
Dine and Dash: Static, Dynamic, and Economic
Analysis of In-Browser Cryptojacking

Muhammad Saad
University of Central Florida

saad.ucf@knights.ucf.edu

Aminollah Khormali
University of Central Florida

aminkhormali@knights.ucf.edu

Aziz Mohaisen
University of Central Florida

mohaisen@ucf.edu

Abstract—Cryptojacking is the permissionless use of a target
device to covertly mine cryptocurrencies. With cryptojacking at-
tackers use malicious JavaScript codes to force web browsers into
solving proof-of-work puzzles, thus making money by exploiting
resources of the website visitors. To understand and counter
such attacks, we systematically analyze the static, dynamic, and
economic aspects of in-browser cryptojacking. For static analysis,
we perform content-, currency-, and code-based categorization
of cryptojacking samples to 1) measure their distribution across
websites, 2) highlight their platform affinities, and 3) study their
code complexities. We apply unsupervised learning to distinguish
cryptojacking scripts from benign and other malicious JavaScript
samples with 96.4% accuracy. For dynamic analysis, we analyze
the effect of cryptojacking on critical system resources, such as
CPU and battery usage. Additionally, we perform web browser
fingerprinting to analyze the information exchange between the
victim node and the dropzone cryptojacking server. We also
build an analytical model to empirically evaluate the feasibility
of cryptojacking as an alternative to online advertisement. Our
results show a large negative profit and loss gap, indicating that
the model is economically impractical. Finally, by leveraging
insights from our analyses, we build countermeasures for in-
browser cryptojacking that improve upon the existing remedies.

I. INTRODUCTION

Proof-of-Work (PoW) is used in several cryptocurrencies,
where new tokens are mined through extensive hash opera-
tions. However, the use of PoW in cryptocurrencies has led to
several avenues of abuse: an adversary may employ various
techniques to abuse others’ resources for mining purposes and
to perform extensive hash calculations at no or low cost. One
such technique is cryptojacking, where system resources of
a target device are used to compute hashes on behalf of an
adversary. Conventional cryptojacking involved installation of
a software binary on a target machine that secretly solves
PoW and communicates the results to a remote server [1].
Such cryptojacking requires user permission to download the
software and a persistent Internet connection to communicate
PoW results to the adversary. However, the conventional
cryptojacking proved impractical for several reasons, including
the detection by antivirus scanners, and requiring a persistent
connection and infection vector [2].

Another form of cryptojacking, known as in-browser crypto-
jacking, has recently emerged. In-browser cryptojacking does
not require installing binaries, or any authorization from users,

where JavaScript code is used to compute PoW in a web
browser and transmit the PoW to a remote server controlled
by the adversary [3]. As such, and since they are shielded
in the browser’s process, the in-browser cryptojacking scripts
are undetected by the antivirus scanners, and mining during
web browsing ensures uninterrupted transmission of PoW
over a persistent Internet connection. Recent works on in-
browser cryptojacking perform static and dynamic analysis on
cryptojacking websites and JavaScript code to understand the
modus operandi of in-browser cryptojacking, and construct
machine learning models to prevent it [4], [5], [6], [7],
[8]. However, these studies do not evaluate a parallel and
noteworthy premise of cryptojacking, whereby it is considered
to be a suitable replacement for online advertisement [9].
Moreover, while the effect of cryptojacking on devices is
intuitively known to be harmful, a quantitative assessment
of such a harm has yet to be explored. On the defence
side, the existing countermeasures are either ineffective due
to simplistic assumptions or suffer from high overheads due
to the machine learning models. Novel to this paper, and in
addition to performing static and dynamic analysis, we carry
out a quantitative evaluation of the impact of cryptojacking
on various user devices and we present an economic analysis
to study the feasibility of cryptojacking as a replacement
for online advertisement. Finally, addressing the limitations
of existing detection schemes, we provide simple yet robust
methods to counter in-browser cryptojacking.
Contributions and Roadmap. In summary, this paper makes
the following key contributions: 1 Using more than 5,700
websites with cryptojacking scripts, we conduct an in-depth
analysis of cryptojacking, highlighting affinities using sectors,
top-level domains, etc. (§III). 2 We conduct static analysis
of cryptojacking scripts, to highlight distributions of cryp-
tocurrency used in cryptojacking and code (script) complexity
(§IV). As an application of our static analysis, using code
complexity features we built an unsupervised clustering sys-
tem that automatically identifies cryptojacking, malicious, and
benign scripts (§IV-C). A reference-based (using ground truth)
evaluation of our clustering algorithm yielded an accuracy of
≈ 96%. 3 We perform dynamic analysis to unveil unique
characteristics of process and battery usage. Using that, we an-
alyze the effect of cryptojacking on user devices. We also study
the network artifacts of cryptojacking through WebSocket in-
spection, and use it to later propose effective countermeasures978-1-7281-6383-3/19/$31.00 ©2019 IEEE

(§V). 4 We investigate the economics of cryptojacking as
an alternative to online advertisement and build an analytical
model to estimate users’ cost and cryptojacking websites’ gain
due to cryptojacking operation (§VI). We compare the two
models, vis-à-vis, and show cryptojacking is not a feasible
replacement for online advertisement. 5 Learning from our
static and dynamic analyses, we propose simple and effective
defense techniques to address cryptojacking (§VII).

Additionally, the rest of this paper includes related work
and comparison in §II, background and preliminaries in §III,
discussion and concluding remarks in §VIII.

II. RELATED WORK AND COMPARISON

In this section, we review notable research works done
to detect, analyze, and prevent cryptojacking. We will also
perform a comparative analysis to position our work.

Rüth et al. [10] studied the prevalence of cryptojacking
by analyzing blacklisted sites from the No Coin (§VII-A)
web extension. They mapped those sites on a large corpus
of websites obtained from the Alexa Top 1M list, and found
1,491 suspect websites involved in cryptojacking. However,
as we later show in §VII-A1, blacklisting approach may have
major shortcomings, and is therefore not a feasible defence
approach. Eskandari et al. [5] also looked into the prevalence
of cryptojacking, showing the use of Coinhive as the most
popular platform. However, they did not perform static or dy-
namic analysis of cryptojacking scripts to study the intricacies
such covert mining practices. A more systematic treatment of
in-browser cryptojacking was performed by by Hong et al. [4]
and Konoth et al. [11]. Hong et al. performed static analysis
on 2,770 cryptojacking websites and developed a machine
learning tool called CMTracker that detects and prevents
cryptojacking. Concurrently, Konoth et al. [11] performed a
code-based analysis on 13 cryptojacking platforms to analyze
various features in cryptojacking JavaScript code and develop
countermeasures for it. Later, Kharraz et al. [8] presented
Outguard; a cryptojacking detection tool that uses supervised
learning to accurately detect covert mining operations with
≈97% accuracy. In their work, they used 6,302 websites and
extracted seven features to train an SVM classifier. These
notable efforts indeed contributed significantly towards our
general understanding of in-browser cryptojacking. However,
they did not perform dynamic analysis of cryptojacking scripts
to analyze their effect on the user devices. Furthermore, as
acknowledged by Kharraz et al. [8], a major limitation of
their work is the supervised learning model used to develop
Outguard. Therefore, Outguard is vulnerable to an adaptive
adversary who can use evasion techniques. In contrast, we
use unsupervised learning and achieve a detection accuracy
of ≈ 96%. Therefore, in static analysis domain, our detection
model may be more useful against an adaptive adversary.

In the domain of dynamic analysis, Tahir et al. [12] pre-
sented a tool called MineGuard, that performed a real-time
detection of covert mining operations in the cloud. Mine-
Guard used hardware-assisted profiling to create discernible
signatures for mining algorithms and later use it for detection.

Extending their analysis to the in-browser cryptojacking [12],
they developed a browser extension that used fine-grained
micro-architectural footprint to detect cryptojacking. In our
dynamic analysis, we take a different approach to perform
a resource profiling and analyze the effect of cryptojacking
on user devices. We further look into the semantics of traffic
exchange during mining operations and use them to develop
effective countermeasures for the real-time detection.

