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Abstract—DDoS attacks are an immense threat to online
services, and numerous studies have been done to detect and
defend against them. DDoS attacks, however, are becoming more
sophisticated and launched with different purposes, making the
detection and instant defense as important as analyzing the
behavior of the attack during and after it takes place. To this end,
studying and modeling the Spatio-temporal evolvement of DDoS
attacks is essential to predict, assess, and combat the problem,
since recent studies have shown the emergence of wider and more
powerful adversaries. This work aims to model seven Spatio-
temporal behavioral characteristics of DDoS attacks, including
the attack magnitude, the adversaries’ botnet information, and
the attack’s source locality down to the organization. To the best
of our knowledge, this work is the first to address all behavioral
characteristics of DDoS, especially for observing patterns of
botnet families and information across distributed geographical
localities, for modeling and prediction during the progression
of the attack. Due to the variety of underlying nature of the
modeling task associated with each characteristic, we leverage
the state-of-the-art deep learning methods, namely: DNN, Trans-
formers, LSTM, and CNN, to construct an ensemble of models
to capture and predict behavioral patterns of the attack. The
proposed ensemble operates in two frequencies, i.e., hourly and
daily, to actively model and predict the attack behavior and
evolvement, and oversee the effect of implementing a defense
mechanism. We evaluate our approach on a large-scale real-
world dataset of roughly nine million records of 50,704 verified
DDoS attacks. The ensemble shows remarkable performance in
predicting the behavior of all behavioral characteristics.

Index Terms—Distribution Denial of Service, DDoS Behavior
Prediction, Network Security, Spatio-temporal Analysis,

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks are explicit
malicious attempts to prevent legitimate users from accessing
a service by sending an overwhelming amount of traffic to
the service server. According to Netscout annual worldwide
infrastructure security report [1], the traffic generated for
launching DDoS attacks exceeded 1 TBPS in size in 2019.
On a more recent event, an attack of size 1.7 TBPS has
been recorded. These attacks, if successful, result in a service
shutdown that costs a provider an average of $221,836 per
attack, as reported in Netscout [1].

The DDoS attacks have become a serious threat with the
increasing growth of the verified attacks, for instance, 6.13
million attacks were recorded in 2018 with an average of 700
attacks per hour. This increase correlates with the availability
of the purchasing option of bots that assist the launching of an
attack, which also correlates with the increased scalability and
wide-distribution of bots across geographical locations [2].

The growing threat of DDoS attacks has inspired many
recent research studies to contribute to the efforts toward the
analysis and characterization of the attacks [3]–[6], including
methods for the attacks detection and prediction [7]–[12].
These efforts have made the field of detecting DDoS attacks
widely-explored and resulting in highly-accurate detection
systems [13]–[17]. However, there are limited studies that
explore behavioral patterns and characteristics of the DDoS
attacks during the progression of the attack and after the
detection. Understanding the Spatio-temporal behavior and
characteristics of the attack is crucial for defending against
the attack, limiting its impact, and planing countermeasures
to prevent it from occurring in the future. This study aims
to contribute to this area by providing in-depth analyses
and insights for modeling seven behavioral characteristics
of DDoS attacks using deep learning-based methods. This
analysis and modeling task takes place after the detection of
the attack and continues as the attack progresses (in space and
time). The Spatio-temporal analysis of DDoS behavior can be
done by addressing various characteristics, such as the attack
magnitude, botnet information, and attack source location.

Studying the Spatio-temporal characteristics of the DDoS
attacks goes beyond the capabilities of the attacked server, as
most servers are oblivious to the attacking bots and traffic
sources over a long period of time. This makes it really
challenging for both research and applied services to obtain
data that allow such analyses. Further, even when obtaining
such data from internet service providers (ISPs) for real DDoS
attacks, this data is hardly containing enough information to
study several characteristics of the attack, such as the botnet
information. Moreover, the nature of the large-scale traffic



source and information adds more complications to the mod-
eling tools for successful capturing of patterns. Despite these
many challenges, exploring methods for capturing Spatio-
temporal behavior of the attacks is of paramount importance.
For instance, predicting the attack magnitude is essential for
a proper defense and future precautions, since it reflects the
scale of the attacks as they evolve in time, and the needed
countermeasures and resources to mitigate the attack effects.

These benefits of possessing the capabilities of model-
ing behavioral patterns of DDoS attacks are highlighted in
Gupta et al. [11], who conducted a magnitude analysis on
either synthetic dataset or with laboratory constraints. Another
work by Wang et al. [18] studied the magnitude of each botnet
family and the autonomous systems (ASN) distribution over
the total duration of the attack. This work proposes temporal
modeling of the magnitude information over time as sequences
that enable the prediction of magnitude at each time-step.

Other crucial characteristics of the DDoS attacks are as-
sociated with botnet information, such as botnet family and
ID, that is responsible for generating the traffic. To the best
of our knowledge, we are the first to attempt to model
such characteristics for real-world large-scale DDoS verified
attacks. Modeling botnet-related information during and after
the detection of the attack plays an important role in under-
standing the attack patterns [19], [20], since each botnet family
tends to follow distinctive patterns that provide insights for
countermeasures.

