ecosystem, it would be reassuring
for more than 36% nodes to run the most up-to-date version
of Bitcoin Core. However, as diversity has long been known
to enhance network security [39], we do not advocate en-
forcement mechanisms. Therefore, logical partitioning attacks
remain a vulnerability to be considered.

VII. RELATED WORK

Spatial Partitioning. The classic study on partitioning at-
tacks was carried out by Apostolaki et al. [3] based on the
centralization of Bitcoin network with respect to ASes, and

highlighting the possibility of routing attacks with BGP pre-
fixes. Some notable work on the attack surface includes eclipse
attacks [30], double-spending [34], Bitcoin transaction graph
analysis [47], anonymity in Bitcoin peer-to-peer model [36],
and extracting intelligence from Bitcoin [51], [31].
Blockchain Forks. Temporal and spatio-temporal partitioning
on the blockchain result in a fork that leads the affected nodes
into following a different blockchain. As such, forks have
been widely studied in the community from the standpoint of
regular nodes and miners. Decker and Wattenhofer [19] studied
the occurrence of forks in the Bitcoin network. They concluded
that propagation delay is the major factor that might result in
a fork. The results in our experiments have validated their
theory since delay is the major factor that causes some blocks
to stay behind the main chain. Kwon et al. [37] introduced
a new form of blockchain fork known as the Fork After
Withholding (FAW) attack which guarantees more rewards
than block withholding attacks. Eyal et al. [21] proposed a
Byzantine fault tolerant blockchain protocol that addresses the
problems of forks. Gervais demonstrated that double-spending
is possible due to block tampering [27].
Consensus in Distributed Systems. In a blockchain, consen-
sus about the state of the system is achieved with a consensus
protocol. Bano et al. [5] surveyed blockchain consensus pro-
tocols along with their strengths and limitations. In a similar
vein, Juri Mattila [40] analyzed blockchain consensus proto-
cols and provided use cases for each scheme. Sun et al. [53]
performed vulnerability analysis on distributed systems and
proposed a trust evaluation framework to improve throughput
and identify malicious peer behavior.
Related Attacks. Other notable attacks on blockchain appli-
cations include DDoS attacks, DNS attacks, selfish mining,
the 51% attack, and blockchain ingestion [50], [7], [6]. Li et
al. [38], surveyed the security aspects of the blockchain by
studying attacks on popular blockchain applications including
Bitcoin, Ethereum, and Monero. Atzei et al. [4] performed
analysis on vulnerabilities of smart contracts in Ethereum.

VIII. CONCLUSION

We examine various partitioning attacks on blockchain-
based cryptocurrencies. We demonstrate that the Bitcoin net-
work is becoming increasingly centralized at the AS-level,
making it more vulnerable to spatial partitioning. Data col-
lection and analysis demonstrate that consensus pruning of
the Bitcoin network is non-uniform, presenting optimizable
opportunities for an attacker to fork the network by segregating
vulnerable nodes. We study four forms of partitioning attack:
spatial, temporal, spatio-temporal, and logical. We validate our
attacks with simulations and discuss the implication of each
attack. Finally, we present possible countermeasures to those
attacks. To the best of our knowledge, this is the first study
conducted to analyze the attack surface of Bitcoin covering
spatial, temporal, and logical dimensions.
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