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Abstract—In this paper, we analyze the Internet of Things (IoT)
Linux malware binaries to understand the dependencies among
malware. Towards this end, we use static analysis to extract
endpoints that malware communicates with, and classify such
endpoints into targets and dropzones (equivalent to Command
and Control). In total, we extracted 1,457 unique dropzone
IP addresses that target 294 unique IP addresses and 1,018
masked target IP addresses. We highlight various characteristics
of those dropzones and targets, including spatial, network, and
organizational affinities. Towards the analysis of dropzones’
interdependencies and dynamics, we identify dropzones chains.
Overall, we identify 56 unique chains, which unveil coordination
(and possible attacks) among different malware families. Further
analysis of chains with higher node counts reveals centralization.
We suggest a centrality-based defense and monitoring mechanism
to limit the propagation and impact of malware.

Keywords-Internet of Things, Malware, Static Analysis, Dis-
tributed Denial of Service

I. INTRODUCTION

The use of Internet of Things (IoT) devices in everyday life
has been increasing significantly. Gartner, a global research
and advisory firm, predicts that the number of IoT devices
will grow to 25 billion by 2021, from 14.2 billion devices
in 2019 [1]. As the number of applications of IoT devices is
significantly increasing, so is the number of malicious software
(malware) targeting IoT, which have seen a consistent increase
in the past few years as well [2]. In part due to their sheer num-
ber, as well as the constrained operation environments (e.g.,
limited standards, lack of maintenance and updates, etc.), IoT
devices are more likely to be a target for malware infections,
bringing about botnets used often in launching catastrophic
Distributed-Denial-of-Service (DDoS) attacks [3]–[6].

Bashlite (also known as Gafgyt, LizardStresser, Lizkebab,
Qbot, and Torlus) is a malware family that uses default login
IDs and passwords to propagate and infect targets [7]. Based
on this infection, the Bashlite malware family made a large
botnet that is capable of launching large DDoS attacks [8].
Among many capabilities that Bashlite has, it can update
bots payload, in continuous evolution and morphing, and—
more interestingly–remove competing botnets from infected
hosts [9]. Mirai is the most notorious malware successor of the
Bashlite, and has been used for demonstrating some significant
damages by launching DDoS attacks several times on several
pieces of critical infrastructure and prominent services [10].
Among other incidents, Mirai’s attacks temporarily disrupted
“Krebs on Security” (security blog) [11], OVH (cloud comput-
ing company) [12], and Dyn (domain service company) [13].
In the case of the Dyn attack, many other services, such as
Airbnb, Github, and Twitter, among others, were indirectly

affected. The same botnet was able to take down the Internet
of the African nation of Liberia [14].

Competition and coordination among botnets are not well
explored, although recent reports have highlighted the potential
of such competition as demonstrated in adversarial behaviors
of Gafgyt towards competing botnets [9]. Understanding a
phenomenon in behavior is important for multiple reasons.
First, such an analysis would highlight the competition and
alliances among IoT botnets (or malactors; i.e., those who
are behind the botnet), which could shed light on cybercrime
economics. Second, understanding such a competition would
necessarily require appropriate analysis modalities, and such
a competition signifies those modalities, even when they are
already in use. Third, the signified modalities may shed light
on possible effective defenses; e.g., a piece of infrastructure
used by a majority of infected hosts in an IoT botnet makes
an excellent candidate for a botnet takedown.

To address IoT security, malware behavior analysis methods
are employed, including dynamic and static analysis. Dynamic
analysis is concerned with understanding malware by inspect-
ing runtime artifacts of IoT executables (typically running
in a restricted environment; e.g., sandbox, virtual machine),
in search of malicious behaviors. Despite many advantages,
dynamic analysis has several drawbacks. For example, recent
malware families have been shown to utilize randomized be-
haviors that make analysis difficult. Evading dynamic analysis
techniques is yet another major shortcoming, often demon-
strated by inserting fake code fragments, separate processes,
etc. [15]. Dynamic analysis is also time-consuming since a
successful analysis needs the malware to run for a significant
amount of time before such a dynamic behavior is exposed.
Static analysis, on the other hand, is concerned with analyzing
the contents and the structure of the executables. Through this
analysis, we can find features of malware such as execution-
flow as well as the strings without having to execute the
binaries [16]–[18], making this approach safer and faster than
dynamic analysis [19], although subjecting to static analysis
circumvention techniques, such as code obfuscation [20], [21],
typically addressed with deobfuscators.