In addition to modeling the magnitude and botnet infor-
mation, investigating the Geo-temporal relations and progres-
sions of the attack’s sources would provide insights to the
intent, purpose, utilized resources in launching the attack,
and possible magnitude estimation for the attack’s evolution.
This Geo-temporal analysis and modeling are captured by
studying patterns from the attack source locality, i.e., country,
autonomous systems, cities, and organizations. However, this
task is challenging due to the wide distribution of attack
sources across numerous geographical locations. Moreover, a
study by Wang et al. [18] showed that DDoS attacks have
a volatile nature where bots launching an attack may shift
from one geographical location to another during the attack
duration. The study showed the possibility of predicting the
distribution of the ASN of attackers. However, predicting the
countries, cities, and registered organizations of the attack
sources have not been addressed in the literature of the field,
and to the best of our knowledge, we are the first to model
the Geo-temporal relations and patterns during and through
the entire attack duration.

This paper is dedicated to investigate several Spatio-
temporal characteristics of the DDoS attacks, namely, attack
magnitude, botnet family and ID, attack source locations
including countries, ASNs, cities, and organizations. Due to
the underlying nature of patterns to be extracted for separate
characteristics, we leverage current state-of-the-art machine
learning methods, including Deep Neural Networks (DNN),
Long Short Term Memory (LSTM), Transformer, and Con-
volutional Neural Networks (CNN), to model separate char-

acteristics and construct an ensemble of models to predict at
different frequencies the behavioral patterns of DDoS attacks.
The ensemble incorporates 14 different models, two for each
characteristic, and operates in two frequencies, hourly-based,
and daily-based frequencies, to actively monitor and account
for the latest status of the attack while in progress. The
ensemble is built and evaluated on a large-scale real-world
dataset that includes 50,704 verified DDoS attacks launched
by eleven botnet families and 674 botnet IDs on 9,026 targets
from August 2012 to March 2013. Further, this work sheds
light on different aspects and patterns of DDoS attacks.
Contribution. This work presents an ensemble of models
to predict the Spatio-temporal behavioral patterns of DDoS
attacks. The contribution of this work is as follows:
• Modeling Spatio-temporal Characteristics: Predicting

seven different characteristics of the ongoing DDoS at-
tacks using Spatio-temporal behavioral patterns of the
attack, namely: attack magnitude, botnet family, botnet
ID, attack source country, ASN, city, and organization,
using large-scale real-world dataset of approximately nine
million records of verified DDoS attacks.

• Constructing Predictive Ensemble: Implementing an
ensemble of seven models based on four machine learning
architectures, namely, DNN, LSTM, Transformer, and
CNN, to actively predict the attack behavior on different
operational frequencies (hourly and daily bases). The
ensemble shows remarkable performance in both data
sampling frequencies, achieving high accuracy in predict-
ing different behavioral aspects of the attack.

• Addressing Unseen Attacks and Targets: Evaluate the
performance of the ensemble on a real-world large-scale
dataset of known and unseen targets and DDoS attacks.
The ensemble offers high accuracy over targets with no
attacking history, and new represented DDoS attacks.

• Addressing the Cold Start Problem: We investigate
the effect of cold start problem, i.e., modeling with
insufficient information such as at the beginning of the
attack. We show that the ensemble can achieve high
accuracy even under the cold start situation.

Organization. The work is organized as follows: in section II,
a description of the dataset is provided. Then, system design
and utilized architectures are described in section III. The
experiments and evaluation results are shown and discussed in
section IV. We provide the related work in section V. Finally,
we conclude our work in section VI.

II. DATASET OVERVIEW

A. Dataset Collection

The utilized dataset is provided by the monitoring unit
of a DDoS mitigation company [21]. Traces of malicious
infected hosts were collected by collaborating with over 300
major Internet Service Providers (ISPs) globally monitoring
attacks launched by specific malicious actors worldwide across
America, Europe, Asia, Africa, and Australia. The activities
of the participating hosts in the given botnet attacks, by either



communicating with the infected infrastructure or launching
the actual DDoS attack on the monitored targets, were mon-
itored and analyzed over time. To this end, the traces of the
traffic associated with various botnets were collected using
different sensors on the Internet, in corporation with several
ISPs, where the source of the collected traffic is an infected
host participating in botnet attacks, and the destination is
a verified targeted client. Afterward, malware botnets used
in launching various attacks were reverse engineered and
labeled to a known malware family using best practices (i.e.,
AMAL, a fully automated system for analysis, classification,
and clustering of malware samples) [22], [23]. The dataset
consists of 50,704 verified DDoS attacks collected in the
period of 08/29/2012 to 03/24/2013, a total of 207 days,
targeting 9,026 clients, represented as hourly snapshots of
each family activities over the monitored period, including the
botnet information, targeted client IP, and the IPs of the hosts
associated with the botnet attack.

B. Behavioral Characteristics of DDoS Attacks

To create a better understanding of the DDoS attacks, we
focus on three groups of characteristics: attack magnitude,
botnet information, and attack source location. The following
is a description of each group.
Attack Magnitude (AM). This attribute refers to the number
of DDoS attacks launched by infected hosts on a specific
target over a period of time. It is important to understand
the magnitude of the attack to estimate and allocate the
correct resources to counter the attack. The attack magnitude
is defined by the total number of attacks on a single target
over a period of time, even when the attacking bots belong to
different families and with different attacking objectives. We
observe a maximum hourly and daily attack magnitudes of
581,893 and 13,876,995, respectively.
Botnet Information. The importance of knowing the attacking
botnet families lies in implementing the correct defense against
the attack since popular botnets have well-known attack
patterns. Therefore, two characteristics have been extracted:
botnet family (BF) and ID. The DDoS attacks reported in our
dataset originated mainly from eleven popular botnet families:
dirtjumper, darkshell, ddoser, nitol, pandora, blackenergy, op-
tima, aldibot, yzf, colddeath, and armageddon. Botnet families
may evolve over time. Therefore, new botnet generations are
marked by their unique MD5 and SHA-1 hashes. We consider
the botnet ID as a standalone characteristic, as the behavior of
the botnet may change over several generations. Table I shows
the number of botnet IDs associated with DDoS attacks for
each family. Note that the eleven botnet families have a total of
674 different botnet IDs, indicating the continuous evolvement
of botnets over time. The number of records represents the
instances of recorded DDoS attacks associated with infected
hosts from a malicious botnet family. The number of attack
records is an indicator of the activity of the botnet family
during the monitored period. However, it does not reflect
the evolvement of the botnets, since the number of records
associated with botnet IDs that belong to pandora (41 botnet

