
Neural Network Syntax Analyzer for Embedded Standardized
Deep Learning

MyungJae Shin

Chung-Ang University

Seoul, Republic of Korea

mjshin.cau@gmail.com

Joongheon Kim

Chung-Ang University

Seoul, Republic of Korea

joongheon@cau.ac.kr

Aziz Mohaisen

University of Central Florida

Orlando, FL, USA

mohaisen@ucf.edu

Jaebok Park

ETRI

Daejeon, Republic of Korea

parkjb@etri.re.kr

Kyung Hee Lee

ETRI

Daejeon, Republic of Korea

kyunghee@etri.re.kr

ABSTRACT
Deep learning frameworks based on the neural network model have

attracted a lot of attention recently for their potential in various

applications. Accordingly, recent developments in the fields of deep

learning configuration platforms have led to renewed interests in

neural network unified format (NNUF) for standardized deep learn-

ing computation. The attempt of making NNUF becomes quite chal-

lenging because primarily used platforms change over time and the

structures of deep learning computation models are continuously

evolving. This paper presents the design and implementation of a

parser of NNUF for standardized deep learning computation. We

call the platform implemented with the neural network exchange

framework (NNEF) standard as the NNUF. This framework provides

platform-independent processes for configuring and training deep

learning neural networks, where the independence is offered by

the NNUF model. This model allows us to configure all compo-

nents of neural network graphs. Our framework also allows the

resulting graph to be easily shared with other platform-dependent

descriptions which configure various neural network architectures

in their own ways. This paper presents the details of the parser

design, JavaCC-based implementation, and initial results.

CCS CONCEPTS
• Computing methodologies → Machine learning; Artificial
intelligence; • Information systems → Information systems ap-

plications; • Software and its engineering→Software notations

and tools;

KEYWORDS
Deep learning, machine learning, neural network unified format,

TensorFlow, standardization

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EMDL’18, June 15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5844-6/18/06. . . $15.00

https://doi.org/10.1145/3212725.3212727

ACM Reference Format:
MyungJae Shin, Joongheon Kim, Aziz Mohaisen, Jaebok Park, and Kyung

Hee Lee. 2018. Neural Network Syntax Analyzer for Embedded Standardized

Deep Learning. In EMDL’18: 2nd International Workshop on Embedded and
Mobile Deep Learning , June 15, 2018, Munich, Germany. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3212725.3212727

1 INTRODUCTION
Theories, techniques, and applications of deep learning have re-

cently witnessed an outburst, resulting in a large number of inves-

tigations that looked into the effect of deep learning methods on

various learning tasks and domains. Organizations are increasingly

interested in the potential of deep learning techniques’ research and

development, and many have started adopting those techniques to

obtain more accurate machine learning results using data-driven

supervised approaches in multiple domains and fields [2]. The large

number activities surrounding deep learning research [12] and

development of this research have resulted in a large number of

platforms, which help programmers to simply configure and train

neural network architectures. As more platforms are developed ev-

ery day, more platform-specific workloads to utilize those platforms

are required. To alleviate this issue, the standardization of neural

network descriptions would be necessary to make use of advances

in deep learning approaches. Particularly, it becomes important to

shift the focus from the development of new frameworks into a

standardized formats that allow defined neural networks to simply

transform to platform-dependent descriptions.

From an application viewpoint, neural networks can be utilized

in (i) systems for solving pattern recognition tasks, (ii) models for

understanding biological neural systems, (iii) systems to character-

ize parallel computing architectures, and (iv) models that capture

behaviors in physical systems [10], among others. However dif-

ferent they are, those applications can be abstracted to a standard

format, and treated with the same approach. To this end, in this

paper, we focused on one such an approach: neural network that

conduct predictions and classifications, especially convolutional

neural network. Neural network models are defined by various

pieces of information, such as input variables, output variables, and

network graph. It is important to note that the neural model con-

sists of information other than the neural network itself [10]. This

paper further introduces neural network unified format ideas and

proposes to standardized deep learning computation frameworks.

https://doi.org/10.1145/3212725.3212727
https://doi.org/10.1145/3212725.3212727

EMDL’18, June 15, 2018, Munich, Germany M. Shin et al.