In this paper, we attempt to understand the dynamics
between different IoT botnets through the lenses of static
analysis hoping to unveil competitive behaviors among those
botnets. By obtaining endpoints from the residual strings of
IoT malware binaries upon static analysis, we proceed to
categorize those endpoints based on the context in which they
appear into dropzones and targets. Dropzones are Internet
Protocol (IP) addresses used along with specific words, such
as wget, and are used by the malware to control bots and to



retrieve updated malware binaries (payloads) or scripts from an
external server. Targets, on the other hand, are IP addresses
subjected to an attack by the malware sample being analyzed,
as indicated by several keywords.

Our analysis shows that most target IP addresses are masked
(16-bit), in which a malware dynamically specifies targets at
runtime. However, we found some target addresses that are
not masked, identified as static IP addresses. Those are IP
addresses that the attacker considers explicitly as targets in the
malware code. Given the certainty around those IP addresses,
we focused on them and analyzed the interactions between
dropzones and the statically targeted IP addresses in our static
analysis. Through our analysis, we found that many of the
statically targeted IP addresses are identical to the dropzone IP
addresses obtained from other binaries, while the majority of
the remaining targeted IP addresses are marked as malicious in
our VirusTotal [22] scan. Such a discovery is very interesting,
highlighting a non-arbitrary behavior among botnets and other
malactor’s infrastructure. Given that the number of targets
is a negligible percentage of the IPv4 space, those targets
cannot be random, and that highlights the potential adversarial
relationship between the dropzones.
Contributions. We make the following contributions:

1) We conduct string static analysis over IoT malware bina-
ries to extract communicated and referred IP addresses,
and keywords reflecting the malware behavior.

2) We conduct a spatial distribution analysis on the ex-
tracted dropzones and targets, where region dependen-
cies within the extracted addresses are shown.

3) We identify the interdependent dropzone IP addresses,
by extracting dropzones “chains”, capturing the dy-
namics between different botnets and other malicious
infrastructure. We propose a centrality-based modality
of analysis (and defense) to limit the propagation and
impact of malware based on those dynamics.

Organization. The organization of the rest of this paper is as
follows. We describe the background in section II. Next, the
analyzed dataset is listed in subsection II-B. In section III, we
provide our analysis and results. The discussion of this paper
is provided in section IV. In section V, we review the related
work and, and draw concluding remarks in section VI.

II. BACKGROUND, DATASET, AND STATIC ARTIFACTS

A. Static Analysis and Endpoints

Static Analysis. In this paper, we employ static analysis
for extracting residual strings in the IoT malware binaries,
and use those strings as an analysis space from which we
obtain endpoints, classified as targets and dropzones. In static
analysis, reverse-engineering tools are utilized to understand
circumvention methods in use by the adversary, and to extract
static artifacts, such as strings, function calls, structures (such
as control flow graph), etc. However, techniques such as
packing or obfuscation can be used to avoid static analysis or
to increase the effort and resources required for conducting it.
In a separate project, we developed various in-house heuristics
and tools to address obfuscation, and to obtain faithful strings

TABLE I: The distribution of malware families in the dataset.

Family Count Percentage

Gafgyt 4,264 88.76%
Mirai 507 10.55%
Tsunami 29 0.60%
Singleton 2 0.04%
Pilkah 1 0.02%
Sambashell 1 0.02%

Total 4,804 100%

representation for IoT malware, which we use in our analysis
in this paper. The results of our analysis are further in §III-A.
Dropzones and Targets. IP addresses extracted from the
malware binary through static analysis are classified into two
categories. If the IP address was used with wget, tftp, get,
or post, which are commands used to send files such as
script, malware binary, etc., we mark the remote location of
this IP address as a dropzone. The remaining IP addresses that
are not used with these commands are called targets, which are
the IP addresses attacked by the malware (confirmed through
the manual inspection). The target IP addresses consist of 16-
bit masked addresses and static IP addresses. Only the static IP
addresses are used in our analysis. An additional explanation
for this is given in Section III.