TABLE I: Distribution of the botnet IDs over botnet families.
Dirtjumper is associated with 251 botnet IDs, and 6,902,882
records within the monitored duration. However, the popularity
of a malware family during the monitored period does not
reflect the evolvement of it (i.e., darkshell and pandora).

Family # Botnet IDs # Records

dirtjumper 251 6,902,882
darkshell 166 80,129
ddoser 102 37,172
nitol 43 20,411
pandora 41 1,397,027
blackenergy 28 95,330
optima 25 41,321
aldibot 9 269
yzf 6 113,923
colddeath 2 28,259
armageddon 1 906

Total 674 8,717,629

IDs with 1,397,027 records) are relatively larger than those of
darkshell (166 botnet IDs with 80,129 records).
Attack Source Location. It has been shown that botnets
have strong geographical and organizational localities [24].
Therefore, such information can be used to predict future
attack source locations and the shifting patterns of attackers
across geographical locations to help in planning defenses
and countermeasures. To this end, the hosts IP addresses
were used to extract the attack source country (CN), city
(CT), organization (OG) and (ASN), using the IP-to-region
dataset and MaxMind online database [25]. In the monitored
duration in which the dataset is collected, the attack source
locations were distributed over 186 countries, 2,996 cities,
4,036 organizations, and 4,375 ASNs, The distribution of the
infected hosts indicates the existence of worldwide botnet
infections.

C. Dataset Splitting

The focus of this study is to predict the incoming attack
characteristics in order to assist the targeted client in planning
a defense mechanism. To this end, the dataset is split into three
parts as shown in Figure 1 and as follows. 1 Training dataset:
The training dataset contains the traces and records of 80%
(7220) of DDoS attacks’ victims (i.e., targeted clients). For
the purpose of predicting the behavioral patterns of the attacks
during the attack progression, we considered the records that
occurred at the first 80% of the attack duration for each
victim (target) as the actual training dataset. 2 Known targets
testing dataset: This dataset contains the remaining records
that occurred during the last 20% of the attack duration per
target. This sub-dataset is used to evaluate the prediction
models in modeling the behavioral pattern of DDoS attacks
on targets with known history (by observing the earlier 80%
of the attack duration) since such modeling capabilities help
in predicting patterns of ongoing attacks after the detection.
3 Unseen targets testing dataset: This dataset consists of
DDoS attack records of the remaining 20% (1806) of targeted
clients that are not considered in the training dataset. The
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Fig. 1: Distribution of the dataset over different dataset parti-
tions. The training dataset consists of 80% of the DDoS attacks
duration launched on 80% of the targeted. Known targets
dataset consists of the remaining 20% of the attack duration of
targets in the training dataset. Unseen targets datasets consist
of the remaining 20% of the targets.

aim of this dataset is to evaluate the prediction models over
targets that have never been attacked before. Despite this
challenging task, recent studies [26] showed that DDoS attacks
have certain repetitive patterns, and put forward this challenge
to testing and aim to evaluate our approach on records of
DDoS attacks targeting victims for the first time. Table II
shows the distribution of the dataset characteristics over each
partition of the dataset. Note both test datasets are diverse
enough to evaluate the performance of the prediction models.

III. SYSTEM DESIGN

The focus of the proposed system is to predict the attacker
behavior over the seven different characteristics. The system
design is shown in Figure 2.

A. Operational Frequency and Data Pre-processing

We adopted two operational frequencies to model and
analyze behavioral patterns of DDoS attacks, namely: agile
and passive approaches. The data pre-processing and handling
follows the same manner in both approaches with slight mod-
ifications to fit the operational duration and data availability
associated with the adopted operational mode.
Operational Mode. For studying attack behavior manifested
with the considered characteristics, data records were aggre-
gated at different frequencies (i.e., Agile mode with hourly
frequency and Passive mode with daily frequency). We high-
light the data processing stages for both operational modes, as
data are aggregated and processed according to the frequency
of adopted mode. The agile mode requires six hours of data to
be fully-functional at an hourly frequency, while the passive
mode requires three days of information to be full-functional
in modeling behavioral patterns at a daily frequency.
Data Processing and Sequence Generation. Addressing
different characteristics of DDoS attacks captured by their
records, the data is represented as ΦX = {φ1, φ2, . . . , φt} ∈