Finally, a key aspect of analysis that requires a compre-
hensive treatment is the use of cryptojacking as an alternative
to the online advertisement. In each of the aforementioned
work, we could not find an economic model that justifies or
nullifies the replacement of online advertisement ecosystem
with cryptojacking. In this paper, we fill the gap and show
that cryptojacking may not be a suitable replacement.

III. BACKGROUND AND PRELIMINARIES

In-browser cryptojacking is done by injecting a JavaScript
code in a website, allowing it to hijack the processing power of
a visitor’s device to mine a specific cryptocurrency. Generally,
JavaScript is automatically executed when a website is loaded.
Upon visiting a website with cryptojacking code, the visiting
host starts a mining activity, by becoming part of a cryptojack-
ing mining pool. A key feature of in-browser cryptojacking is
being platform-independent: it can be executed on any host,
PC, mobile phone, tablet, etc., as long as the web browser
running on this host has JavaScript enabled in it.

An ongoing debate in the community is whether crypto-
jacking can serve as a replacement to online advertisement.
Those advocating the approach have pointed out that users
providing their CPU power to a website for mining can
use the website without viewing online advertisements. To-
wards that, some websites, including the ‘The Pirate Bay”,
started using cryptojacking as a revenue substitute for online
advertisements [13], [14] and become “ads-free operation”.
However, a counter argument to this model is claimed to be
the abuse of the cryptojacking website to the visitor’s CPU
resources. In-browser cryptojacking scripts will not only run
in the background without user consent, but would also drain
batteries in battery-powered platforms, would indirectly affect
the user experience, and by locking the CPU power and not
allowing users to use other applications.

A. Data Collection

We assembled a data set of cryptojacking websites published
by Pixalate [15] and Netlab 360 [16]. Pixalate is a network
analytics company that provides data solutions for digital
advertising and research. In Nov. 2017, they published a list of
5000 cryptojacking websites that were actively stealing their
visitor’s processing power to mine cryptocurrency. Netlab 360
(Network Security Research Lab at 360) is a data research
platform that provides a wide range of datasets spanning
Domain Name Servers (DNS) and Distributed Denial-of-
Service (DDoS) attacks. From Netlab 360, we obtained 700
cryptojacking websites, released on Feb 24, 2018.

23% 12% 6%2%9% 2%21%1% 19%

Entertainment Adult Illegal ContentMedia

5%

Info.Tech ShoppingUncategorized BusinessSports Education

Figure 1: Categorization of websites based on the main topic of their content. Notice that most websites belong to Entertainment,
Business, and Education. A sizable chunk (12%) belonged to the Adult category.

Table I: Distribution of cryptojacking websites with respect to
top-level domains in our dataset.

Rank TLD Type Sites Sites%
1 .com generic 1945 34.1%
2 .net generic 359 6.2%
3 .si country 358 6.2%
4 .online generic 349 6.1%
5 .ru country 242 4.2%
6 .org generic 191 3.3%
7 .sk country 169 2.9%
8 .info generic 169 2.9%
9 .br country 157 2.7%

10 .site new 116 2.0%
11 others — 1648 28.8%

Total — — 5703 100%

The top-level domain (TLD) distribution of the combined
dataset, including the TLD type (generic, new, or country-
level) and the corresponding percentage, is shown in Table I.
While, unsurprisingly, .com and .net occupy the first and
second spot of the top-10 TLDs represented in the dataset,
with a combined total of 40.3% of the websites belong to
them, country-level domains have a significant presence, with
countries such as Slovenia, Russia, and Brazil well represented
in the dataset. New-gTLDs were also present in the top-10
gTLDs, with .site having ≈2.0% of the sites.

In the Pixalate’s dataset, 6 websites were found in the
Alexa top-5000 websites and 13 were among the Alexa top-
10000 websites. Among the cryptojacking sites, 68.3% did not
have a privacy policy, while 56.8% websites had no “terms
and conditions” statement, and 49.3% did not have both the
privacy policy and the terms and conditions. This indicates
that the majority of those websites could not formally, through
those statements, inform their visitors regarding the usage of
their processing resources for mining cryptocurrencies, where
cryptojacking is used in instead of online advertisement.

B. Methodology

In the static analysis, we categorize the websites based on
content and the currency they mine. We extract the cryptojack-
ing code and develop code-based features to examine their
properties. We compare them, using those static properties,
with malicious and benign JavaScript code. We use standard
code analyzers to extract program specific features.

Table II: Detailed results of currency-based analysis. 1 The
variable name is abbreviated. No CJ: No cryptojacking.

Platform Websites Cryptocurrency Websites
% # %

Coinhive 4652 81.57

Monero 4926 86.37

Hashing 67 1.17
deepMiner 56 0.98
Freecontent 39 0.68
Cryptoloot 38 0.67
Miner 38 0.67
Authedmine 35 0.61
JSEcoin 149 2.61 JSEcoin 149 2.61
No CJ 628 11.01 — 628 11.01
Total 5703 100.00 — 5703 100.00

In our dynamic analysis, we explore the CPU power con-
sumed by cryptojacking websites and its effects on the user
devices. We run test websites to mimic cryptojacking websites
and carry out a series of experiments to validate our hypoth-
esis. For our experiments, we use Selenium-based scripts to
automate browsers and various end host devices, including
Windows and Linux operated laptops and an Android phone,
to monitor the effect of cryptojacking under various operating
systems and hardware architectures. For website information,
we use services provided by Alexa and SimilarWeb to extract
information regarding websites ranking, volume of traffic, and
the average time spent by visitors on those websites [17].

In the economic analysis, we first evaluate the profit gener-
ated by mining operations. Next, we use the average time spent
by various devices on a website to compute the maximum
profit generated by those websites. Finally, we compare the
profit earned through cryptojacking with the actual revenue
earned from advertisement for feasibility analysis.

IV. STATIC ANALYSIS

We pursue three directions: content- currency-, and code-
based analysis. Content-based categorization provides insights
into the nature of websites used for cryptojacking, while the
currency-based categorization shows services and platforms
affected by the threat. The code-based analysis provides in-
sight into the complexity of the cryptojacking scripts, using
code complexity measures.

A. Content and Currency-based Categorization

We categorized the websites based on their contents into
various categories using the WebShrinker website URL cat-
egorization API. WebShrinker assigns categories to websites

based on the main usage of those websites using their contents.
The results are shown in Figure 1. As it can be seen in
Figure 1, miners have utilized a wide range of categories
for in-browser cryptocurrency mining, including education,
business, entertainment, etc. Notice in Figure 1, some websites
are categorized as “Illegal Content”, which were mostly torrent
websites serving pirated contents. Moreover, 19% websites
were categorized as “Education” which can be attributed to the
exploitation of trust by adversaries behind cryptojacking [18].

By analyzing our dataset, we found eight platforms provid-
ing templates to mine two types of cryptocurrencies: Monero
and JSEcoin. In Table II, we provide details of the eight
platforms and their mining cryptocurrency. We found that a
large percentage of the websites (≈81.57%) use Coinhive [19]
to mine Monero cryptocurrency [20], which is one of the
few cryptocurrencies that supports in-browser mining. We
found that ≈86.37% of the websites in our dataset are mining
Monero cryptocurrency through seven platforms. In addition,
≈2.61% of the websites are using the JSEcoin platform [21],
which is responsible for mining the JSEcoin cryptocurrency.

B. Code-based Analysis

For static analysis, we gathered cryptojacking scripts from
all the major cryptojacking service providers found in our
dataset, such as Coinhive, JSEcoin, Crypto-Loot, Hashing,
deepMiner, Freecontent, Miner, and Authedmine. We observed
that all the service providers had unique codes, specific to their
own platform. In other words, the websites using Coinhive’s
services had the same JavaScript code template across all
of them. Therefore, ≈81.57% of the websites in our dataset
were using the same JavaScript template for cryptojacking.
Similarly, all the websites using JSEcoin used the same
standard template for their mining. However, the code template
of each service provider was different from one another, which
led us to believe that each script had unique static features.
With all of that in mind, we performed static analysis on the
cryptojacking websites and compared the results with other
standard JavaScript for a baseline comparison.