B. Dataset

In this paper, we relied on a dataset of IoT malicious
binaries obtained from CyberIOCs [23]. The binaries are
recent, and consist of samples that were collected in the
CyberIOCs feed in the period of January 2018 to late January
of 2019.
Dataset Creation. Our IoT dataset is a set of 4,804 malware
samples, randomly selected from CyberIOCs [23]. We reverse-
engineered the samples using Radare2 [24], a reverse engi-
neering framework that provides various capabilities including
disassembly, which we use for the IoT malware samples.
IoT Malware Family. To better understand the collected
samples, we uploaded the samples to VirusTotal [22] and
gathered the scanning results corresponding to each sample.
Then, we used AVClass [25] to match the samples with their
corresponding IoT malware families. Table I shows the dis-
tribution of malware families in the dataset; as shown Gafgyt
and Mirai represent the majority of our dataset, 99.31%.

III. ANALYSIS

A. IoT Malware Static Analysis

We reverse-engineered the malware binaries to extract the
IP addresses communicated with or referred by the malicious
binaries. To scale up the analysis, we automate the process
using Radare2. We analyzed the strings in the entry point and
the function calls to extract the IP addresses, where two types
of IP addresses can be extracted: (1) C2 servers communicated
by the malware for instructions, such as targets list, malware
binaries execution, etc. Such IP addresses can be identified by



Fig. 1: General structure of the malware-IP relationship. Mali-
cious binaries are obtained from the remote dropzone and are
accessible using wget, GET, etc.

command keywords, namely wget, tftp, post, and get.
These IP addresses are designated as dropzone IP addresses.
(2) IP addresses referred by the malware, e.g., the malware
communicates with the IP address to infiltrate where success-
ful infiltration causes propagation of the malware, recruiting
an additional bot. These IP addresses are called target IPs.

1) Dropzone: Controlled by the attackers, a dropzone is
a remote location often storing the malware binaries and
infection capabilities. Upon gaining access to a device, a
malware instance accesses the dropzone, via a dropzone IP
address, to download the file on the host device. The men-
tioned remote addresses are our artifacts of interest, and we
study relationships between different dropzones’ IP addresses.

2) Target: Upon successfully infecting a device, the mal-
ware uses the infected host to propagate the infection by
setting a list of IP addresses to infect in the future. We refer
to these IP addresses as target IP addresses.

We collected the dropzones and target IPs from each IoT
malware sample, to be analyzed in the next sections. Figure 1
shows a general structure of the malware-IP relationship.

B. IP Addresses Analysis
To better understand the relationship between the dropzones,

we start by analyzing the IP addresses. In our dataset, we
observed 1,457 unique dropzone IP addresses and only 294
unique target IP addresses. Moreover, there were 1,018 unique
16-bit masked target IP addresses. These IP addresses are
generated at runtime using a random number generator, par-
ticularly, the SRAND C library, or by looping over all possible
IP addresses within the specified network. Typically, masked
IP addresses are used to infect and compromise vulnerable
IoT devices within a network. Figure 2 shows the distribution
of the dropzones, unique targets, and masked targets. Notice
that most of the dropzones are located in the US and Europe.
However, most of the masked targets are located in Southeast
Asia, Brazil and the Eastern Coast of the US.

1) Unique Target IP Addresses: Our analysis focuses on
the unique target IP addresses referred to in the IoT malware.
These addresses are more meaningful than the masked IP
addresses as they are hardcoded within the malware. In the
dataset, we extracted 294 unique target IP addresses. In which,
134 of the addresses are dropzones of other malware samples
in our dataset. We scanned the remaining IP addresses using

TABLE II: The distribution of the unique target IP addresses.

Type Count Percentage

Dropzone 134 45.58%
Malicious 129 43.88%
Benign 31 10.54%

Total 294 100%

TABLE III: Organization distribution of the benign target IPs.

Organization Type
Amateur Radio Digital Comm. Nonprofit
Apple Inc. Technology
Bank of America, N.A. Financial
Ford Motor Company Automaker
Hewlett Packard Enterprise Technology
Lockheed Martin Corporation Aerospace/Defense
University of Michigan Academic

Information Center Locality

AFRINIC Africa
APNIC Asia Pacific
DoD NIC USA
RIPE NCC Europe

VirusTotal, where 129 of them were identified as malicious.
These malicious IP addresses might be potential dropzones
not existing in our dataset, or infrastructure utilized by other
malactors. In addition, the benign IP addresses might be
dropzones not yet discovered by VirusTotal, or DDoS attacks
targets, which is more plausible given that the dataset is new,
and blacklists against which our IP addresses were scanned
take time to populate with the malicious addresses. Table II
shows the distribution of the unique target IP addresses.