RN×T , where φα ∈ R1×T is a vector of the attribute in hand
(Φ) for the attack targeting X at a given time step α (e.g., φ1
and φt represent the vectors of the first and last time step), T is
the maximum length of the reported attacks, and N is the total
number of targeted clients. For instance, addressing the botnet
ID of an attack targeting X , the data is represented as a matrix
IDX = {id1, id2, . . . , idt} ∈ RN×T , where idα ∈ R1×T is a
vector of botnet IDs targeting X at a given time step α. We
achieve such representation by the following steps.
A Tokenization and Encoding: When studying the attack
characteristics, we assign identifiers for unique elements (e.g.,
botnet IDs are assigned to unique identifiers when processing
the ID attribute). Assuming an attack at target X in a time
step α, the ID attribute is represented with a vector of all
unique botnet IDs identifiers occurring in the attack record
within α, arranged in ascending order. For example, assuming
the IDs appear in a certain attack record at the first time
step are {id32, id105, id12}, then, we present the vector as
ID0 = {id12, id32, id105}. Following the sequence of the
attack through time, the sequence of attribute vectors is gener-
ated with different lengths depending on the magnitude of the
attribute. Note the differences between attribute magnitude and
attack magnitude, where the former demonstrates the number
of unique attribute elements included for a given attack, while
the latter represents the number of bots launching the attack.
B Sequence Extraction: The sequence of attribute behavior of
DDoS attacks is extracted with different frequencies. In this
study, we examine one-hour and one-day data frequency to
analyze the behavior of the attack characteristics. Sequence
extraction refers to the length of the previous time steps
required to predict future steps. In the agile approach, we
chose six-time steps (i.e., six hours) to be a sufficient time
needed to predict future behaviors based on our experiment.
For example, IDs sequences are generated as follows: Seq1 =
{ID1, ID2, . . . , ID6}, Seq2 = {ID2, ID3, . . . , ID7}, and so on.
Figure 3 shows the accumulative distribution of the DDoS
attacks duration. Note that the agile approach uses hourly
insights of the attack characteristics. Here, the average attack
duration is 24 hours. The agile approach is suitable for
such attacks as the prediction is made on an hourly bases.
Operating with the passive approach, we chose three time
steps (three days) as a sufficient information to predict daily
future behavior. Similarly, the IDs sequences generated from
passive approach are as follows: Seq1 = {ID1, ID2, ID3}, and
Seq2 = {ID2, ID3, ID4}.
C Attribute Vector Padding: The input data for each attribute
are presented with different lengths based on the attribute
magnitude at each time step. To allow efficient processing
and tensor calculation, all vectors are padded to the maximum
length enabling the packing of several attribute vectors in one
sequence as well as packing several sequences in one batch.
D Attribute Vector Embedding: Attribute vectors are for-
warded to an embedding layer in all deep learning-based
models in our ensemble, to enable compact representation of
vectors. The embedding layer allows the learning process of
a better presentation of the attribute vectors in response to



TABLE II: Overall characteristics of the dataset distribution. Both train and known targets datasets consist of 7,220 targets as
they are parts of the same DDoS attacks. Unseen targets dataset consists of attacks on the remaining 1,806 targets, distributed
over 151 countries and 234,113 IP addresses.

Partition # Targets # Families # Botnet IDs # IPs # Countries # ASN # Cities # Organization

1 Train Dataset 7,220 11 605 841,471 186 4150 2,877 3,831
2 Known Targets 7,220 11 606 158,230 179 3,275 2,275 3,024
3 Unseen Targets 1,806 10 248 234,113 151 2,571 1,800 2,382

Overall 9026 11 674 880,451 186 4,375 2,996 4,036
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Fig. 2: The general flow of the DDoS attacks prediction design. Here, T refers to the attacked target, whereas H refers to one
hour in the attack duration. Colors indicate the deep learning architecture associated with the attack attribute. The data pre-
processing consists of tokenization and encoding, sequence extraction, and vector padding and embedding. Then, the processed
input is inputted to different deep learning algorithms to learn and predict the DDoS attacks behavior and characteristics.

a given task during the training process. Vectors represented
with attribute identifiers φα ∈ RT , where T is the maximum
occurrence of unique identifiers in an attack, will be embedded
to γα ∈ R128, where 128 is the size of the vector embed-
ding. We chose the size of the embedding based on several
experiments that showed 128 is adequate to incorporate the
information present in the attribute vector. Sequences are then
viewed as matrices of Γα ∈ Rts×128, where ts is the number
of time steps (i.e., the sequence length).

Attack Magnitude. We also study the attack magnitude with
different frequencies as in agile and passive approaches. We
note that the approach to predict and study attack magnitude
is different from the one adopted for other characteristics.
While other attribute vectors are important to extract, the
magnitude of the attack is calculated per targeted client at each
time step and presented as one real value (instead of attribute
vector). Thus, only step B is required from the aforementioned
approach, which aims to generate sequences of the calculated

value of magnitude at each time step. To present the values
of magnitude to the deep learning model, we normalize the
values in the range of zero to one.

B. Prediction Models Architectures

Our approach adopts an ensemble of powerful classifiers to
predict different behaviors of DDoS attacks including DNN,
Transformer, LSTM, and CNN. In contrast to traditional
machine learning methods, deep learning allows deep features
and patterns extraction, which is required in predicting the
future characteristics of the DDoS attack, particularly that
the input is a sequence of the attack characteristics within
a window time. The utilized model should be able to extract
and learn different patterns of the DDoS attack in order to
correctly predict the future behavior of the attack. Here, LSTM
and Transformer are used for their memory-based learning
capabilities. Additionally, DNN and CNN are selected for their
capabilities in extracting deep feature representations of the
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Fig. 3: Accumulative attacks duration distribution. The average
attack duration is 24 hours, with 23% of the attacks duration
more than 100 hours. The agile approach operates within 6
hours window, which is suitable for 95.84% of the attacks.