1) Data Attributes: We prepared our dataset for static
analysis by collecting all of the popular cryptojacking scripts
from our list of websites. We found eight unique scripts
among all the websites, each of which belongs to one of
the service providers. As a control experiment, we collected
an equal number of malicious and benign JavaScript codes
to design a clustering algorithm. Our aim was to obtain a
set of features that were unique only to the cryptojacking
scripts, and aid in their detection. With such knowledge of
those features, more accurate countermeasures can be further
developed that will accurately predict if a given host machine
is under cryptojacking attack. To avoid bias towards a certain
class, we were limited to include equal size of malicious and
benign JavaScript samples for the static analysis. Although
there are many samples of malicious and benign JavaScript in
the wild [22], only eight cryptojacking scripts are available in
comparison. Since our work is focused on distinguishing cryp-
tojacking scripts from both malicious and benign JavaScript,

we had to balance the size of each class. While the number
of scripts might seem as a limitation of our work, we believe
the promise of this work is substantial: as more currencies
and platforms start to use cryptojacking, more samples will
be available for a broader study.

In lieu, we used the existing data of the cryptojacking web-
sites (§III-A) and online resources from GitHub for malicious
JavaScript sample [23] . For benign JavaScript, we used the
set of non-cryptojacking websites and parsed their HTML code
to extract benign JavaScript code [24]. In summary, we had
8 samples of cryptojacking JavaScript samples, spanning all
the websites. Accordingly, we selected 10 malicious and 10
benign scripts for our clustering analysis (which serves as a
multi-class classification).

2) Feature Extraction: We use various features that provide
insights into the structure of the code and its maintainability.
In the following, we describe the features we extracted for our
static analysis of cryptojacking, malicious, and benign scripts.
Cyclomatic Complexity. Cyclomatic complexity [25], [26]
measures the complexity of code using Control Flow Gaph
(CFG). It relies on a directed flow graph where each node
represents a function to be executed and a directed edge
between the two nodes indicates that the node representing
the function will be executed after the previous node. Let E
be the number of edges, N be the number of nodes, and Q be
the number of connected components in the CFG of a program,
then M can be used to denote the cyclomatic complexity of
the program, and is calculated as M = E + 2Q−N .
Cyclomatic Complexity Density. Cyclomatic complexity
density [27] is a measure of Cyclomatic complexity, defined
above, spread over the total code length. Usually, malware
authors obfuscate their code to avoid detection. As such,
among many other possibilities of obfuscation, they may alter
the flow of a program and add extra functions. While adding
more functions and lines of code will certainly increase the
size of the code, its complexity will remain the same, which
could be used as a feature of their detection. Let cl be the
total number of lines of code, then the cyclomatic complexity
density, denoted by Md, can be computed as Md = E+2P−N

cl

Halstead Complexity Measures. In software testing, the
Halstead complexity measures are used as metrics to char-
acterize the algorithmic implementation of a programming
language [28]. Those measures include the vocabulary η,
the program length n, the calculated program length nc, the
volume V , the effort E, the delivered bugs B, the time T ,
and the difficulty D. Let the number of distinct operators be
η1, the number of distinct operands be η2, the total number
of operators be n1, the total number of operands be n2, the
η, n, nl, V, E, and B are defined as follows:

η = η1 + η2, n = n1 + n2 (1)
nc = (η1 log2 η1) + (η2 log2 η2), V = n× log2 η (2)
D = (η1/2)× (n2/η2), E = D × V (3)

T = (D × V)/18, B = E
2
3 /3000 (4)

Table III: Static features of cryptojacking, malicious, and benign samples. Mean ((µ)) and Standard Deviation (σ) are reported.
Cat. Platforms M Md B D E cl T η V η1 n1 η2 n2 params sloc physical Ms

C
ryptojacking

deepMiner 184 44.2 14.1 113.0 4,810,434 4,667 267,246 554 42,533 47 2,440 507 2,227 75 416 499 67.8
Authedmine 168 26.5 19.7 82.8 4,912,255 6,096 272,903 844 59,259 41 3,247 803 2,849 73 633 784 62.8
Hashing 138 29.1 7.2 94.6 2,185,379 2,794 124,138 342 24,393 38 1,469 315 1,415 37 412 505 68.2
Miner 133 27.7 9.3 90.5 2,537,930 3,239 140,996 403 28,032 39 1,690 364 1,549 49 479 617 64.1
Coinhive 131 27.5 9.1 94.8 2,608,021 3,226 144,890 368 274,970 37 1,697 331 1,529 48 476 594 63.7
Crypto-loot 128 39.7 11.4 88.1 3,034,935 3,788 168,607 546 34,443 45 1,962 501 1,826 62 322 389 70.3
Freecontent 117 28.3 8.1 89.4 2,180,394 2,884 121,133 350 24,373 38 1,469 312 1,415 37 412 505 62.7
JSEcoin 64 17.2 10.2 62.9 1,945,165 3,257 108,064 716 30,888 45 1,878 671 1,379 49 372 412 64.7
Mean (µ) 130.3 29.9 11.3 88.9 3,026,191 3,755.1 168,121 516.4 33,925 41.3 1,981.5 475.1 1,773.6 53.8 440.3 538.1 64.9
SD. (σ) 35.9 8.4 3.9 13.8 1,180,403 1,109.9 65,577 185.1 11,856 3.9 599.3 182.8 519.3 14.8 93.2 126.3 2.8

M
alicious

20160209 92 21.5 5.6 25.1 423,925 1,833 23,551 580 16,826 27 1,032 553 801 22 427 503 44.4
20161126 62 15.3 4.2 24.6 315,735 1,563 17,540 292 12,800 17 798 275 765 0 403 481 90.5
20170110 14 4.4 15.0 26.7 1,211,305 4,704 67,294 782 45,210 15 2,740 767 1,964 232 313 564 93.6
20170507 6 24.0 5.9 11.1 199,917 1,864 11,106 777 17,897 18 942 759 922 1 25 890 71.7
20160927 3 1.4 4.0 32.5 393,555 1,575 21,864 204 12,084 13 957 191 618 0 213 98 23.2
20170322 2 18.1 11.8 7.1 253,442 3,514 14,080 1,123 35,607 9 1,762 1,114 1,752 3 11 1,738 90.9
20170303 2 8.6 0.2 9.4 8,338 147 463 63 878 13 73 50 74 4 23 55 78.7
20160407 1 33.3 0.1 2.7 207 19 11 16 76 5 12 11 7 0 3 3 78.9
20170501 1 0.9 2.1 3.3 21,464 758 1,192 322 6,314 5 431 317 327 0 105 105 35.9
20160810 1 12.5 0.5 11.9 20,148 275 1,119 70 1,685 6 255 64 20 0 8 13 60.4
Mean (µ) 18.4 14 4.9 15.5 284,803.7 1,625.2 15,822 422.9 14,938 12.8 900.2 410.1 725 26.2 153.1 445 66.9
SD. (σ) 31.9 10.5 5 10.8 364,470.8 1,508.9 20,248 374.8 15,045 6.9 834.7 372.5 686.6 72.6 171.9 543.5 24.9

B
enign

The Boat 2,135 69.3 110.8 392.0 130,285,522 31,916 7,238,084 1,364 332,361 59 17,341 1,305 14,575 852 3,084 3,349 66.7
IBM Design 2,119 68.3 110.9 397.1 132,237,213 32,018 7,346,511 1,351 332,981 59 17,393 1,292 1,4625 853 3,103 3,372 66.7
Histography 1,743 40.7 95.2 249.5 71,325,242 26,627 3,962,513 1,704 285,833 55 14,963 1,649 11,663 803 4,278 5,043 59.4
Know Lupus 1,006 28.1 92.9 170.4 47,474,425 25,120 2,637,468 2,181 278,600 54 13,424 2,127 11,696 615 3,583 4,288 65.2
tota11y 815 38.8 59.4 227.7 40,563,065 17,486 2,253,503 1,167 178,157 52 9,764 1,115 7,722 412 2,099 2,336 62.9
Masi Tupungato 784 58.2 47.1 185.0 26,199,193 14,296 1,455,510 958 141,585 43 7,875 915 6,421 238 1,347 1,470 67.2
Fillipo 703 42.9 43.1 194.3 25,139,766 12,900 1,396,653 1,045 129,377 54 7,132 991 5,768 269 1,637 1,770 61.5
Leg Work 412 75.7 34.0 241.3 24,651,056 11,100 1,369,503 589 102,143 45 5,835 544 5,265 66 544 633 65.9
Code Conf 409 27.8 41.1 197.1 24,336,420 12,500 1,352,023 939 123,437 49 7,162 890 5,338 315 1,469 1,753 64.9
Louis Browns 368 35.6 21.2 106.7 6,792,400 6,529 377,355 862 63,667 51 3,393 811 3,136 68 1,034 1,357 53.3
Mean (µ) 1,049.4 48.5 65.6 236.1 52,900,430 19,049.2 2,938,912 1,216 196,814 52.1 10,428.2 1,163.9 8,621 449.1 2,217.8 2,537.1 63.4
SD. (σ) 694 17.8 33.6 92.8 44,755,377 9,151.2 2,486,409 459.8 100,856 5.3 4,999 456.7 4,165 310.3 1,225.4 1,418.2 4.3