2) Targeted Organizations: We scanned the benign IP ad-
dresses extracted from the IoT malware (31 addresses) and
gathered the organizations they belong to. We found that the
IP addresses belong to companies such as Apple, Bank of
America, Ford, etc. Moreover, one IP address belonged to the
University of Michigan, while some IP addresses belonged to
endpoints in different information centers. Table III shows the
distribution of the benign target IP addresses over organiza-
tions and information centers, highlighting a wide distribution.

3) Dropzones Malware Family: Dropzones are remote lo-
cations storing malware binaries, among other artifacts by the
adversary. When a new device is infected, it will communicate
with the dropzone to obtain the malicious binaries, along
with the infection capabilities, which vary for each family.
We analyze the malware family of each dropzone. Table IV
shows the distribution of the dropzone malware families, with
Gafgyt malware binaries existing in 89.63% of the dropzones,
followed by Mirai (10.57%). In addition, we found that
different families of malware binaries contained the same
dropzone. In other words, some dropzones contain more than
one family binaries; Table V shows the distribution of the



Fig. 2: The distribution of the extracted components worldwide. Here, the target refers to the location of the unique target IP
address extracted from the string analysis of the IoT malware. The masked target is represented by its center. To estimate the
locations of the masked target area, we convert the masked part to zeros (i.e., 183.229.%d.%d to 183.229.0.0).

TABLE IV: The distribution of dropzone malware families.

Family # Dropzones % Dropzones

Gafgyt 1,306 89.63%
Mirai 154 10.57%
Tsunami 14 0.96%
Singleton 2 0.14%
Pilkah 1 0.07%
Sambashell 1 0.07%

Total 1,457 100%

TABLE V: Malware families distribution per dropzone.

# Families # Dropzones % Dropzones

1 1,437 98.63%
2 19 1.30%
3 1 0.07%

Total 1,457 100%

malware families per dropzone. We notice that one dropzone
contains the malicious binaries of Gafgyt, Mirai and Tsunami
families, highlighting the shared infrastructure.

4) Dropzones Distribution: Dropzones have spatial local-
ities in their distribution, as shown in Figure 2. Moreover,
Figure 3 shows a heatmap of the country distribution of
the dropzones, where the United States, Netherlands, Den-
mark, Romania, and Russia are hosting 77.82% of the drop-
zones. Table VI shows the top dropzones hosting countries,
highlighting—not surprisingly—a heavy-tailed distribution.

To this end, we have analyzed the IP addresses as indepen-
dent entities. However, our static analysis shows that different
IP addresses are communicating and being referred by each

Fig. 3: The distribution of dropzones over the countries.
The color shade reflects the number of dropzones within the
country, where darker shade represents more dropzones.

TABLE VI: The distribution of the dropzones over countries.

Country # Dropzones % Dropzones

United States 553 37.95%
Netherlands 283 19.42%
Denmark 113 7.75%
Romania 103 7.07%
Russia 82 5.63%
Others 323 22.18%

other. As such, it is important to study the relationship between
them, and among dropzones in particular.

C. Malware-Target Relationship
The IP addresses referred by malicious binaries are the

next targets of the malware for either infection or attack. The
malware samples communicate with a target to achieve one of
the following:

• Infection. Malware search for vulnerable devices and
compromise them, leading to a new bot. Afterward, mali-
cious binaries with infection capabilities are downloaded



from the remote dropzone to the infected host. The IP
address is typically generated at runtime and referred to
in the code as the masked IP address.

• Attack. After infecting a large number of bots, malware
samples attack the target by flooding its servers or net-
work infrastructure with packets, resulting in a DDoS
attack. Typically, these IP addresses are not masked as
the bot should be aware of the exact target IP address
prior to the DDoS attack.

• Communication. A malware sample might communicate
with an infected bot for many reasons, e.g., checking
its status, updating/pushing files, sending a command
message, etc. The communication is very important for
the malware to assess the resources and coordinate for
future attacks.

Limitation. Static analysis is useful to understand the behavior
without the need to run the malicious binaries. In the mali-
cious binaries, we observe keywords such as Infect, wget,
post, push, http, and get. These keywords indicate the
relationship between the malware and the targets. However,
besides wget, it is hard to match the exact IP address to a
certain behavior if more than one keyword is used. Therefore,
we assume that all IP addresses might contain the behaviors
provided by the keywords associated with them.