sequences, and therefore predicting the upcoming behavior.
Further, we chose different model architectures for modeling
different tasks (i.e., characteristics behaviors) since certain ar-
chitectures are proven to work better than the others in certain
circumstances. In particular, the best performing deep learning
architecture in predicting each DDoS attack characteristic is
reported. Based on our experiments, we present an ensemble
of models that predicts seven DDoS attacks characteristics
with a high degree of accuracy. The ensemble includes DNN
for predicting attack magnitude, Transformer for predicting
botnet information (ID and family), LSTM for predicting the
wide attack source locality (country and ASN), and CNN
for predicting the specific attack source locality (city and
organization). A brief description of the experimental settings
and hyperparameters to build the models are in the following:
DNN for Attack Magnitude. The model architecture consists
of four dense layers of size 1,000 units with ReLU activation
function. Each dense layer is followed by a dropout operation
with a rate of 30%. The last layer is connected to a sigmoid
layer of size one signaling the normalized number of the
attack magnitude (i.e., the scale of the magnitude from zero
to one). Given sequences of ground-truth magnitudes samples,
the model is trained to predict an output yi = {xn+1

i } given an
input xi = {x1i , x2i , . . . , xni }, where n is the sequence length
(e.g., six in the agile approach), following straightforward
supervised learning process.
Transformer for Botnet Information. The model is adopted
from the model proposed by Vaswani et al. [27]. It con-
sists of stacked layers in both encoder and decoder com-
ponents. Each layer has eight sub-layers comprising multi-
head attention layer, Attention(Q,K, V ) = softmax(QK

t

√
dk

)V ,
where Q is set of queries, K is set of keys and V
is set of values. The model performs attention h times,
MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)W o,
where headi = Attention(QWQ

i ,KW
K
i , V W

V
i ), followed by

a feed forward network. Here, W [.]
i and W o are projection

parameters. The prediction is done by conducting a beam
search with length penalty (λ = 0.6). The Transformer is used
to train two models performing two separate tasks, predicting
botnet family and botnet ID.
LSTM for Wide Attack Locality. The model consists of one
LSTM layer with a size of 128 units. The LSTM layer is
followed by a dense layer of size 128 and a dropout operation
with a rate of 20%. Then, a dense layer with a sigmoid
activation function is used to output the prediction of attack
source locality. The output layer (the sigmoid layer) has the
size of the attribute vector addressed in a given task. For
example, for predicting the country, the model has an output
layer of size 186, one sigmoid node for each country identifier.
The predicted sigmoid value at each unit is rounded with
a threshold of 0.5 to indicate whether the country identifier
assigned to this unit is included in the attack or not. The LSTM
architecture is used to train two models for predicting attack
source country and ASN.
CNN for specific attack locality. The model architecture
consists of one convolutional layer with 64 kernels of size
1×3 convolving over the input vector, followed with a sigmoid
output layer of size equals to the size of the addressed attribute
vector (i.e., to predict the future status of the attack). The
CNN architecture is used to train two models for predicting
the specific attack locality (i.e., city and organization).
Training Setting. All models were trained with 100 training
epochs. The weights of the models were initialized using
a zero-mean random uniform distribution. The training was
guided by minimizing the loss using Adam optimizer set with a
fixed learning rate of 10−3. The binary-cross-entropy loss was
used to train all models except for the DNN, which uses mean-
squared-error loss due to the nature of the performed task
(attack magnitude). The training process follows a straight-
forward supervised learning process and other details related
to specific model architecture are provided with the model
description in subsection III-B.

IV. EVALUATION AND DISCUSSION

We evaluate our approach for predicting DDoS characteris-
tics behaviors on a large-scale dataset. We report our results
using two evaluation metrics, namely True Positive Rate (TPR)
and True Negative Rate (TNR). TPR represents the number
of correctly predicted elements over all the elements that
occurred within the duration of the prediction. For instance, if
the DDoS attack launched from four countries, of which, the
prediction model predicts three correctly, the TPR is equal
to 75% (3/4). TNR is referred to as 1 − (FP/N) where
FP is the number of the incorrectly predicted elements and
N represents all the elements that did not occur within the
duration of the prediction. For instance, if the DDoS attack
launched from four countries out of 186, and the prediction
model incorrectly predicts two elements, the TNR is equal
to 98.90% (1 − (2/182)). Note that TPR and TNR are
preferred metrics in evaluating the systems as true indicators
of performance in different scenarios. For example, achieving



a TNR of 100% means zero false alarms (e.g., TNR = 100%
for a model predicting attack organization means not once
the model falsify an organization for an attacker). On the
other hand, TPR indicates the precision of predicting the
attack behavior (e.g., TPR = 100% for a model predicting the
organizations of attackers means correctly predicting all the
involved organizations in the attack). Therefore, it’s important
for all models to maintain high TPR and TNR.

A. Attack Characteristics Evaluation

The performance of the system is evaluated with the en-
semble performance shown by the individual models for each
of the attack characteristics. In the following, we present our
findings for each attribute. Figure 4 summarizes the results
of six attack characteristics using both known and unseen
test targets when adopting the agile and passive approaches.
The seventh attribute (i.e., the attack magnitude) is evaluated
separately due to the data nature of the attribute. Two models
were implemented for each attribute, one for each operational
frequency, and evaluated on known and unseen targets.
Attack Magnitude. We evaluate the DNN model for predict-
ing the attack magnitude using the mean error metric, where
the error is calculated as the difference between the actual
and predicted attack magnitude. Since the data observations
were normalized, the output of the model indicates the mag-
nitude as a fraction of the maximum recorded magnitude, i.e.,
581,893 for the agile approach and 13,876,995 for the passive
approach. Then, to calculate the magnitude, we multiply the
model’s output by the maximum magnitude rounded to the
decimal point, e.g., the agile model’s output 0.031 indicates a
magnitude of 18,039 attacking hosts.