M M_d D N sloc N1 N2 Ms

M
M

_d
D

N
sl

oc
N

1
N

2
M

s

1.0 0.7 0.8 0.1 0.5 0.1 0.1 0.2

0.7 1.0 0.8 -0.2 -0.3 0.4 -0.2 0.7

0.8 0.8 1.0 -0.4 0.0 0.0 -0.4 0.3

0.1 -0.2 -0.4 1.0 0.4 0.6 1.0 0.2

0.5 -0.3 0.0 0.4 1.0 -0.4 0.4 -0.6

0.1 0.4 0.0 0.6 -0.4 1.0 0.6 0.8

0.1 -0.2 -0.4 1.0 0.4 0.6 1.0 0.1

0.2 0.7 0.3 0.2 -0.6 0.8 0.1 1.0

0.3

0.0

0.3

0.6

0.9

(a) Correlation in cryptojacking JavaScript

M M_d D N sloc N1 N2 Ms

M
M

_d
D

N
sl

oc
N

1
N

2
M

s

1.0 0.2 0.5 0.1 0.8 0.8 0.1 -0.0

0.2 1.0 -0.4 0.1 -0.2 0.1 0.1 0.4

0.5 -0.4 1.0 0.1 0.8 0.6 0.1 -0.2

0.1 0.1 0.1 1.0 0.1 0.3 1.0 0.3

0.8 -0.2 0.8 0.1 1.0 0.7 0.1 -0.1

0.8 0.1 0.6 0.3 0.7 1.0 0.3 -0.0

0.1 0.1 0.1 1.0 0.1 0.3 1.0 0.3

-0.0 0.4 -0.2 0.3 -0.1 -0.0 0.3 1.0 0.25

0.00

0.25

0.50

0.75

1.00

(b) Correlation in malicious JavaScript

M M_d D T V N1 N2 Ms

M
M

_d
D

T
V

N
1

N
2

M
s

1.0 0.4 0.9 1.0 0.9 0.8 0.5 0.3

0.4 1.0 0.7 0.5 0.2 0.0 -0.4 0.5

0.9 0.7 1.0 0.9 0.8 0.6 0.2 0.6

1.0 0.5 0.9 1.0 0.9 0.8 0.4 0.4

0.9 0.2 0.8 0.9 1.0 0.8 0.7 0.4

0.8 0.0 0.6 0.8 0.8 1.0 0.6 -0.1

0.5 -0.4 0.2 0.4 0.7 0.6 1.0 0.1

0.3 0.5 0.6 0.4 0.4 -0.1 0.1 1.0
0.25

0.00

0.25

0.50

0.75

1.00

(c) Correlation in benign JavaScript

Figure 2: Heatmap of correlation coefficients among the features of three categorizes of JavaScript. It can be noted that features
among benign scripts appear to be highly correlated while the features among malicious scripts remain highly uncorrelated.
Correlation among the features of cryptojacking scripts remains in the middle, relative to the other two.

Maintainability Score. The maintainability score Ms is
calculated using Halstead volume V , cyclomatic complexity
M , and the total lines of code in the JavaScript file cl:

Ms = 171− 5.2 log(V)− 0.23M − 16.2 log(cl)

Source Lines of Code. Source lines of code (SLOC) is a
measure of the lines of code in the program after excluding
the white spaces. SLOC is used as a predictive parameter to
evaluate the effort required to execute the program. It also pro-
vides insights about program maintainability and productivity.

Results: To extract the aforementioned features in our code-
based analysis, we used Plato, a JavaScript static analysis
and source code complexity tool [29]. For each JavaScript
code, we run Plato and record the 17 extracted features,
highlighted above, as reported in Table III. From Table III,
we observed that certain features, such as M , Md, V , and T ,
are clearly discriminative among all the categories. For further
analysis, in the next section we will look into the correlation
of these features among each category to see whether there is
a unique pattern among each category, which allow us to build

a classification system that can automatically classify different
JavaScript categories based on the extracted features.

3) Correlation Analysis: Presenting individual features
among those analyzed above, while meaningful, might not
shed light on their distinguishing power given their large
numbers. To this end, we pursue a correlation analysis to
understand their patterns. In particular, we conducted a corre-
lation analysis to observe the similarity of features among the
three categorizes of scripts, the cryptojacking, malicious, and
benign. The correlation analysis showed the consistency of
the relationship distinctive to each category of the JavaScript
codes. As such, this provided us with insights into coding
patterns and features unique to the style of coding cryp-
tojacking scripts, malware scripts, and benign scripts. We
computed the correlation of the features in all the scripts
belonging to each category of JavaScript. We used the Pearson
correlation coefficient for this analysis, which is defined as
ρ(X,Y) = Cov(X,Y)/(

√
V ar(X)V ar(Y)), where X and

Y are random variables, V ar and Cov are the variance and
covariance, respectively.

The results of all the features belonging to each category
of JavaScript is omitted for the lack of space. In lieu, we
selected eight features from the complete set of seventeen
features and plotted their result in Figure 2. It can be observed
that cryptojacking scripts are more correlated with respect to
Cyclomatic complexity M score, Time T and Volume V while
malicious scripts are not as correlated over those parameters.
To this end, these features can be used to identify the coding
patterns of scripts belonging to each class of JavaScript and
can further be utilized as building blocks to extract program
flow information during code execution analysis.

C. Clustering

In this section, we build a classification system that auto-
matically recognizes cryptojacking scripts from malicious and
benign scripts based on the code complexity features alone,
which could be easily extracted from the cryptojacking scripts
and are common among a large number of cryptojacking
websites. It is desirable for our classification system to classify
scripts even with minimal information regarding the labels of
the scripts. Therefore, we utilized the Fuzzy C-Means (FCM)
clustering algorithm [30], which has the advantage of being
an unsupervised learning algorithm. In the other words, in
comparison with supervised classification algorithms, such as
the Support Vector Machine (SVM) and Random Forest (RF),
which require labels of the dataset in the training phase, FCM
has the advantage of performing well on the unlabeled dataset.

The main goal of the FCM is to group a dataset X into C
clusters in which every data point belongs to every cluster
to a certain degree. In other words, a data point that lies
close to the center of a certain cluster will have a higher
membership degree to that cluster, whereas the membership
degree of the data point that lies far away from the center of
this cluster will be lower [30]. We utilized the FCM clustering
algorithm to group the scripts to cryptojacking, malicious, and
benign clusters. In order to evaluate the performance of the

Table IV: Confusion matrix and evaluation metrics of the
cryptojacking (CJ), malicious, and benign scripts’ clustering
results based on FCM clustering algorithm. (1) Evaluation
metrics’ names are abbreviated. FPR= False Positive Rate,
FNR= False Negative Rate, and AR=Accuracy Rate.

Class Benign Malicious CJ FPR%(1)FNR%(1)AR%(1)

Benign 9 0 1 10 0 90
Malicious 0 10 0 0 0 100
CJ 0 0 8 0 11.1 100

Total 3.3 3.7 96.42

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

C
o

m
p

o
n

e
n

t
2

Component 1

Malicious
Cryptojacking

Benign
Malicious Center

Cryptojacking Center
Benign Center

Figure 3: Clustering of the cryptojacking, malicious, and
benign scripts using FCM clustering algorithm.

clustering experiment, we used standard evaluation metrics;
the confusion matrix, Accuracy Rate (AR), False Positive Rate
(FPR), and False Negative Rate (FNR), reported in Table IV.

