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ABSTRACT
Adversarial training has recently emerged as an important defense
mechanism to robustify machine learning models in the presence
adversarial examples. Although adversarial training can boost the
robustness of machine learning algorithms by a margin, research
has not been conducted to determine if adversarial training is ef-
fective in the long-term. As deployments of machine learning al-
gorithms are characterized by dynamics, change of the underlying
model is inevitable. The dynamics are a result of model’s evolu-
tion over time by introducing new training data and drifting the
model by changing its parameters. In this paper, we examine the
limitations of adversarial training due to the temporal changes of
machine learning models. Using a natural language task, we con-
duct various experiments using a variety of datasets to measure
the impact of concept drift on the efficacy of adversarial training.
In particular, our analysis shows that certain adversarially-trained
models are even more prone to the drift than others. In particular,
WordCNN and LSTM-based models are shown more susceptible to
the temporal changes than others such as BERT. We validate our
findings using multiple real-world datasets on different network
architectures. Our work calls for further research into the temporal
aspects of adversarial training.
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1 INTRODUCTION
Recent research has demonstrated that Deep Neural Networks
(DNN) in general, a popular family of techniques used in many
Natural Language Processing (NLP) tasks, are vulnerable to adver-
sarial attacks [6, 11, 14, 15, 26]. Adversarial attacks, also referred to
as adversarial examples (AEs), are techniques that perturb the input
data to force an NLPmodel to produce incorrect predictions [26, 27].
The fact that NLP models misclassify examples that are slightly dif-
ferent from a correctly classified input demonstrates a fundamental
weakness in the training algorithms for NLP systems.

To address this issue in the learning models, extensive research
has been conducted. One particularly active area of research in this
space with a significant number of techniques is the adversarial
training, first introduced by Goodfellow et al. for vision applications
in [15]. In [15], the effectiveness of adversarial training is demon-
strated by leveraging the gradient-based optimization technique.
Moreover, it is shown that models can be made more resistant to
AEs by training them on both the original and adversarial examples,
thus the term is named as “adversarial training”.

The general intuition behind the operation of adversarial train-
ing is that a model that is well-trained should perform reasonably
well when it is tested with new (unseen) examples and resist adver-
sarial attacks. To this end, several research works have proposed
adversarial training techniques to defend against adversarial exam-
ples and eventually achieve the model robustness. A vast majority
of the research studies addressing this problem take an NLP task
(e.g., sentiment classification, Natural Language Inference (NLI),
etc.), train an NLP model (e.g., BERT) with adversarial examples,
and measure the model’s prediction accuracy [19, 30, 32]. In doing
so, they demonstrate that the adversarial training has improved
model’s accuracy significantly and they consider that as a contribut-
ing factor to the robustness against adversarial attacks.

A vastly unexplored aspect of this approach is that it considers a
static view that does not deal with how learning methods would be
deployed in reality, evolve over time, and be subject to distribution
variations. In other words, those research works fall short in re-
evaluating NLP models upon adversarial training to determine if
they remain effective under different time settings.

https://doi.org/10.1145/3494108.3522764
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The shift of models as a result of the distribution shift in the
input data is intrinsic in the context of model training, as different
machine learning algorithms are prone to the phenomena called
“concept drift”, which is well-documented in the literature. Concept
drift makes the aforementioned shortcoming quite visible in an
adversarially-trained model. In short, concept drift means that the
statistical properties of the target variable (i.e., model’s prediction
accuracy) can change over-time in unforeseeable ways [23]. In
the context of NLP models, concept drift means that a model’s
performance about NLP tasks can degrade over time as it sees new
data [23]. This is a crucial aspect that deserves further attention,
because NLP models could eventually make poor predictions on
the data it has not seen before, while (distribution-wise) the data
still are within the training fold.