We report the results in Table III for evaluating the models
on known and unseen test targets using both agile and passive
approaches. The results were reported using the mean error
rate and the average shift error, that can be used as indicators
of the error margin of the model’s prediction. The shift error
is reported by the actual number of attacking hosts contributed
to the attacks. For example, the error rate of the agile model
on unseen data is 0.0014% which is off by roughly 86 hosts
from the actual number of the attacking hosts. Even though
this number might seem large at first, it appears to be a
good estimate knowing that the average attack magnitude on
the agile data sampling rate (i.e., per the hour) equals 551
hosts (15.60% deviation). Similarly, the average shift rate for
the passive approach is roughly 1,977 hosts for predicting
the magnitude of unseen targets, which is also acceptable
estimation knowing the average of magnitude is 15,394 hosts
per day (12.97% deviation).
Botnet Family. Figure 4a shows the evaluation of the Trans-
former architecture trained to predict botnet family using
different settings. The models achieve TPR of 95.97% and
TNR of 99.65% for predicting botnet families of known targets
on one-hour frequency, while maintaining TPR of 79.50%
and TNR of 98.94% for unseen targets. The TPR score
increases to 96.97% and 93.62% when using lower frequency
(i.e., one-day) for known and unseen targets, respectively. We

TABLE III: Attack magnitude prediction evaluation. The mean
error rate is reported using the percentage, and the average
shift error is reported by the actual number of the hosts.
Overall, the model can predict the incoming attack magnitude
within a time window with high accuracy.

Approach Target Mean Error Rate Avg. Shift Error

Agile Known 0.015% ∓88.64
Unseen 0.014% ∓85.87

Passive Known 0.012% ∓1,734.40
Unseen 0.014% ∓1,976.65

TABLE IV: Overall botnet families prediction accuracy. Ar-
mageddon and ddoser have a 100% prediction accuracy, while
aldibot has 0% prediction accuracy, this is due to the low
number of records (269) associated with it. Maintaining high
botnet family prediction accuracy is essential as the overall
attack behavior and progression over time is highly associated
with the botnet family originating the attack.

Botnet Family Accuracy # Bots

armageddon 100% 80
ddoser 100% 9
darkshell 99.96% 146
optima 99.85% 37,625
blackenergy 98.95% 151,043
colddeath 98.65% 1,552
nitol 97.97% 46
yzf 94.57% 39
dirtjumper 93.49% 718,881
pandora 80.74% 7,923
aldibot 0.00% 380

show the average accuracy of predicting each botnet family
using both the agile and passive approaches in Table IV.
The result demonstrates high accuracy for almost all botnet
families except for aldibot and pandora. The model failure for
detecting aldibot could be for several reasons, e.g., aldibot has
the smallest number of records in our dataset (269 records).
We also observed that the detection accuracy of the pandora
family is 80.74%, which is less than those achieved for other
families, despite the high number of records for this family
(1,397,027 records). The ambiguity of patterns for this family
can be explained by the length of the attacks (on average
184.33 hours per attack), which is larger than 81.21% of the
attacks. Moreover, we observed a large number of attackers
(7,922) which were distributed over 69 countries, 56.93%
(4,510) of them are relocated in southeast Asia.
Botnet ID. The Transformer-based model achieved a remark-
able TPR and TNR on predicting botnet IDs of attacks.
Figure 4b shows the evaluation of the performance of the
Transformer-based prediction model on known and unseen
targets for agile and passive operational frequencies. The
Transformer-based model achieved a TPR of 90.16% and
76.42% for predicting known targets, and unseen targets with
a TNR of 99.97% and 99.95%, respectively, using agile
operational frequency (hourly-based). For passive operational
frequency, the model achieved a TPR of 62.96% and 52.74%
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Fig. 4: Evaluation of the prediction models over known and unseen targets. The models are evaluated based on the TPR and
TNR. In general, agile approach outperform passive approach in most cases. Similarly, the performance of the models against
known targets attacks outperforms its performance against unknown targets attacks, as it is already trained on the history of
the attack. The TNR in all cases are almost above 99%, this is intended due to the criticality of the application, and the effect
of false information on the usability of the ensemble.

for predicting known targets, with a TNR of 99.95% and
99.93% for unseen targets, respectively. Note that the agile
frequency-based model outperforms the passive frequency-
based model.
Attack Source Country. Figure 4c shows the performance
of the LSTM-based model on known and unseen targets for
agile and passive operational frequencies. The LSTM-based
model achieved a high TPR and TNR on predicting the attack
source country, using agile approach, we achieved a TPR and
TNR of 85.26% and 98.62% for known targets, and 83.83%
and 99.95% for unseen targets, respectively. Similarly, the
model achieved a TPR and TNR of 90.19% and 93.21% in
predicting known targets attack source countries using passive
frequency, and a TPR and TNR of 82.60% and 95.39% in
predicting unseen target attack source countries. Similar to the
previous characteristics, the performance of the LSTM-based
model operating in agile frequency outperforms the passive
frequency-based model, particularly for TNR metric.
Attack Source ASN. For predicting the source ASNs of the
attack, the same LSTM architecture is utilized. Figure 4d
shows the evaluation of the LSTM-based models in predicting
the attack source ASNs operating in two frequencies, agile
and passive. The LSTM-based model achieved a TPR and
TNR of 73.59% and 99.41% on known targets, and 65.68%
and 99.96% on unseen targets, respectively, operating in agile
frequency. Similarly, the model achieved a TPR and TNR
of 27.06% and 97.53% on known targets, and 26.66% and
97.60% on unseen targets, respectively, on passive approach.