As shown in Table IV, the clustering algorithm is able to
classify the scripts with high performance: AR of ≈96.4%,
FPR of 3.3%, and FNR of 3.7%. In addition, we have visual-
ized these clusters based on two major principal components
of their features, which in Figure 3, clearly show a natural
separation between the clusters using the underlying features.

In March 2019, Coinhive, the leading platform for in-
browser cryptojacking was shut down due to a fall in the price
of Monero. Although it was widely perceived that this event
might also deter cryptojacking, several leading researchers
postulate that cryptojacking has been on the surge during 2019
[31], since alternatives to Coinhive, such as Cryptoloot and
JSEcoin, already exist and are becoming increasingly popular.
New platforms may also emerge and may simply use the
publicly available JavaScript code of Coinhive. Therefore,
cryptojacking as a threat cannot be ignored, and our work
carried out prior to the closure of Coinhive, is still useful in
providing such fundamental and new insights.

Listing 1: Script code found in cryptojacking websites.

<script src="./Welcome_files/coinhive.min.js">
</script>

<script>
var miner = new coinhive.Anonymous("owner key",

{throttle: 0.1});
miner.start();

</script>

V. DYNAMIC ANALYSIS

Despite the clear benefits of the static analysis outlined
above, it is limited, and subject to circumvention through
JavaScript code obfuscation. To this end, we conduct dynamic
analysis that looks into profiling the usage of cryptojack-
ing JavaScript code of various host resources: CPU, and
battery. We then look into the characteristics of cryptojacking
in their use of network resources.

A. Resource Consumption Profiling

We conduct an extensive analysis of CPU and battery usage
of the various cryptojacking scripts.

1) Settings and Measurements Environment: We noticed
that in each cryptojacking website, a JavaScript snippet en-
codes a key belonging to the code owner and a link to a server
to which the PoW is ultimately sent. Listing 1 provides a script
found in websites that use Coinhive for mining. The source
(src) refers to the actual JavaScript file that is executed after
a browser loads the script tag. In this script, we also noticed a
throttling parameter, which is used as a mean of controlling
how much resources a cryptojacking script uses on the host.
We use such a throttling parameter, α as an additional variable
in our experiment. We experiment with α = {0.1, 0.5, 0.9}.

To understand the impact of cryptojacking on resources
usage in different platforms, we use battery-powered machines
running Microsoft Windows, Linux, and Android operating
systems (OSes). For our experiments, we selected three lap-
tops, each with one of those OSes. The Windows laptop
used in the experiment was Asus V502U, with Intel Core i7-
6500U processor operating at 3.16 GHz. The Linux laptop was
Lenovo G50, with Intel Core i5-5200U processor (4 cores)
running at 2.20 GHz, and the Android phone was Samsung
Galaxy J5, with android version of 6.0.1.

For our cryptojacking script construction, using the various
parameters learned above, we set up an account on Coinhive
to obtain a key that links our “experiment website” to the
server. Next, we set up a test website and embedded the code
in Listing 1 within the HTML tags of the website. Finally, to
measure the usage of resources while running cryptojacking
websites, we set up a Selenium-based web browser automa-
tion and run cryptojacking websites, for various evaluations.
Selenium is a portable web-testing software that mimics actual
web browsers [32], [33].

2) CPU Usage: First, we baseline our study to highlight
CPU usage as a fingerprint across multiple websites that
employ cryptojacking using the aforementioned configurations

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 C

PU
 U

sa
ge

Seconds

browar.bz
seriesfree.to

megapastes.com
legendaoficial.net

(a) JavaScript enabled

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

%
 C

PU
 U

sa
ge

Seconds

browar.bz
seriesfree.to

megapastes.com
legendaoficial.net

(b) JavaScript disabled

Figure 4: Processor usage by four different cryptojacking
websites with JavaScript enabled and disabled.

and measurement environment. We study the usage of CPU
with and without cryptojacking in place. For this experiment,
we select four cryptojacking websites. To measure the impact
of cryptojacking on CPU usage, we ran those websites in
our Selenium environment, for 30 seconds, with JavaScript
enabled (thus running the cryptojacking scripts) and disabled
(baseline; not running the cryptojacking scripts). We use this
experiment as our control.
Results. We obtained two sets of results for each website,
with and without cryptojacking. In Figure 4, we plot four
test samples obtained from our experiment to demonstrate the
behavior of websites with and without cryptojacking. From
those results, we observe that when a website is loaded initially
it consumes a significant CPU power (shaded region), in both
cases. Once the website is loaded, the CPU consumption de-
cays if the JavaScript is disabled, indicating no cryptojacking.
When JavaScript is enabled, the CPU consumption is high,
indicating cryptojacking. It can also be observed in Figure 4,
that the CPU usage varied across the websites, indicating the
usage of the throttling parameter highlighted above. The same
behavior as with JavaScript disabled is exhibited when loading
a page with JavaScript that is either benign or of other types of
maliciousness than cryptojacking. We found that cryptojacking
consumes anywhere between 10 and 20 times compared to
when not using cryptojacking on the same host.

To understand the impact of throttling on CPU usage in
different platforms, we conduct another measurement where
we used α = {0.1, 0.5, 0.9} with the different testing ma-
chines. We found a consistent pattern, whereby the relationship
between α and the CPU usage is linear(Figure 5).

3) Battery Usage: Clearly, high CPU usage translates to
higher power consumption, and quicker battery drainage. To
further investigate how cryptojacking affects battery drainage,
we carried out several experiments using various α values for
the various platforms. Here we are interested in the order
of battery drainage from a baseline, rather than comparing
various platforms. The batteries of the different machines are
as follows: 65 watt-hour for Windows, 41 watt-hour for Linux
and ≈9.88% watt-hour for Android.
Results. For each α ∈ {0.1, 0.5, 0.9}, and using the different
devices, we ran the JavaScript script on a fully charged battery.
We logged the battery level every 30 seconds, as the script ran

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70 80

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) CPU usage on Windows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) CPU usage on Linux

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 20 40 60 80 100 120 140 160

%
 C

P
U

 U
s
a

g
e

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(c) CPU usage on Android

Figure 5: CPU usage recorded on three devices. Windows machine consumed more processing than the other devices during
cryptojacking. This also explains the high battery drainage in Figure 6(a).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70 80

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(a) Battery consumption on Windows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 20 30 40 50 60 70

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(b) Battery consumption on Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 20 40 60 80 100 120 140 160

B
a

tt
e

ry
 L

e
v
e

l

Time (minutes)

No CJ
α=0.9
α=0.5
α=0.1

(c) Battery consumption on Android

Figure 6: Battery usage recorded on three devices used in the dynamic analysis.

on each device with the given α value, starting from a fully-
charged battery. Finally, we measure the baseline by running
our script without the cryptojacking code. The results are
shown in Figure 6. As expected, with α = 0.1, corresponding
to the lowest throttling and highest CPU usage, the battery
drained very quickly, to ≈10% of its capacity within 80
minutes, compared to ≈85% within the same time when not
using cryptojacking. The same result is demonstrated for both
the Linux laptop and Android phone. We also notice that
relationship between α and the battery drainage is also linear.

In examining the CPU and battery usage by cryptojacking
websites, as shown above, we highlight a clear and unique
patterns that can be used to identify those websites. We also
notice that the different operating systems do not have any
architectural support to prevent activities like cryptojacking
from happening on the device.

B. Network Usage and Profiling

Dynamic network-based artifacts are essential in analyzing
cryptojacking scripts, especially when those scripts are obfus-
cated. To this end, we also explore the network-level artifacts
to reconstruct the operation of cryptojacking services.

We noticed that during cryptojacking website execution,
the JavaScript code establishes a WebSocket connection with
a remote server and preforms a bidirectional data transfer.
The WebSocket communication can be monitored using traffic
analyzers such as Wireshark. However, a major issue when

using traffic analyzers is that browsers encrypt the web traffic
during WebSocket communication. Although significant in-
formation can still be gathered, such as source, destination,
payload size, and request timings, the actual data transferred
remain encrypted, preventing further analysis. To perform a
deeper analysis on WebSocket traffic, we examined the actual
data frames in the browser to understand the communication
protocol and payload content of WebSocket connection, for
possible analysis of cryptojacking websites.