Although concept drift is recognized and studied before, espe-
cially for pattern recognition [20, 28, 34], it has not been given any
attention in the NLP domain, especially in the context of adversarial
training. Motivated by this observation, we initiate the study of
concept drift in NLP by evaluating their impact on the effectiveness
of adversarial training. While it is intuitive that adversarial training
will be affected by concept drift, this study serves as a quantification
of this impact with various learning models and datasets.
Contributions. Equipped with this perspective, we make the fol-
lowing contributions. (1) Recognizing that adversarial examples
are distribution-dependent, we stipulate that adversarial training is
limited due to distribution shift in the underlying data. This distri-
bution shift is best seen in model updates due to the arrival of new
data observations. (2) We experimentally validate this shortcom-
ing of adversarial training due to distribution shift on sentiment
analysis, a popular natural language processing task, using various
datasets and learning techniques. Among other interesting findings,
we show that the degradation in the performance of adversarial
training is both dataset and learning technique dependent.
Organization. The related work is outlined in §2. Background and
methodology are outlined in §3. The evaluation is highlighted in
§4, followed by concluding remarks and open questions in §5

2 RELATEDWORK
The machine learning (ML) literature has many research stud-
ies [5, 8–10, 24] advocating and demonstrating the importance
of adversarial training as a defense mechanism against adversarial
attacks following the work of Goodfellow et al. [15] which showed
that adversarial training can withstand adversarial attacks and
thereby make such models more robust against real-world attacks.

In the NLP domain, adversarial training has almost become a de
facto standard to achieve robustness to adversarial attacks. In [30],
Wang et al. present a Controlled Adversarial Text Generation (CAT-
Gen) model that, given an input text, generates adversarial texts
through controllable attributes that are known to be irrelevant to
task labels. Their proposed model consists of an encoder and a
decoder for text generation, and a module network that encodes
the information of controllable attributes and generates adversarial
attacks by changing the controllable attributes.

Hendrycks et al. [17] studied the effect of pretaining ML models
on robustness in the image domain, showing improvements of∼10%
in robustness using adversarial examples and out-of-distribution

Original
Perfect performance by the actor→ Positive (99%)
Adversarial
Spotless performance by the actor→ Negative (100%)

Figure 1: An adversarial example generated using [19]
TextFooler for a BERT-based sentiment classifier. Swapping
out “perfect” with synonym “spotless” completely changes
the model’s prediction, even though the underlying meaning
of the text has not changed

detection. This work falls short in discussing the long-term stability
of ML models and how the performance might degrade over-time
as models evolve and are introduced to future data.

Madry et al. [24] studied the adversarial robustness of deep neu-
ral networks from a robustness optimization perspective. They
explored the link between neural network architecture and adver-
sarial attacks, and concluded that model capacity plays a role in
defending against adversarial examples. They also demonstrated
that adversarial training can yieldmore robust models to adversarial
attacks. This study did not indicate whether the same optimization
technique applies to other ML models such as NLP models.

Iyyer et al. [18] present a framework called Syntactically Con-
trolled Paraphrase Network (SCPN) for generating adversarial ex-
amples using an encoder-decoder model for adversarial training
data generation. Their technique, however, assumes that the model
will be static, meaning that the mapping learned from adversarial
training data is just as valid in the future on new data and that the
model will change in the future.

Zhu et al. [33] propose an adversarial training algorithm, FreeLB,
that promotes higher invariance in the embedding space. To val-
idate the proposed approach, they apply it to Transformer-based
models for natural language understanding and commonsense rea-
soning tasks. Experiments on the GLUE benchmark show that when
applied only to the fine tuning phase, it boosts the overall perfor-
mance of BERT model from 78.3% to 79.4%, and RoBERTa-large
model from 88.5% to 88.8%. The work, however, does not consider
the temporal aspects of model training.

Wong [31] introduced DANCin SEQ2SEQ, a framework for gener-
ating adversarial examples targeting black-box classifiers focusing
on a binary classifier for spam detection using the spam-ham dataset
by re-framing the adversarially-generated text as a reinforcement
learning technique and drawing on GAN-inspired learning tech-
niques to generate examples attacking a targeted classifier.

Recent work addressed the effect of concept drift over the long-
term performance of ML models. Bichine et al. [7] conducted a
comprehensive study on the effect of concept drift using a tweeter
stance detection model as the classification task and concluded that
the performance of ML classification task degrades over time as
ML algorithms are introduced to new data from the real world due
to concept drift. They also indicated that ML models (especially
classification tasks) should implement adaptation approaches in
order to cope with concept drift issue. Their work, however, does
not consider how such a shift affects adversarial training.