// Tensorflow
x=tf. placeholder (tf.float32)
y=tf. placeholder (tf.float32)
z=tf. placeholder (tf.float32)
a=x * y
b=a + z
c=tf. reduce_sum (b)
with tf.Session as sess:
values = {

x:np.random.randn (3, 4),
y:np.random.randn (3, 4),
z:np.random.randn (3, 4),

}

// Pytorch
x= Variable (tourch.randn (3,

4).cuda (),
requires_grad =True)

y= Variable (tourch.randn (3,
4).cuda (),
requires_grad =True)

z= Variable (tourch.randn (3,
4).cuda (),
requires_grad =True)

a=x * y
b=a + z
c=torch.sum(b)

Figure 1: Difference of structures at each platform.

Reference Model. In the literature, several neural network def-

inition models have been created, including models using XML

type language. Among XML type languages is the neural network

markup language (NNML), which aims to develop and provide re-

configuration of neural networks. As shown in [8], neural network

can not be entirely reconfigured without information about the en-

vironment in which it was created (i.e., application). In other words

description of neural network must contain information about the

structure of data dictionary, preprocessing methods, postprocessing

methods, and additional information about the use model [8, 10].

In this model, it is necessary to assign (trained) values of variables

at the time of defining the neural network model through NNML.

NNML can lead to compact code that represents neural networks.

Contributions. The contributions of this work are as follows. First,
we introduce the design of a parser of NNUF for standardized deep

learning computation, called the standard NNEF, which provides

platform-independent processes for configuring and training deep

learning neural networks. Second, through implementation and

demonstration on a Raspberry Pi, we show that our proposed design

allows the resulting learning graph to be easily shared with other

platform-dependent descriptions.

Organization. The organization of the rest of this paper is as fol-

lows. In section 2, we introduce an overview of the standard NNUF.

In section 3 we review the standard framework, including design

rationale. In section 4 we review the implementation of our stan-

dard NNUF. In section 5, we draw concluding remarks and outline

our future work.

2 NNUF: AN OVERVIEW
As mentioned earlier, neural networks are adopted as a tool to

obtain best-results from data in broad fields [2, 11, 12]. Given the

unprecedented volumes of application-specific data delivered daily,

it is ideal to use machine learning in many of those applications.

However, using advances in developed machine learning tools in

those fields is nontrivial. For example, neural networks built on

Python-based artificial neural network platforms cannot be imple-

mented without the platform-dependent features.

As shown in Fig. 1, we observe that the same neural network is

implemented very differently based on the framework. The more

complex the neural network operations being used, the greater is

this difference. As a result, when a programmer implements the

same model to take advantage of each framework, it becomes neces-

sary to understand the framework from scratch as a baseline [5, 12].

Input

Convolution
Pool

Output

……

Figure 2: NNUF neural networkmodel representation exam-
ple, convolutional neural network (CNN).

The neural network model description in NNUF focuses on this

problem. In the implementation of the model description using

NNUF, we first have to create a model and add values separately.

The input of the data is delegated to the framework in which the

model is used, so that the model is not dependent on the input data.

This method is similar to the model implementation in TensorFlow.

We call the platform implemented according to the neural network

exchange framework (NNEF) the standard NNUF [6].

In previous neural network XML-based unified model, the focus

has been on correct reconstruction of computational models of the

neural network [10]. However, for correct reconfiguration, informa-

tion that is not actually required in the processing platform must be

filled in the model description. If the data pre-/post-processing and

training are delegated to other frameworks, it may become more

appropriate to introduce methods to reconstruct the artificial neural

networks to work with implementation of those frameworks.

The strength of standardization can exert its power at the con-

struction phase of a neural network. Through standardization,

NNUF builds an artificial neural network in a form that is inde-

pendent of the used frameworks, such as Tensorflow and Pytorch,

stores the network in a protocol buffer format, and transfers it to

various frameworks. With standardization, we do not need to be

aware of the specific methods of the frameworks when deploying

artificial neural networks in multiple environments. Furthermore,

with such a standardization, it is easy to implement operations

commonly used in neural networks (such as relu, tanh, etc.), as well

as new operations based on the functional format of NNUF.

The neural network model in Fig. 2 shows the neural network

unified format grammar. The structure is based on a neural network

called the convolutional neural network (CNN), an artificial neural

network with multiple hidden layers; the multi-layer nonlinear

structure provides it with a powerful feature expression ability. The

CNN contains three kinds of basic structures, the convolutional

layer, the pooling layer, and the fully-connected layer [3, 7]. Note

that the NNUF was intended to construct the CNN.