D. Dropzones Chains

In subsection III-B, we classified the IP addresses and
found that 134 target IP addresses are also dropzones existing
in our dataset. A malware may control a dropzone, and
targets another dropzone; we refer to this phenomenon as
dropzones chain. Figure 4 shows the general structure of a
dropzones chain of length two. Understanding the chains is
important, as malware may access a dropzone to distribute and
update its binaries on other dropzones. Moreover, a dropzone
may control several dropzones, forwarding commands and
managing attacks. Using static analysis alone is not sufficient
to understand the exact role of each dropzone within the chain.
However, the behavior of the chain is toward propagating
information, which plays a major role in the success of the
malicious attacks. Figure 5 shows the dropzone to dropzone
chain links visualization worldwide. Notice that some drop-
zones are directly linked to several dropzones.

1) Chains Length: We extracted 56 possible chains from
our dataset. The majority of the dropzones (62.5%) are of
length 2, and most of the dropzones are of a length less than
10 (96.43%). However, the longest chain has 42 dropzones. Ta-
ble VII shows the distribution of the dropzones chains length.
We observe that centralization exists in chains with a high
number of dropzones. All of the extracted chains belong to
the Gafgyt and Mirai families. We found one Mirai chain of
length 2 and 52 Gafgyt chains. However, there were 3 chains
containing both Mirai and Gafgyt dropzones. One possible
explanation for such a characteristic is that Mirai is considered
an evolution of the Gafgyt malware family [10], [26].

2) Chains Region Distribution: Dropzones within the chain
have locality characteristics. Figure 6 shows the country dis-
tribution of the links within the chains. Notice that a darker

Fig. 4: Structure of the dropzones chain of length two, where
malware access dropzone, and targets another dropzone.

TABLE VII: The distribution of the dropzones chains length.

Chain Length Count

2 35
3 10
4 5
6 3
8 1
17 1
42 1

Total 56

shade indicates more dropzones within the chain are from
the specified country. Table VIII shows the top five countries
hosting dropzones within chains. Notice that the countries are
the same as Table VI. It can be seen that 24.95% of the United
States dropzones are within chains, with an overall 20.66%
of the dropzones are within chains. However, the chains are
depending on the collected dataset, meaning that the remaining
dropzones (79.34%) may be part of chains not observed by the
collected samples.

3) Chains Centrality: A common observation we make is
that large chains usually have one or a few central dropzones.
For instance, one remote location is a dropzone of a large
number of other dropzones. This indicates the importance
of that dropzone for the malware to successfully operate.
Removing or monitoring the central dropzones highly affects
the malicious operation of various samples, and improving
our understanding of the malware behavior/defense. Figure 7
shows the effect of removing the central dropzone from the
chain. Here, the chain contains 42 dropzones, connected by
44 edges (links), with a central remote location acting as a
dropzone for 34 dropzones. In this figure, a directed edge
indicates that a remote location is a dropzone (start of the
arrow) to another dropzone (end of the arrow). Therefore,
removing the central dropzone decrease the number of edges
from 44 to 10 (77.27% decrease). Removing the dropzone
from the network can be done by the Internet Service Provider
(ISP), as the dropzones have static IP addresses, with known
home ISPs. Moreover, another feasible option is to monitor



Fig. 5: Dropzone to dropzone links visualization. Here, a remote location may be a dropzone of several dropzones. Links
connect the location of the dropzone with the location of the targeted dropzone.

Fig. 6: Country level distribution of the dropzones within the chains. Color shade indicates the number of dropzones within
the country. Here, link connect the country of the dropzone with the country of the targeted dropzone.

TABLE VIII: The distribution of the chains dropzones over
countries. Here, # Dropzones is the number of dropzones
within the chain, whereas, % Dropzones is the percentage of
the dropzones within the country that is within a chain.

Country # Dropzones % Dropzones

United States 138 24.95%
Netherlands 71 25.09%
Romania 27 26.21%
Denmark 16 14.16%
Russia 14 17.07%
Others 35 10.83%

Total 301 20.66%

the traffic from and to the central dropzone of each chain,
as monitoring all bots or dropzones might not be possible.
In a related analysis, we show that dropzones are accessed
to obtain malicious binaries, infection capabilities, and attacks
coordinating. Therefore, monitoring the traffic of the central

dropzone gives an overview of the malware behavior as it acts
as a dropzone for a large number of dropzones and samples.