While the passive frequency-based LSTM model performance
is low, it maintains a high TNR, reducing the false alarms.
Attack Source City. We used the CNN-based architecture
to capture the botnet behavioral patterns, particularly, at-
tack source cities. Using agile frequency-based CNN model,
we achieved a TPR and TNR of 72.23% and 99.72% for
known targets, and 44.61% and 99.98% for unseen targets,
respectively. For daily-based frequency (passive operational
frequency), we achieved a TPR and TNR of 62.81% and
99.02% for known targets, and 17.39% and 99.34% for
unseen targets, respectively. While the CNN-based models
performance varies, the high TNR (low false alarms) makes it
possible to utilize the provided information by the model to
implement a proper defense with high confidence. Figure 4e
shows different evaluation results of the CNN-based models
in predicting the attack source city.
Attack Source Organization. Similar to predicting attack
sources, CNN-based architecture is used for attack source
organization prediction. Figure 4f shows the evaluation of the
performance of the prediction models on known and unseen
targets for both operational frequencies. We achieved a TPR
and TNR of 80.42% and 99.40% on known targets, and
84.48% and 99.72% on unseen targets, respectively, using
agile frequency operational mode. Similarly, we achieved a
TPR and TNR of 71.69% and 98.40% on known targets,
and 21.73% and 99.10% on unseen targets, respectively, using
passive frequency. While attack source organization prediction
models may not provide high performance in some scenarios



(i.e., unseen targets using passive approach), the information
provided by the model can be used to defend against the attack,
particularly that the models maintain high TNR.

B. Discussion and Limitation

DDoS Attack Behavior Prediction. This work focuses on pre-
dicting the DDoS attack behavioral patterns after the detection
of the attack. Therefore, the proposed ensemble operates on
top of the DDoS attack detection system, providing the starting
signal and initial input data for the ensemble to operate. The
purpose of the ensemble is to provide critical information and
insights to help the targeted victims in designing and planning
a proper defense mechanism. Such planning incorporates
advantages of the behavioral patterns detected by the proposed
approach to formulate defenses as follows.
• Magnitude driven defenses: The magnitude of the attack

directly reflects its effects on the targeted client resources.
For instance, a DDoS attack with a low magnitude will
unlikely result in total denial of service, while ones with
high magnitudes can cause shutting down the service.
Understanding the ongoing attack magnitude within a
continuous time window allows a better decision making
process in planning and allocating resources to combat
the attack and mitigate its effects.

• Botnet-based driven defenses: It has been shown that
certain botnet families have repetitive attacking patterns.
In addition, botnet families can collaborate to conduct
a DDoS attack. Understanding the attack nature and
behavior through its associate botnet families and IDs
create a better awareness of how the attack will progress,
and better defend against it.

• Region-based driven defenses: DDoS attacks have re-
gional dependencies, as the infected hosts may be orig-
inated from the same region, or several related regions.
Understanding the regional distribution of the infected
hosts, and the over-time shifting will provide better
insights to implement region-based defenses.

Behavioral Characteristics Stability. The stability aspect of
behavioral characteristics of DDoS attacks is measured by the
frequency of which the behavior changes over time. When
it comes to behavioral characteristics, the stability measure-
ment varies depending on the studied characteristic as some
attributes (e.g., locality-based characteristics) are more volatile
than others (e.g., botnet-based characteristics). For instance,
increasing the time window of the model’s prediction, as in
passive approach, will result in increasing the elements to be
predicted by the model, which may lead to more false positives
in the prediction results. To ensure the information quality pro-
vided by the ensemble, we adjust the decision threshold of the
predictors so that the TNR is high (above 99%). This explains
the higher TPR for the agile approach in comparison with the
passive approach in modeling locality-based characteristics.
Moreover, in almost all cases, the stability decreases when
the period of observation increases. This is intuitive as recent
DDoS attacks follow shifting patterns through time, which also
can be shown in the results as operating in high frequency

(hourly) can achieve better modeling results than operating in
lower frequency (daily).
Unseen Targets. This study shows the performance of the
ensemble using known and unseen targets, each of which has
its merits. While having a history of an attack can help to
predict the behavioral characteristics for the progression of
the ongoing attack; providing an evaluation of the ensemble
on unseen targets provides insights to predict an attack’s be-
havioral patterns even without a previous record. We show that
our approach is capable of modeling the behavioral patterns
of DDoS attacks for completely unseen targets, a capability
that provides a more realistic approach for analyzing attacks.
Sequence Length. The attack’s behavioral characteristics are
modeled with sequences of the characteristics’ information
sampled with a different frequency (i.e., one-hour and one-
day). The sequence length of the attribute information for
both agile and passive approaches are chosen based on the
experiment and the observed attacks’ duration. Since 52.07%
of the total attacks in our dataset exceed the one-day sampling
time, the passive approach operates on the one-day frequency
with a sequence length of three days that are required to predict
the next day’s behavior of attacks. To address the behavioral
patterns on a higher frequency, the agile approach operates on
the one-hour frequency and requiring six hours to predict the
next-hour behavior. Figure 3 shows that the agile approach is
more desirable as most (95.84%) of attacks in our dataset can
be monitored and studied.
First-hour Attack: The Cold Start. One shortcoming of
using static sequence length (e.g., six hours for the agile
approach) is in addressing attacks with a shorter duration such
as the attacks in their beginnings. For example, predicting the
behavioral patterns of a three-hours attack or the next hour
behavior of the just-reported attack. To overcome this problem,
we implemented the ensemble to operate on the specified
frequency using the available information aggregated using
the sampling time while padding the unavailable sequence
steps with zero-vectors. For example, assume an attack with
only two-hours information is available, the agile approach
will process the two-hours vectors and pad four-steps of zero-
vectors to predict the third hour. This approach has shown
to be effective in our experiments, especially for predicting
botnet families and attack source countries. However, it comes
with a cost when addressing volatile characteristics such as the
attack source cities. For instance, using six-hours information
for known and unseen targets, the agile approach predicts
the attack source cities with TPR of 72.23% and 44.61%,
respectively; while using only one-hour information results in
TPR of 65.56% and 17.49% for the same settings, respectively,
while maintaining a high TNR (≈99%).