3 STANDARDIZED FRAMEWORK
In this section, we show the design rationale of NNUF software,

which is based on the concept of “Define and Run”. We discuss the

base model of the NNUF, which uses an XML-like format.

3.1 Design Rationale
The main purpose of the unit description rule in NNUF is to sim-

plify the representation of the underlying mathematical procedures.

Neural Network Syntax Analyzer for Embedded Standardized Deep Learning EMDL'18, June 15, 2018, Munich, Germany

// Neural network defini t ion
graph CustomNet (inputVar) -> (output Var) {

// Variables definit ion
Input = reshape (inputVar , [-1 , 28 , 28 , 1]) ;
Kernel = variable (shape =[3 , 3, 1, 64] ,

label="conv1 /kernel ") ;
Bias1 = variable (shape =[64] , label="conv1 /bias ") ;
// Operations definit ion
conv1 = conv (input , f i l ter=kernel1 , str ides =[1 , 1,

1, 1] , padding="SAME");
add1 = add(conv1 , bias1);
outputVar = relu (add1);

}

Figure 3: NNUF description of neural network model.

Figure 4: Neural network exchange framework.

Since there is a lack of uni�ed standard terminologies for neural net-
works implementations, we have decided not to use existing terms.
Therefore, terms are de�ned and used in a form that is intuitive
and understandable by humans; e.g., �add� and �sub�.

The declaration of variables and computations of the neural
network model are represented as functions. The input and out-
put values of the neural network are speci�ed in the form of the
parameter ofgraph function, and de�ne these declarations in an
internal implementation. There are no special order constraints
on the structure of these declarations ingraph function, therefore
the network structure is explicitly determined as a combination of
declarations. This procedure is illustrated in Fig. 4.

In this work, we designed and implemented a framework that
con�gures and trains various types of models using NNUF. Fur-
thermore, we design a parser with JavaCC for understanding codes
based on NNUF; used as the core structure of neural network ex-
change framework. When switching to TensorFlow code through
the NNUF parser, the training done by the appropriate data set is
fed into the model; then, the trained model is stored according to
the protocol bu�er structure through the framework. When the
neural network de�ned by NNUF is fed into the framework, the
framework generates �les as parsing results as follows:

� Full TensorFlow Code:A code that can perform framework
exchange based on the model de�ned by NNUF is generated.
It is fully converted to the code of the neural network, which
is implemented by TensorFlow. In this code, pre-processing
of data and training options can be �lled through TensorFlow
format. Then, the training can be performed in a wat similar
to writing codes within the pure TensorFlow framework.

SKIP : { "" | " \ r" | " \ t " | " \n" }
TOKEN :{

< IDENTIFIER : (["a" -"z" , "A" -"Z"])
+ (["a" -"z" , "A" -"Z" , "0" -"9" , "_"]) *>

|<METHOD: (< IDENTIFIER > ("." < IDENTIFIER > ("("
")" | " [" (["0" -"9"]) * "]") *)+) >

|< NUMERIC_LITERAL : (["+" , " -"])? (["0" -"9"])+(" ."
(["0" -"9"])+) ?(["E" , "e"] (["+" , " -"])?
(["0" -"9"])+)? >

|< STRING_LITERAL : ("' " | " \" ") (["a" -"z" , "A" -"Z" ,
" /" , "_" , "0" -"9"]) * (" ' " | " \" ")>

...
|< SEMI_COLON : ";">
|<QUESTION: "?">
|<ARROW: " ->">

}

Figure 5: Lexical analysis (.jj �le format).

String argument () :
{String arg , exp , name , res ; Token id ;}
{

(
((id=< IDENTIFIER >)<ASSIGN >(exp= expression ())){

name = id . toString () ;
switch (name) {

case " label " : res="name";arg += res+"="+exp ; break ;
case " fi l ter " : arg += exp ; break ;
case "size ": res="shape="+exp ; arg += res ; break ;
case " type": res="dtype=tf ."+exp ;arg += res ; break ;
default : arg += name+"="+exp ; break ;

}
} | (exp = expression ()){ arg += exp ; }

) { return arg ;}
}

Figure 6: Syntax analysis (.jj �le format).

� Trained Model Data:The training is performed with the con-
verted model, where the input data and pre-processing pro-
cesses are provided. The trained model is then stored in the
form of a protocol bu�er in TensorFlow.