3 BACKGROUND AND METHODOLOGY
In this section, we review the background and the methodology
of experiments outlined in the rest of this paper. To initiate our
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discussion, we review the main natural language task of interest,
namely sentiment analysis. We then outline various definitions
of adversarial examples and adversarial training, followed by our
implementation to examine the impact of varying models on the
performance of adversarially-trained sentiment analysis tasks.

3.1 Sentiment Analysis
While adversarial examples are applicable on a large number of
tasks, we use sentiment analysis (SA) as our task of choice, given
the prevalence of this task in general. SA is a text classification
task that is often used in the context of analyzing text and natural
language data [1–4]. SA works by assigning weighted sentiment
scores to the topics and categories within a sentence. The purpose
of SA in the context of NLP is to identify, extract, and analyze
subjective markers of data coming from textual sources such as
the opinions of customers in the Amazon Review dataset, or the
opinions of viewers in the IMDB dataset. In this way, SA uses NLP
to identify the sentiments of users on a given topic. When we apply
SA techniques to NLP, we can classify a given input text by the
polarity of its sentiment as being positive, negative, or neutral [12].
Definition: Sentiment Analysis. Let 𝑥 ∈ X be an instance of input
text, where X is the space of the input text, and 𝑦 be the target label
of sentiment (e.g., for binary sentiment; positive vs. negative, 𝑦 could
be either 0 or 1; in the general case, 𝑦 ∈ R𝑘 , where 𝑘 is the number of
classes being predicted). The sentiment classification task is denoted
as a mapping function ℎ𝜃 : X → R𝑘 (alternatively, ℎ𝜃 : 𝑥 → 𝑦).

As can be seen from the above definition, SA can be implemented
using a variety of algorithms to realize ℎ𝜃 , both deep and shallow,
including BERT, WordCNN, LSTM, etc., which we use in this work.

In realizing ℎ𝜃 , we define a loss function ℓ , where the purpose
is to minimize ℓ (ℎ𝜃 (𝑥), 𝑦). Given that a model is trained on more
than one input sample (e.g.,𝑚 of them), the task then becomes to
minimize the average loss across those samples. That is,

min
𝜃

1
𝑚

𝑚∑︁
𝑖=1

ℓ (ℎ𝜃 (𝑥𝑖 ), 𝑦𝑖 ) (1)

3.2 Adversarial Examples
Adversarial examples are inputs that are designed to attack and fool
an ML system. More specifically, an adversarial example is defined
as an input 𝑥 ′ obtained by solving the following optimization:

max
𝑥 ′

ℓ (ℎ𝜃 (𝑥 ′), 𝑦) = max
𝛿 ∈Δ

ℓ (ℎ𝜃 (𝑥 + 𝛿), 𝑦) (2)

That is, by solving this optimization we try to find 𝑥 ′ defined as
𝑥 + 𝛿 for some perturbation 𝛿 obtained from the allowed set of
perturbations, Δ, such that the loss between the prediction by ℎ𝜃
and the original label, say 𝑦, is maximized. We notice that 𝛿 ∈ Δ is
typically dependent on 𝑥 ’s distribution.

In this work, we are only interested in adversarial examples on
the textual inputs for the sentiment application. We notice that
there has been several studies addressing the optimization problem
in (2). In the following, we consider one such work for highlighting
the background and the key elements employed in our analysis,
although this part can be replaced by any adversarial generation
algorithm as it is a secondary aspect to the contribution.

Adversarial Examples. Jin et al. [19] introduced simple yet effi-
cient baselines for realizing adversarial examples for BERT mod-
els in the block-box threat model. Moreover, they demonstrated
how these adversarial examples can be used to attack NLP models,
particularly the sentiment analysis task, and ultimately measured
their robustness against adversarial attacks. Generally, to generate
an adversarial example that meets the definition shown in (2) for
the sentiment analysis task, a combinatorial optimization problem
is solved using various heuristic search algorithms [25]. In other
words, an adversarial example generation algorithm will search for
inputs that produce incorrect outputs leading to a misclassification.