V. RELATED WORK

DDoS attacks have been intensively investigated to achieve
a better understanding of them, in both detecting and predict-
ing the malicious attacks.
DDoS Attacks Detection. DDoS attacks detection is well ex-
plored in different environments. Mirsky et al. [28] presented



Kitsune, a plug and play online network intrusion detection
system by tracking the patterns of every network channel.
Similarly, Sekar et al. [13] proposed LADS (Large-scale
Automated DDoS detection System), a triggered, multi-stage
in-network DDoS detection system to overcome the scalability
issues in detecting DDoS attacks over large-scale monitored
network. In addition, Chang et al. [24], [29] performed an in-
depth analyses of botnet behavior patterns by monitoring and
analyzing the data of the most active 16 botnet families over
a period of seven months. Their analysis showed that different
botnets start to collaborate when launching DDoS attacks.
Similarly, they conducted an in-depth analyses measurement
study of 23 active botnet families for a period of seven months.
The findings of their analysis showed that bots recruitment has
strong geographical and organizational locality, different than
the common perception that bots are randomly recruited in
a best-effort manner. Gu et al. [30] developed a framework
to detect botnets by analyzing botnet communication patterns
using unsupervised machine learning techniques. Base on this
work, Perdisci et al. [31] presented a network-level behavioral
HTTP-based malware clustering system based on the structural
similarity between the malicious HTTP traffic. Moreover,
Lu et al. [10] detected and clustered botnet traffic into C&C
channels using the K-mean clustering algorithm on large-scale
network traffic payload signatures. In a more recent work,
Doshi et al. [32] distinguished normal traffic from DDoS
attack traffic using limited packet-level features. By train-
ing five different machine learning algorithms, they achieved
DDoS traffic detection rate of 99.9%. Further, Bhatia et
al. [33] proposed a network-centric and behavioral learning-
based unsupervised machine learning technique for network
anomaly detection, particularly, DDoS attacks. Their design
benefits from the SDN-based mechanisms in detecting and
mitigating different DDoS attacks. Additionally, Kesavamoor-
thy et al. [34] used autonomous multi-agent system for DDoS
attacks detection. Agents use a particle swarm optimization
for reliable communication with each other and a coordinator,
allowing an accurate detection of DDoS attacks.
DDoS Attacks Behavior Prediction. In addition to detecting
the attacks, recent studies predicted different aspects of the at-
tack behavior, such as Gupta et al. [11], where they estimated
the number of bots involved in a flooding DDoS attack with
high accuracy by calculating various statistical performance
measures. In addition, Fachkha et al. [35] proposed a system-
atic approach for inferring DDoS activities, predicting DDoS
attack characteristics, namely, the intensity rate (packets/sec)
and size (number of used bots), in addition to clustering
various targets to the same DDoS campaign. Furthermore,
Wang et al. [18] designed three DDoS attacks models from
temporal (attack magnitudes), spatial (attacker origin), and
Spatio-temporal (attack inter-launching time) perspectives by
analyzing 50,000 verified DDoS attacks. The models were able
to predict the DDoS attacks with high accuracy in terms of the
magnitude, duration, inter-launching time, and location (ASN).

Even though recent studies investigated the attack detection
and behaviors, only a few of them provided information that

would assist the client in implementing a proper defense on the
spot. However, our design provides the victim with essential
information, such as botnet family and exact location, includ-
ing the city and organization, in addition to the magnitude
of the attack and the botnet ID, specifying the generation
of the botnets involved in the attack while it progresses over
time, such information can be utilized to properly implement
a magnitude-based, region-based, and malware-based DDoS
attacks mitigation techniques and defenses.

VI. CONCLUSION

This work proposes an ensemble approach for studying
and predicting the behavioral characteristics of DDoS attacks.
This work introduces an approach to building an ensemble of
models to predict seven behavioral characteristics of DDoS
attacks, which provides insights for handling such attacks.
All models in the ensemble leverage the capabilities of deep
learning methods that obviate the burden of hand-crafting
features for specific characteristics. Instead, the models learn
to capture distinctive patterns within the sequences of attribute
information. Evaluating our approach on a large-scale real-
world dataset that contains records of more than fifty thousand
verified attacks, the results of our approach show remarkable
performance when operating on different sampling frequencies
and under different settings. This success of efficient and
accurate modeling of DDoS attack characteristics can help
in implementing proper defenses and future planning for
mitigating and handling of the problem.
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