IV. DISCUSSION

A. Key Findings and Implications

We note that all the analysis previously done depends on
the collected dataset. By reverse-engineering the IoT malicious
binaries and conducting string static analysis, it has been
shown that some IP addresses are specified within the code
prior to the execution of the program. These IP addresses are
within two groups, dropzones, and targets.

1) Dropzone-Target Relationship: A remote location may
be used as a dropzone for a set of dropzone targets. This
indicates a relationship between the dropzones. The nature
and role of the relationship may vary, as malware may use
a master dropzone to update the binaries of a set of local
dropzones or control the dropzones in order to coordinate
future attacks or large area infections. In addition, large
chains are usually centralized, where there is one or a few
central dropzones acting as a dropzone for most of the chain
dropzones. Analyzing the traffic of the central dropzones may



(a) Before (b) After

Fig. 7: The effect of removing the central dropzone over the chain. Figure 7a is the chain before the removal of the dropzone,
and Figure 7b is the same chain after the removal of the dropzone. Notice that most dropzones became disconnected and
isolated, thus removed from the chain.

help us understand the behavior of the malware, while shutting
down the central dropzone highly affects the operation of the
malware, especially at early stages. This can be done with the
coordination with ISPs as the dropzone IP is known. Shutting
down the central dropzone cuts the communication between it
and other dropzones, disrupting the functionalities in §III-C

2) Families Intersection: It has been observed that one
remote location may act as a dropzone for multiple IoT
malicious families. In the dataset, this relationship exists
within Gafgyt, Mirai, and Tsunami. Researchers reported a
new type of IoT threat known as KTN-RM or Remaiten which
targets IoT devices by combining the capabilities of Linux
malware known as Tsunami, Gafgyt [27], [28]. In addition,
it has been reported that Mirai is an evolution of Bashlite
malware, including Gafgyt [10], [26]. Our analysis, although
not concerned with the capabilities, hint on such an evolution
from an infrastructure standpoint.

B. Limitations

Our study is not without limitations. The key shortcomings
in our work have to do with the dataset and target behavior,
as seen from the static analysis artifacts.

1) Dataset: Table I shows the distribution of the families in
the dataset utilized in this paper. The dataset is biased toward
Gafgyt and Mirai, where 99.31% of the samples belong to
these families. This bias is reflected in the dropzones chains,
as 92.86% of the extracted chains belong to Gafgyt family.
Collecting more samples over longer period of time will
enhance the quality of the analysis, and the extracted chains,
which stands as our future work. We note, however, that those
two families are the most popular by far, and the findings in
this work are of significant value given their prevalence.

2) Target Behavior: String static analysis may still not
address some ambiguity of the exact behavior of a certain
target. To help understand the role of the referred IP addresses,
we analyzed the samples with specific keywords. However,
it is not possible to match the behavior to a certain target.
Therefore, we assume that the behavior applies to all referred
targets, as a form of extrapolation from a few tested samples.
Establishing statistical confidence in the findings, though a
larger baseline, would be our future work.

3) Dropzones Chains: All extracted chains are limited by
the collected dataset. The chain quality and size might increase
with the number of collected samples. In this dataset, all
chains belong to Gafgyt and Mirai, although we speculate
that other IoT malware families will have similar behavior.
Moreover, as chains with various families may exist due to the
combined malicious capabilities, we expect the limited number
of families analyzed in this study will not affect the generality
of the findings; a confirmation of the above anecdote.