In Figure 1, we show an adversarial example generated using
TextFooler, due to Jin et al. [19] for the BERT-based sentiment
classifier. The algorithm works in two major steps. First, starting
with a sentence of 𝑛 words, 𝑥 = 𝑤1,𝑤2, . . . ,𝑤𝑛 , the algorithm
ranks those words based on their importance. Noting that only the
important words in 𝑥 are going to contribute more significantly to
the outcome ofℎ𝜃 , the authors argue that changing those important
words will significantly affect the output of ℎ𝜃 (𝑥). Moreover, given
that the modification will only affect those important words, it will,
by definition, be minimal. Once the important words are selected,
the second step of word transformer is invoked, where words are
replaced with other words that have similar semantics, fit well in
the context, and force the target model to misclassify the input
sentence 𝑥 . Upon executing the word transformer step, various
sanity checks are imposed, including part-of-speech enforcement
and semantic similarity check. The example in Figure 1 shows
a sentence (original and adversarial example) resulting from the
execution of this heuristic: replacing “perfect” with the synonym
“spotless” fools the model, leading to an incorrect prediction. We
note that the underlying meaning of the original example has not
changed, thanks to the constraints over the adversarial example.

3.3 Adversarial Training
Adversarial training is a technique used to improve the robustness
of deep network models by integrating adversarial examples into
the process of the training of the model [22]. For NLP tasks, adver-
sarial training refers to the process of creating adversarial examples,
by either re-training a model on adversarial examples that have suc-
cessfully attacked and fooled the model or by incorporating input
perturbations into the model training, e.g., using the approach high-
lighted in the previous section. In either case, adversarial training
is performed by adversarially perturbing the text embedding space.
Technically, adversarial training aims to (adversarially) optimize
the loss function to minimize the computational cost associated
with creating an adversarial example. In other words, we try to
modify the training objective by applying a small perturbation to
the input text that maximizes the adversarial loss as the following.
Definition: Adversarial Training.We define 𝐽 (ℎ𝜃 ) as a cost func-
tion (risk, or loss under the true distribution of samples) and write
down this risk function formally as:

𝐽 (ℎ𝜃 ) = E(𝑥,𝑦) ∈D [ℓ (ℎ𝜃 (𝑥), 𝑦)] (3)

where ℓ is the loss function, ℎ𝜃 (𝑥) is the predicted output when the
input is 𝑥 , D is the empirical distribution over samples, E is the
expectation function, and 𝑦 is the target output. Since we often do
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not know the actual distribution of the data, we approximate the
distribution by considering a set of samples 𝐷 = {(𝑥𝑖 , 𝑦𝑖 ) ∼ D}; 𝑖 =
1, . . . ,𝑚, from which the empirical cost is calculated as

𝐽 ′(ℎ𝜃 , 𝐷) =
1
|𝐷 |

∑︁
(𝑥,𝑦) ∈𝐷

ℓ (ℎ𝜃 (𝑥), 𝑦) (4)

In the training process, we attempt to minimize 𝐽 ′(ℎ𝜃 , 𝐷𝑥 ), where 𝐷𝑥

is a training set. Using the same notation above, one can generalize
the cost into an adversarial cost, which we define as:

𝐽adv (ℎ𝜃 ) = E(𝑥,𝑦) ∈D [max
𝛿 ∈Δ

ℓ (ℎ𝜃 (𝑥 + 𝛿), 𝑦)] (5)

Similar to the rationale highlighted for (4), we define the empirical
adversarial cost as:

𝐽 ′adv (ℎ𝜃 , 𝐷) =
1
|𝐷 |

∑︁
(𝑥,𝑦) ∈𝐷

max
𝛿 ∈Δ

ℓ (ℎ𝜃 (𝑥 + 𝛿), 𝑦) (6)

In the adversarial training, 𝐽 ′adv (ℎ𝜃 , 𝐷) in (6) is minimized.
Implementation Details. In our analysis, we followed [33] and
utilized the inner ascent steps of the Projected Gradient Descent
(PGD), a popular and powerful optimization algorithm for machine
learning. In this method, the gradients of the parameters can be
obtained with almost no overhead when computing the gradients
of the inputs. Moreover, we implemented the algorithm using the
TextAttack framework [26] to test the AEs we generated.