When a WebSocket request is initiated, the client sends an
auth message to the server along with the user information,
including sitekey, type, and user. The length of auth message
is 112 bytes. The sitekey parameter is used by the server to
identify the actual user who owns the key of the JavaScript
and adds balance of hashes to the user’s account. The server
then authenticates the request parameters and responds back
with authed message. The authed message length is 50 Bytes
and it includes a token and the total number of hashes received
so far from the client’s machine. In the authed message, the
total number of hashes is 0, since the client has not sent any
hashes yet. Then, the server sends job message to the client.
The job message has a length of 234 Bytes with a job id, blob,
and target. The target is a function of the current difficulty
in the cryptocurrency to be mined. The client then computes
hashes on the nonce and sends a submit message back to the
server, with job id, nonce, and the resulting hash. The submit
message has a payload length of 156 Bytes. In response to the

Listing 2: WebSocket frames exchanged during cryptojacking.

// auth request from client to server
{"type": "auth",

"params": {
"site_key": "32 characters key",
"type": "anonymous", "user": null, "goal": 0 }}

// authed response from server to client
{ "type": "authed",

"params": {
"token": "", "hashes": 0 }}

// job request sent by the server to client
{ "type": "job",

"params": {
"job_id": "164698158344253",
"blob": "152 characters blob string",
"target": "ffffff00" }}

// submit message by client to server
{ "type": "submit",

"params": {
"job_id": "164698158344253", "nonce": "

cfe539d3",
"result": "256-bit hash" }}

// hash_accept sent by server to client
{ "type": "hash_accept",

"params": {
"hashes": 256 }}

Table V: Types of messages exchanged between the client and
the server during cryptojacking WebSocket connection.

Message Source Sink Length
(Bytes) Parameters

auth client server 112 sitekey, type, user
authed server client 50 token, hashes
job server client 234 job id, blob, target
submit client server 156 job id, result
hash accept server client 48 hashes

submit message, the server sends hash accept message with
an acknowledgement and the total number of hashes received
during the session. The hash accept message is 48 Bytes
long. This is to be noted that once a webpage is refreshed,
the WebSocket connection terminated and restarted. On the
other hand, if multiple tabs are opened in the same browser,
the WebSocket connection remains unaffected. In Table V,
we provide details about the WebSocket connection during a
cryptojacking session. In Listing 2, we provide the the actual
data frames exchanged between the browser and the server
during WebSocket session. The data frames are structured in
“JavaScript Object Notation” (JSON).

VI. ECONOMICS OF CRYPTOJACKING

In this section, we evaluate a key aspect of our work
that evaluates the economic feasibility of cryptojacking by
extrapolating on the results in our dynamic analysis. We look
at the economic feasibility from the perspective of a crypto-
jacking website’s owner, intentional cryptojacking, malicious
cryptojacking, and website visitors. For cryptojacking, the
reward of the website owner or adversary depends on the
number of hashes produced while a website visitor visits
the website. We formulate the analysis as a feasibility: how

bs

bn

bc

Figure 7: Battery drain sample of Windows i7.

much of the energy consumed by cryptojacking scripts (cost)
is transferred to the cryptojacking website owner, whether
malicious or benign, and how that translates as an alternative
to online advertisement.

A. Analytical Model

To set a stage for our analysis, in Figure 7 we present the
results from one sample experiment conducted on Windows i7
machine with cryptojacking website set to minimum throttling
(α=0.1), indicating a maximum cryptojacking. In this figure,
the region between bs and bn is a baseline, unrelated to
cryptojacking–due to normal operation of the system. On
the other hand, the region between bn and bc is the battery
drainage due to cryptojacking. We refer to the energy loss
due to such cryptojacking as L for a given user. To formulate
the cost (to users) and benefit (to cryptojacking website),
let P be the benefit (profit) during a cryptojacking session
of ∆t minutes, and h be the hash rate of the device in
hashes/second. At the time of writing this paper, Coinhive
pays 2, 894×10−8 (XMR; currency unit) for 1 million hashes,
where 1 XMR equals $200 USD. Therefore, the profit P in
XMR in ∆t = tf − ts (tf and ts refer to the finish and start
time of a session, respectively) can be computed as:

P (XMR) = (2, 894× 10−8 × h×∆t)/106 (5)

The average hash rate of our test device was 21 hashes/second,
and for the time ∆t = 85 minutes from Figure 7, the profit P
earned during the session was 3.19× 10−6 XMR or $ 6.38×
10−4 USD ($ 1.06 × 10−5 USD/second). This is the upper
bound of profit that the device can make in one battery charge.

To calculate L, corresponding to battery drainage due to
cryptojacking (bn − bc), we first measure the time it takes to
recharge 1% of the battery and denote it by tr. Therefore, the
time required to recover bn − bc can be calculated as tr ×
(bn− bc). Let W be the power consumed by the laptop to run
for one hour and C be the cost of electricity in USD/KWH.
Therefore, the loss L in USD for the use of battery during

Table VI: Results of cryptojacking with different devices. Here α is the throttling parameter, h, ∆t, bn, bc, W , P , and L are
the parameters obtained from Equation 5 and Equation 6. T is the estimated time required for each device to mine 1 XMR.

Device ∆t (mins) bn(%) α h (hps) bc (%) W (W/h) P (USD) L (USD) L− P (USD) T (years)

Windows 85 82
0.1 21 10 65 6.4 ×10−4 4.5 ×10−3 3.8 ×10−3 50
0.5 14 19 65 3.1 ×10−4 3.7 ×10−3 3.4 ×10−3 104
0.9 5 57 65 4.4 ×10−5 1.6 ×10−3 1.5 ×10−3 367

Linux 71 70
0.1 26 3 41 6.6 ×10−4 5.5 ×10−3 4.8 ×10−3 40
0.5 16 22 41 4.1 ×10−4 4.2 ×10−3 3.8 ×10−3 66
0.9 5 54 41 1.3 ×10−4 2.6 ×10−3 2.5 ×10−3 214

Android 163 76
0.1 5 11 9.9 2.8 ×10−4 9.5 ×10−4 6.7 ×10−4 220
0.5 3 32 9.9 1.7 ×10−4 7.2 ×10−4 5.5 ×10−4 369
0.9 2 49 9.9 1.1 ×10−4 5.4 ×10−4 4.3 ×10−4 574

Table VII: Monthly profit to be earned by top websites by
applying cryptojacking. GR: global rank, CR: country rank,
visits are in Billions, average time duration of visits is in mm-
ss, P-CJ: profit earned by cryptojacking, and P-Ads: revenue
earned through ads. “—” is used for undisclosed profit.

Website GR CR Visits Time P-CJ P-Ads
google.com 1 1 47.09 07:23 2.41 M 7.94 B
youtube.com 2 2 26.22 20:05 3.65 M 291 M
baidu.com 3 1 19.08 08:56 1.18 M 234 M
wikipedia.org 4 6 6.55 03:51 0.17 M 160 M
reddit.com 5 4 1.69 10:38 0.12 M —
facebook.com 6 3 29.87 13:28 2.80 M 3.3 B
yahoo.com 7 7 5.21 06:19 0.22 M 250 M
google.co.in 8 1 5.33 07:46 0.29 M 1.1 B
qq.com 9 2 3.66 04:02 0.10 M —
taobao.com 10 3 1.73 06:25 0.08 M —

Table VIII: Estimated monthly earnings of top websites in our
dataset. Visits are in millions, average time duration of each
visit is in mm-ss and Profit P-CJ is in USD.

Website GR CR Visits Time P-CJ
firefoxchina.cn 1,088 132 87.24 04:32 2,746.9
baytpbportal.fi 1,613 591 12.16 05:36 472.9
mejortorrent.com 1,800 37 22.83 04:50 766.4
moonbit.co.in 2,761 1,289 15.68 28:37 3,116.5
shareae.com 3,331 1,071 5.86 04:49 196.0
maalaimalar.com 4,090 112 3.38 03:26 80.6
icouchtuner.to 6,084 518 7.96 02:98 200.8
paperpk.com 6,794 2,050 3.01 03:23 70.7
scamadviser.com 6,847 668 4.20 02:08 62.2
seriesdanko.to 7,253 1,452 5.44 04:59 188.2

cryptojacking can be computed using:

L(USD) = C ×W × tr × (bn − bc) (6)

For our test device, we had the following parameters: W = 65
watt-hour, C = 6.418 × 10−5 USD/(watt-hour), bn = 82%
(in Figure 7), bc = 10% and tr = 0.015 hour. Thus, the esti-
mated loss during cryptojacking session L was ≈ $4.5×10−3

USD, which is 7 times the value of P , highlighting a big gap
cryptojacking’s operation model.