V. RELATED WORK

Malware Analysis. Malware analysis helps to understand the
behavior of the malware, thus defending against it. Dynamic
analysis executes malware in a monitored environment and
observes its behavior and functionality [29], [30]. In contrast,
Static analysis inspects the executable files without executing
them. It analyzes the malware through the strings and function
calls necessary for malware operation and structure. Cozzi et
al. [31] performed static analysis on Linux malware. Also,
they discussed how Linux malware build their malicious acts.
Kendall et al. [19] described the static analysis in-depth, a mal-
ware executable file might be disclosing only basic properties
such as file type, the checksum for file fingerprinting, simple
extractable strings and Dynamic-Link Library (DLL) import
information, or fully disassembled with powerful tools and
specialized knowledge. One of the obstacles to static analysis
of malware is code obfuscation. Moser et al. [21] examined the
limitations of the static analysis in the detection of malicious
code. Soliman et al. [32] set a taxonomy for the tools and
analysis method. They analyze the pros and cons of each static
and dynamic analysis approaches. The prior work focused on
analyzing IoT malware and evolution. However, it is equally
important to understand the communication and relationships
between bots to fully understand the operation of a malware,
thus defensing against them.
DDoS Attack with IoT Malware. Several IoT malware have
the capability to launch DDoS attacks [28]. Mirai is one of the
notorious IoT malware that is targeting vulnerable IoT devices
such as Digital Video Recorders (DVRs), security cameras,
routers [10]. Wang et al. analyzed multiple IoT malware
and categorized them by the approach in which they infect
targets, such as, brute-forcing the weak user credentials, and



exploiting vulnerabilities found in the devices. They found
that Mirai brute-force the target based on the dictionary of
popular usernames and passwords [33]. Sinanović presented
the result of the dynamic and static analysis of Mirai. They
set up a virtual environment for dynamic analysis to replicate
controlled DDoS attack [30]. In addition, Antonakakis et
al. [10] investigated Mirai botnet and how they appeared.
In particular, they studied the evolution of Mirai over time,
along with the type of devices affected by it using static
analysis. Similarly, Ceron et al. [7] studied DDoS capable
malware, such as Mirai and Bashlite by handling the network
traffic. They utilized Software-Defined Networking to control
the network environment. Furthermore, De Donno et al. [34]
studied the taxonomy of DDoS attacks in the different subject
of IoT. They did a detailed analysis of how Mirai’s design and
components perform their attacks.

VI. CONCLUSION

In this work, we analyzed IoT malware binaries to under-
stand the dependencies and relationships among malware. We
conduct static analysis to extract the addresses communicated
to or referred by the malware. Among a large number of
endpoints (dropzones and targets) in static malware artifacts,
we identified dependencies between dropzones, in which we
coin the dropzones chain. We identified 56 unique chains
and unveiled interactions among Gafgyt and Mirai families.
Further analysis showed the existence of centralization within
chains with higher node counts, where a central dropzone com-
municates with several dropzones in a decentralized fashion.
We suggest central dropzone monitoring and removal, in order
to understand and limit the impact of the malware.
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[30] H. Sinanović and S. Mrdovic, “Analysis of Mirai malicious software,”
in Proceedings of the 25th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). IEEE, 2017,
pp. 1–5.

[31] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing Linux malware,” in Proceedings of the IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 161–175.

[32] S. W. Soliman, M. A. Sobh, and A. M. Bahaa-Eldin, “Taxonomy of
malware analysis in the IoT,” in Proceedings of the 12th International
Conference on Computer Engineering and Systems (ICCES). IEEE,
2017, pp. 519–529.

[33] A. Wang, R. Liang, X. Liu, Y. Zhang, K. Chen, and J. Li, “An inside
look at IoT malware,” in International Conference on Industrial IoT
Technologies and Applications. Springer, 2017, pp. 176–186.

[34] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “DDoS-
capable IoT malwares: Comparative analysis and mirai investigation,”
Security and Communication Networks, vol. 2018, 2018.

https://bit.ly/2JBcmwq
https://bit.ly/2LV1ew9
https://bit.ly/2OKfirI
https://bit.ly/2dn9If6
https://bit.ly/2j2RTCO
https://bit.ly/2elh92w
https://upx.github.io/
https://www.virustotal.com
https://www.virustotal.com
https://freeiocs.cyberiocs.pro/
https://freeiocs.cyberiocs.pro/
https://https://rada.re/r/

	Introduction
	Background, Dataset, and Static Artifacts
	Static Analysis and Endpoints
	Dataset

	Analysis
	IoT Malware Static Analysis
	Dropzone
	Target

	IP Addresses Analysis
	Unique Target IP Addresses
	Targeted Organizations
	Dropzones Malware Family
	Dropzones Distribution

	Malware-Target Relationship
	Dropzones Chains
	Chains Length
	Chains Region Distribution
	Chains Centrality


	Discussion
	Key Findings and Implications
	Dropzone-Target Relationship
	Families Intersection

	Limitations
	Dataset
	Target Behavior
	Dropzones Chains


	Related Work
	Conclusion
	References