3.4 Distribution Shift and Associated Questions
In our description of the training process so far, for both the regular
model training using the optimization in (1) and the adversarial
training using (6), we assumed a static dataset, 𝐷 . Even when train-
ing adversarially, perturbation 𝛿 is going to be defined in terms
of the dataset 𝐷 , limiting the impact of the adversarial training
to the current data, and making the adversarial examples less rel-
evant to other datasets. In the actual deployments of NLP tasks,
such as sentiment analysis, however, the underlying model will
be constantly exposed to new data. The newly introduced data
may even be out of distribution (OOD) with respect to the original
data used for training and evaluating the performance of the model
(baseline; before deployment). Moreover, the distribution of the
data will change over time, causing temporal changes to the model
and causing distribution (or even concept) shift/drift [13].

Concept drift, for instance, implies that statistical properties of
the target variable (e.g., model’s prediction accuracy; conversely,
loss) can change over-time in an unforeseeable ways [23]. In turn,
this causes the NLP model to make incorrect predictions (i.e., vari-
able target) even though the distribution of the input may stay
constant. Moreover, a model’s performance can degrade over time
as it sees new data [23]. This is a crucial aspect that deserves at-
tention because NLP models could eventually make poor or even
wrong predictions on data it has not seen.

Starting with a model training used to achieve the objective
in (1), one expects an accuracy (possibly high, since the loss is
minimized as part of this optimization). Introducing an adversarial
example, as defined in (2), one would expect the loss ℓ (ℎ𝜃 (𝑥 +
𝛿), 𝑦) to be significantly increased (model under attack). To cope
with the high loss, one could imagine an adversarial training step,
by solving the optimization in (6). We note that the adversarial

examples are obtained using𝐷 , an empirical distribution using a set
of finite examples (𝑥𝑖 , 𝑦𝑖 ) for 𝑖 = 1 . . .𝑚. The question then becomes:
how would the loss of this model against adversarial examples in
𝐽 ′adv (ℎ𝜃 , 𝐷) be impacted if 𝐷 is changed to 𝐷 ′, updating ℎ𝜃 without
updating 𝐽 ′adv (ℎ𝜃 , 𝐷)? In other words, by solving min𝜃 𝐽 ′adv (ℎ𝜃 , 𝐷)
for some 𝐷 , then updating the dataset 𝐷 to 𝐷 ′, and solving for 𝜃 ′
in min𝜃 𝐽 ′(ℎ𝜃 , 𝐷 ′), how big is the gap in the inner model loss? This
is, how big is the gap computed as the following difference:

1
|𝐷 ′ |

∑︁
(𝑥,𝑦) ∈𝐷′

ℓ (ℎ𝜃 ′ (𝑥), 𝑦) −
1
|𝐷 |

∑︁
(𝑥,𝑦) ∈𝐷

ℓ (ℎ𝜃 ′ (𝑥 + 𝛿), 𝑦)

Answering the question might be straightforward for a binary
answer (i.e., whether there will be a gap or not, since it is intu-
itive that the loss will increase and the performance will degrade
when tested against old adversarial examples generated by tak-
ing 𝐷 into account). However, our focus in this work is rather the
quantification of this gap, which is both interesting and important.

Addressing this question is the key contribution of this study.
Namely, we are interested in exploring the interplay between this
drift (of the original model) and the performance of adversarial
training, potentially as the model gets retrained. We do that empiri-
cally to verify and validate the importance of distribution (concept)
drift for NLP models using real-world datasets and a variety of
learning models and architectures; transformers-based, LSTM, and
WordCNN-based models, which are all widely used in the literature.

The flow of our experimental setup starts by a pretrained model,
exposed to adversarial examples upon which an adversarial training
is conducted to cope with those adversarial examples. The concept
drift (of the original model) takes place, and model retraining is
conducted so as to maintain the accuracy of the original model.
Upon doing that, we explore whether the adversarial retraining is
still effective in addressing the same adversarial examples already
built in the model through the adversarial training.

4 RESULTS AND DISCUSSION
In the following, we present our experiments conducted on various
datasets using different model architectures and demonstrate that
adversarial training is in fact limited due to distribution shifts in
the data used in the underlying model and associated retraining.

4.1 Datasets, Algorithms, and Metrics
4.1.1 Datasets. As shown in Table 1, we conducted our experi-
ments using three datasets: IMDB, Movie Review, and Yelp Polar-
ity. We use those datasets in this study because they are standard
datasets (benchmarks) that are popular and widely used in the
domain of sentiment analysis tasks and classification in general.