Using the same analysis, we examine if cryptojacking can

be used as a source of income by users. With the same device
as above, the number of hashes required to make 1 XMR
($200 USD) is 3.45×1010 hashes. Given that the same device
generates 21 hashes/second, the time required to make 1 XMR
is approximately 52 years, while the energy consumed is many
orders of magnitude more costly (note that the calculations
here are quite theoretical; to mine 1 XMR, it would take
≈321,543 battery charging cycles, each of which would cost
0.41 cent (total of ≈ 1318). In Table VI, we report all the
results obtained from the experiment for each device used in
for our experiments in the dynamic analysis, along with the
amount of time required for each device to mine 1 XMR.

B. Cryptojacking and Online Advertisement

In-browser cryptojacking is argued as an alternative to
online advertisement. To understand this, we performed an
experiment to compare the monetary value of in-browser
cryptojacking as a replacement to online advertisements.

We select Alexa’s top 10 websites [34]. For each website,
we obtained the average number of visitors and the time they
spent on those websites during March 2018. We use this
information and our model from section VI-A to measure
the potential profit those websites could have made using
cryptojacking. We assume that visitors on these websites have
the average hash rate of 20 hashes/second. We report the
results in Table VII, highlighting that those websites would
make between $3.65 million USD (for youtube.com) and $0.10
million USD (qq.com) per month (on average).

Statista [35] publishes annual online advertisement revenue
reports. We collect the revenues generated by each of those
top-10 websites for the year 2017 (most recent report). We
use those figures to examine the potential of cryptojacking as
an advertisement alternative at scale. For that, we first obtain
a monthly revenue figure for each website by dividing the
annual revenue by 12. We compare those numbers to the cryp-
tojacking alternative highlighted above. The results are shown
in Table VII, where it can be seen that the revenue earned by
operating cryptojacking is negligible compared to the revenue
earned through online advertisements. For example, if Google
is to switch to cryptojacking, it will make $2.41 million USD
per month, at most. In contrast, Google earns ≈$7.94 Billion
USD monthly from online advertisement.

To estimate the revenue by cryptojacking websites, we
conducted the same experiment on the top-10 websites in
our dataset and computed the estimated profit earned by
them, shown in Table VIII. We notice that the maximum
profit, earned by firefoxchina is ≈$2,747 USD. Although,
the ad revenue for these websites is not available online,
we still suspect that $2,747 USD per month is far too low
for a website that has 87.24 million monthly views, each
with an average duration of 4 minutes and 32 seconds, as
compared to the potential revenues for online advertisement.
Those findings are in-line with recent reports indicating that
an adversary who compromised 5,000 websites and injected
his own cryptojacking scripts only made $24 USD [36].

VII. COUNTERMEASURES

A. Existing Countermeasures

At the browser level, existing countermeasures include web
extensions such as No Coin, Anti Miner, and No Mining [37].
Each of these web extensions maintains a list of uniform
resource locators (URLs) to block while surfing websites. If a
user visits a website that is blacklisted by the extension, the
user is notified about cryptojacking. However, we show that
blacklisting is not an effective technique to counter cryptojack-
ing since an adaptive attacker can always circumvent detection
by creating new links that are not found in the public list of
blacklisted URLs (proxying).

1) Evading Detection: An attacker can evade detection by
setting his own third party server to relay data to and from
cryptojacking server. In Figure 8, we show how the current
countermeasures for cryptojacking can be circumvented by an
adaptive attacker. To practically demonstrate that, we set up a
test website using Coinhive script and installed a local relay
server. We installed four chrome extensions that block the
in-browser cryptojacking: No Coin, Anti Miner, No Mining,
and Mining Blocker. In the first phase of the experiment,
we installed the Coinhive script and ran the website. Each
extension detected the WebSocket request and blocked it.
We then configured our relay server to act as a proxy. In
the Coinhive script, we modified the code and replaced the
Coinhive socket address with our server address. Next, when
we visited the website, it started cryptojacking on the client
machine undetected.

2) Countering Adaptive Attacker: Instead of blocking spe-
cific URLs, the extensions can monitor the messages ex-
changed between the user and the server during cryptojacking
session. If the messages follow the sequence of web frames
that we have illustrated in Listing 2, the extension can flag
them as cryptojacking. This will prevent cryptojacking even
if WebSocket requests are relayed through a third party. We
developed a chrome web extension that detects the strings of
web frames shown in Listing 2, and notifies the user when
the website starts cryptojacking. To test our extension against
the existing countermeasures, we deployed a proxy server that
relayed the data between our test website to the dropzone
server as shown in Figure 8. Our web extension installed in

wss:// *.coinhive

wss:// *.coinhive

wss:// *.coinhivewss:// *.ABC

Figure 8: Circumventing cryptojacking detection by relaying
WebSocket requests through a third party proxy server.

the browser immediately flagged cryptojacking upon reading
the actual data exchanged between browser and relay server.

VIII. DISCUSSION AND CONCLUSION

By showing a huge negative profit/loss gap, we settle the ar-
gument that cryptojacking is not a viable alternative for online
advertisement at the moment, and due to the adverse effects
on user devices, it may not be an ethical way of generating
revenues for online web service. Furthermore, the scope of
the ethical use of cryptojacking may be limited, and it is
likely that the unethical use may increase as the cryptocurrency
market grows and the websites remain vulnerable to JavaScript
injection attacks. Cryptojacking attacks can be launched solely
to abuse devices of websites visitors, thereby influencing the
reputation of such websites. Therefore, cryptojacking provides
multiple attack avenues and we cannot ignore their potential
threat, especially with the availability of a large array of
services that provides cryptojacking scripts and capabilities.

As a direct result of our dynamic analysis, we show that sim-
ple and effective real-time detection of cryptojacking can be
possible by the direct inspection of WebSocket payload (§V).
Using that as a primary detection method can decrease the
overhead in comparison with sophisticated machine learning
tools, and address the limitations of blacklisting approaches.

In summary, our work systematically analyzed in-browser
cryptojacking through the lenses of characterization, static and
dynamic analyses, and economic analysis. Our static analysis
unveils unique code complexity characteristics and can be used
to detect cryptojacking code from malicious and benign code
samples with ≈96% accuracy. We explore, through dynamic
analysis, how in-browser cryptojacking uses various resources,
such as CPU, battery, and network, and use that knowledge
to reconstruct the operation of cryptojacking scripts. We also
study the economical feasibility of cryptojacking as an alterna-
tive to advertising, highlighting its infeasibility. By surveying
prior countermeasures and examining their limitations, we
show simple and effective methods to counter cryptojacking,
capitalizing on the insights from our dynamic analysis.