3.2 Parser Implementation with JavaCC
The neural network de�ned by NNUF is required to analyze whether
the given input is grammatically and semantically correct or not.
For this analysis, we implemented a parser that analyzes the graph
description de�ned by the grammar of NNUF. This NNUF parser is
implemented using JavaCC [1], which is one of well-known lexical
analysis and parsing (syntax analysis) tools based on Java program-
ming language. JavaCC is fundamentally based on the concept of
top-down parsing. The parser generation using JavaCC is done with
pure Java and Java Virtual Machine (JVM) code. Therefore, Jython
2.7 is used for integrating Python and Java codes, and the overall
framework structure is implemented with python syntax using the
Jython. The major components of the compiler generation using
JavaCC is.jj �le, which is based on language formal speci�cation
and JavaCC grammar [1, 11, 14]. In the NNUF parser implemented
with JavaCC, the.jj �le have the following items:

� Lexical Analysis Rules:This information can be abbreviated.
If it exists, it can be one or some ofSKIP, TOKEN, SPECIAL
TOKEN, andMORE. The meaning of them is available in JavaCC
syntax description [1, 14]. In Fig. 5, an example lexical anal-
ysis code implemented using JavaCC is provided.

EMDL'18, June 15, 2018, Munich, Germany M. Shin et al.

Figure 7: A snapshot of the graphical user interface (GUI) of, capturing the NNUF graph and TensorFlow graph de�nitions.

� Syntax Analysis Rules with Enhanced Backus Naur Form (EBNF):
Each syntax grammar in NNUF speci�cation can be imple-
mented with EBNF as presented in Fig. 6 (�le name:nnuf.jj).

As shown in Fig. 6, the NNUF parser takes the results of the
grammar and the token (generated by lexical analysis). According
to the results, the NNUF parser matches the code to be converted
one and returns it. The input NNUF graph is transformed into the
TensorFlow code according to the above procedure. Finally, our
standardized deep learning computation framework gets the input
as NNUF-based �le and returns the code which can be executed by
TensorFlow computation engine.

4 IMPLEMENTATION
In this section, we outline our NNUF parser implementation in
embedded open-source platforms. The implementation of one of
the most popular image classi�cation CNN models, the AlexNet, is
introduced in Section 4.1, and the demonstration of the implemen-
tation on an embedded Raspberry Pi is presented in Section 4.2.

4.1 AlexNet/CNN Implementation
The neural network model, e.g., example model in Fig. 2, for the
de�nition of neural network uni�ed the format grammar. The struc-
ture of our example model is based on AlexNet [7], based on CNN.
The AlexNet is a popular neural networks that is specialized in
image classi�cation. AlexNet consists of eight layers and perfect
connection layers. The output of the last fully connected layer in
AlexNet is the probability distribution for 1000 image classes [7].

Based on the NNUF-based standardized parsing, AlexNet, which
is one of well-known deep convolutional neural network models, is
implemented [7]. The AlexNet is specialized in image classi�cation
where it consists of eight layers and fully-connected layers. Based
on the NNUF-based AlexNet implementation, MNIST dataset based
executions are performed. As an input MNIST datset, we used 28-by-
28 pixels as shown in Fig. 8(a). After successful computation with
our NNUF-based standardized parser, the activation map for the
given MNIST dataset input are successfully obtained as illustrated
in Fig. 8(b).

(a) MNIST dataset initial input

(b) Activation map for the MNIST dataset input

Figure 8: The MNIST dataset inputs (Fig. 8(a)) and the compu-
tation result as an activation map via NNUF-based AlexNet
(Fig. 8(b)).

4.2 Demonstration in Linux/Raspberry Pi
Embedded Platforms

The prototype of NNUF is implemented using Jython and Tensor-
Flow in Ubuntu/Raspberry Pi embedded platforms, as shown in
Fig. 9. Our standardized deep neural network learning computation
framework dedicates the pre-processing, post-processing, and train-
ing to TensorFlow. For our demonstration, we employ AlexNet with
the MNIST �ne-grained sample image data sets. The description

https://www.youtube.com/watch?v=l_iEq6yyALI

	Abstract
	1 Introduction
	2 NNUF: An Overview
	3 Standardized Framework
	3.1 Design Rationale
	3.2 Parser Implementation with JavaCC

	4 Implementation
	4.1 AlexNet/CNN Implementation
	4.2 Demonstration in Linux/Raspberry Pi Embedded Platforms

	5 Conclusions and Future Work
	Acknowledgments
	References