4.1.2 Algorithms. A range of deep learning algorithms that have
been shown to provide state-of-the-art classification results for
sentiment analysis are used: BERT, WordCNN, and LSTM.
BERT. Bidirectional Encoder Representations from Transformers
(BERT) is a transformer-type deep neural network which has been
fine-tuned and pre-trained using a gigantic dataset. The pre-trained
characteristic of BERT makes it a perfect fit for various NLP tasks,
such as sentiment analysis, question answering, and paraphrasing,
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Table 1: Datasets: IMDB, Movie Review, and Yelp for our sentiment analysis task. Each dataset has binarised ratings and is set
as positive and as negative, and split into a training and test set.

Dataset Name Dataset Description Atributes
IMDB Large Movie Review Dataset set of 25,000 for training, and 25,000 for testing
MR Movie Review Dataset set of 5,331 for training, and 5,331 for testing
Yelp Large Yelp Review Dataset set of 560,000 for training, and 38,000 for testing

among others. Moreover, BERT allows its adopters to build highly-
complex and precise language understanding models, which could
be used for different NLP applications [21]. On the other hand, the
fining-tuning capability provided by BERT allows for embedding it
into various models architectures and thus efficiently fine-tuning a
model to become robust to adversarial attacks.
WordCNN. Word Convolutional Neural Network (WordCNN) is a
neural network used for linguistic tasks, such as text classification.
For the wordCNN model to effectively classify text, it implements
a word embedding layer and a one-dimensional convolutional net-
work [16]. The word embedding layer is essential for the wordCNN
model to handle the challenges associated with addressing NLP
tasks including text classification. Additionally, the word embed-
ding layer is also crucial for fitting the CNN model and ultimately
achieving high performance on the given linguistic task.
LSTM. The Long-Short Term Memory (LSTM) is a particular type
of recurrent neural network (RNN) capable of learning and handling
sequential data using a recurrent layer or cell. The recurrent layer
or cell of the LSTM network enables them to memorize data for
long periods of time. This is done by producing its own output at a
particular time stamp from part of the input to the next time stamp.
The ability of LSTMs to remember long-term dependencies makes
LSTMs especially useful in addressing the long-term dependency
problem associated with other RNNs [29].

4.1.3 Evaluation Metrics. For our evaluation, we use two metrics:
the accuracy and misclassification rate. The accuracy is calculated
as the number of correct sentiment predictions made by the model
normalized by the total number of predictions. Themisclassification
rate is calculated as the total number of the wrong predictions made
by the model normalized by the number of predictions.

4.2 Results
4.2.1 Baseline. We implement the above three algorithms for es-
tablishing a baseline of performance (using the accuracy) of the
learning algorithms without any attacks. As we can see from Ta-
ble 2, BERT consistently achieves the highest classification accuracy
(90.01%, 87.03%, and 96.12% on the three datasets, respectively). Con-
versely, WordCNN consistently achieves the lowest classification
accuracy (86.32%, 79.41%, and 92.29% on the three datasets, respec-
tively). The fact that BERT outperforms the other two models under
different datasets is expected as BERT is a state-of-the-art model
and this is consistent with findings in the literature.

4.2.2 Misclassification Rate Under AEs. We study the impact of the
adversarial examples on the performance of the different models
using the different datasets by employing the adversarial example
generation method mentioned in section 3.2. For each run, we use
1, 000 adversarial examples.

Table 2: Baseline experiment shows the classification accu-
racy of each of the three models prior to adversarial training.
Note that BERT consistently achieves the highest classifica-
tion accuracy. Conversely, WordCNN consistently achieves
the lowest classification accuracy.

Dataset Model Accuracy
IMDB BERT 90.01

WordCNN 86.32
LSTM 88.32

MR BERT 87.03
WordCNN 79.41
LSTM 80.71

Yelp BERT 96.02
WordCNN 91.36
LSTM 92.22

Table 3 shows that the misclassification rate upon introducing
the adversarial examples is significantly high. Namely, it is shown
that the BERT model exposed to adversarial examples suffers a
misclassification rate of 96.31% when tested with the MR dataset.
To further validate the distribution shift of models and prove the
transfer ability and generalization of our findings, we extend our
experiments to different model architectures and observe that the
WordCNN and LSTM-based models suffer even a higher misclassi-
fication rate. In particular, LSTM-based model fared the worst with
a misclassification rate of 99.71% (even after adversarial training)
when tested with adversarial examples using the Yelp dataset.
Table 3: Misclassification under adversarial examples. The
misclassification rate increased after introducing the adver-
sarial examples. We observe that BERT is consistently per-
forming better than other models across multiple datasets.