REFERENCES

[1] M. Scott, “Cryptomining malware fuels most remote code execution
attacks,” Feb 2018. [Online]. Available: https://tinyurl.com/y9vhrq9w

[2] M. J. Zuckerman, “Microsoft blocked more than 400,000 malicious
cryptojacking attempts in one day,” Apr 2018. [Online]. Available:
https://tinyurl.com/ya6oj6wm

[3] SLM, “In-browser cryptojacking: What is it and how can you avoid
it?” Jan 2018. [Online]. Available: https://supremelevelmedia.com/
browser-cryptojacking-can-avoid/

[4] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang,
Y. Zhang, Z. Qian, and H. Duan, “How you get shot in the back:
A systematical study about cryptojacking in the real world,” in ACM
SIGSAC Conference on Computer and Communications Security, CCS,
Toronto, ON, Canada, Oct 2018, pp. 1701–1713. [Online]. Available:
https://doi.org/10.1145/3243734.3243840

[5] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A
first look at browser-based cryptojacking,” in IEEE European
Symposium on Security and Privacy Workshops, EuroS&P Workshops,
London, United Kingdom, Apr 2018, pp. 58–66. [Online]. Available:
https://doi.org/10.1109/EuroSPW.2018.00014

[6] R. Tahir, S. Durrani, F. Ahmed, H. Saeed, F. Zaffar, and S. Ilyas, “The
browsers strike back: Countering cryptojacking and parasitic miners
on the web,” in IEEE Conference on Computer Communications,
INFOCOM, Paris, France, April 2019, pp. 703–711. [Online].
Available: https://doi.org/10.1109/INFOCOM.2019.8737360

[7] D. Carlin, P. O’Kane, S. Sezer, and J. Burgess, “Detecting cryptomining
using dynamic analysis,” in Annual Conference on Privacy, Security
and Trust, PST 2018, Belfast, Northern Ireland, Uk, Aug 2018, pp.
1–6. [Online]. Available: https://doi.org/10.1109/PST.2018.8514167

[8] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller,
N. Borisov, M. Antonakakis, and M. Bailey, “Outguard: Detecting in-
browser covert cryptocurrency mining in the wild,” in The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 2019, pp.
840–852. [Online]. Available: https://doi.org/10.1145/3308558.3313665

[9] B. Kerbs, “Who and what is coinhive?” 2018. [Online]. Available:
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/

[10] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging
into browser-based crypto mining,” in Proceedings of the Internet
Measurement Conference, ser. IMC. New York, USA: ACM, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3278532.3278539

[11] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “Minesweeper: An in-depth look into drive-by
cryptocurrency mining and its defense,” in Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243858

[12] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. A. Gunter, F. Zaffar,
M. Caesar, and N. Borisov, “Mining on someone else’s dime: Mitigating
covert mining operations in clouds and enterprises,” in International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
Atlanta, GA, USA, Sept 2017, pp. 287–310.

[13] R. Shaikh, “The pirate bay is cryptojacking its visitors’ computers to
mine monero,” 2017. [Online]. Available: https://tinyurl.com/y9s5mhce

[14] Ernesto, “The pirate bay website runs a cryptocurrency miner
(updated),” Sep 2017. [Online]. Available: https://torrentfreak.com/
the-pirate-bay-website-runs-a-cryptocurrency-miner-170916/

[15] T. Loechner, “Pixalate unveils the list of sites secretly mining
cryptocurrency,” 2017. [Online]. Available: https://tinyurl.com/y9sbgx92

[16] X. Yang, “List of top Alexa websites with web-mining code
embedded on their homepage,” 2017. [Online]. Available: https:
//tinyurl.com/ybo6u4pf

[17] SimilarWeb, “Top websites ranking,” 2018. [Online]. Available:
https://www.similarweb.com/top-websites

[18] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and
G. Vigna, “The dark alleys of madison avenue: Understanding malicious
advertisements,” in Proceedings of Internet Measurement Conference,
IMC, Vancouver, Canada, Nove 2014, pp. 373–380. [Online]. Available:
https://tinyurl.com/ybqmcjmb

[19] Coinhive, “Monero JavaScript Mining,” 2018. [Online]. Available:
https://coinhive.com/documentation

[20] M. Community, “Monero cryptocurrency,” 2018. [Online]. Available:
https://monero.org/

[21] J. Community, “JSECoin: Digital currency - designed for the web,”
2018. [Online]. Available: https://jsecoin.com/

[22] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, “ZOZZLE: Fast
and precise in-browser javascript malware detection,” in Proceedings of
the 20th USENIX Security Symposium (Security), CA, Aug. 2011.

[23] Wizsche, “Malicious javascript dataset,” https://github.com/
geeksonsecurity/js-malicious-dataset.git, 2017.

[24] C. B. Staff, “21 top examples of javascript,” 2017. [Online]. Available:
https://tinyurl.com/y8wqarpb

[25] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[26] T. J. M. Arthur H. Watson and D. R. Wallace, Structured testing: A
testing methodology using the cyclomatic complexity metric. US De-
partment of Commerce, National Institute of Standards and Technology,
1996, vol. 500, no. 235.

[27] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on software engineering, vol. 25, no. 5, pp.
675–689, 1999.

[28] A. Serebrenik, “Software metrics,” http://www.win.tue.nl/∼aserebre/
2IS55/2010-2011/10.pdf, 2011.

[29] B. Badge, “Es-analysis/plato,” Aug 2016. [Online]. Available: https:
//github.com/es-analysis/plato

[30] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers and Geosciences, vol. 10, pp. 191–
203, 1984.

[31] K. Williamss, “Cryptojacking is making a come-
back,” 2019. [Online]. Available: https://smartermsp.com/
cryptojacking-is-making-a-comeback/

[32] A. Bruns, A. Kornstadt, and D. Wichmann, “Web application tests with
selenium,” IEEE software, vol. 26, no. 5, 2009.

[33] S. Community, “Selenium browser automation,” 2018. [Online].
Available: https://www.seleniumhq.org/docs/

[34] Alexa, “The top 500 sites on the websites listed by their 1 month Alexa
traffic rank.” 2018. [Online]. Available: https://www.alexa.com/topsites

[35] Statista, “Google: ad revenue 2001-2017,” 2018. [Online]. Available:
https://tinyurl.com/h4rwfyf

[36] A. Hern, “Huge cryptojacking campaign earns just $24 for hackers,”
Feb 2018. [Online]. Available: https://tinyurl.com/yc5xgvad

[37] R. Keramidas, Feb 2018. [Online]. Available: https://github.com/keraf/
NoCoin

https://tinyurl.com/y9vhrq9w
https://tinyurl.com/ya6oj6wm
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
https://supremelevelmedia.com/browser-cryptojacking-can-avoid/
https://doi.org/10.1145/3243734.3243840
https://doi.org/10.1109/EuroSPW.2018.00014
https://doi.org/10.1109/INFOCOM.2019.8737360
https://doi.org/10.1109/PST.2018.8514167
https://doi.org/10.1145/3308558.3313665
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
http://doi.acm.org/10.1145/3278532.3278539
http://doi.acm.org/10.1145/3243734.3243858
https://tinyurl.com/y9s5mhce
https://torrentfreak.com/the-pirate-bay-website-runs-a-cryptocurrency-miner-170916/
https://torrentfreak.com/the-pirate-bay-website-runs-a-cryptocurrency-miner-170916/
https://tinyurl.com/y9sbgx92
https://tinyurl.com/ybo6u4pf
https://tinyurl.com/ybo6u4pf
https://www.similarweb.com/top-websites
https://tinyurl.com/ybqmcjmb
https://coinhive.com/documentation
https://monero.org/
https://jsecoin.com/
https://github.com/geeksonsecurity/js-malicious-dataset.git
https://github.com/geeksonsecurity/js-malicious-dataset.git
https://tinyurl.com/y8wqarpb
http://www.win.tue.nl/~aserebre/2IS55/2010-2011/10.pdf
http://www.win.tue.nl/~aserebre/2IS55/2010-2011/10.pdf
https://github.com/es-analysis/plato
https://github.com/es-analysis/plato
https://smartermsp.com/cryptojacking-is-making-a-comeback/
https://smartermsp.com/cryptojacking-is-making-a-comeback/
https://www.seleniumhq.org/docs/
https://www.alexa.com/topsites
https://tinyurl.com/h4rwfyf
https://tinyurl.com/yc5xgvad
https://github.com/keraf/NoCoin
https://github.com/keraf/NoCoin

	I Introduction
	II Related Work And Comparison
	III Background and Preliminaries
	III-A Data Collection
	III-B Methodology

	IV Static Analysis
	IV-A Content and Currency-based Categorization
	IV-B Code-based Analysis
	IV-B1 Data Attributes
	IV-B2 Feature Extraction
	IV-B3 Correlation Analysis

	IV-C Clustering

	V Dynamic Analysis
	V-A Resource Consumption Profiling
	V-A1 Settings and Measurements Environment
	V-A2 CPU Usage
	V-A3 Battery Usage

	V-B Network Usage and Profiling

	VI Economics of Cryptojacking
	VI-A Analytical Model
	VI-B Cryptojacking and Online Advertisement

	VII Countermeasures
	VII-A Existing Countermeasures
	VII-A1 Evading Detection
	VII-A2 Countering Adaptive Attacker

	VIII Discussion and Conclusion
	References