Dataset Model Misclassification Rate
IMDB BERT 96.04

WordCNN 97.89
LSTM 99.22

MR BERT 96.31
WordCNN 97.92
LSTM 99.62

Yelp BERT 96.26
WordCNN 97.95
LSTM 99.71

4.2.3 Retraining with Adversarial Examples. To generate AEs we
utilize the idea of Adversarial Text Generation by [30], although
using a different model architecture and for different datasets.
Implementation Details. The adversarial examples generation
model includes an encoder and a decoder for generating adversarial
examples. The encoder and decoder are trained over a large text
corpus to ensure that adversarial examples adhere to the linguistic
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Table 4: Adversarial training results. Note that the accuracy
rate, after adversarial training, for each model consistently
increased across multiple datasets.

Dataset Model Accuracy
IMDB BERT 93.24

WordCNN 89.22
LSTM 88.01

MR BERT 89.98
WordCNN 82.34
LSTM 82.35

Yelp BERT 98.12
WordCNN 92.29
LSTM 93.68

constraints and preserve semantics. For semantic preservation, we
follow [25] and tighten the thresholds on the cosine similarity be-
tween embeddings of swapped words and the sentence encoding of
original and perturbed sentences. We ensure and enforce the gram-
maticality of the adversarial examples by validating perturbations
with a grammar checker. Moreover, we apply the semantics as well
as the grammatical constraints at each step of the search following
[26]. We conduct our experiments on real-world NLP datasets to
demonstrate the effectiveness, applicability and generalizability of
our approach. We show that our generated attacks are more diverse
and more robust against model re-training and various model archi-
tectures. For the retraining, we adopted our three learning models
to ensure the generalizability and transferability of our results to
different network architecture and under multiple datasets.

As shown in Table 4, retrainingmodels with adversarial examples
lowers the misclassification rate and improves the accuracy, which
is consistent with the literature of adversarial training. In Table 4,
we present the results of retraining each of the the three models
(BERT, WordCNN, and LSTM) with adversarial examples training.
Specifically, we divide generated adversarial examples into two
subsets, one is used for augmenting the training data, and the other
is a hold-out set used for testing. With the augmented training
data, we observe that adversarial training achieves accuracy gains
consistently across all models and under different datasets.

4.2.4 Adversarial Examples with Training Model to Address Tempo-
ral Changes. Finally, we examine the impact of model retraining on
the performance of retrained models using adversarial example. To
simulate this idea, we have used the same datasets highlighted ear-
lier, but for model retraining, we held a fold out (half of the dataset).
Upon introducing retraining the models built with the adversarial
training, with this held dataset, we obtain the results in Table 5.
From these results, we observe that, generally, the performance of
the adversarially-trained model degrades significantly (comparing
Table 4 to Table 5). For example, we notice that the misclassification,
while not as high as that in Table 3, is still as high as 91% (LSTM
over MR) and is as low as 58% (BERT over IMDB). These results,
in a way, confirm that while the performance of the model against
adversarial examples reduced, the effect of adversarial training is
still present although with very little impact defending against the
introduced adversarial examples upon retraining.

Table 5: Misclassification rate with retraining upon adver-
sarial training. Note that retraining models with adversarial
training examples yields a lower misclassification rate.

Dataset Model Misclassification Rate
IMDB BERT 58.17

WordCNN 69.12
LSTM 72.45

MR BERT 84.25
WordCNN 89.77
LSTM 91.34

Yelp BERT 80.22
WordCNN 85.68
LSTM 90.01

5 CONCLUSIONS AND OPEN DIRECTIONS
In this paper, we show that adversarial training has a very limited
effect on NLP model’s robustness due to the concept drift phe-
nomena addressed by model retraining. We demonstrate that the
performance of adversarial training significantly degrades over
time through experiments on three real-world datasets (IMDB, MR,
and Yelp) using three different model architectures (BERT, Word-
CNN, and LSTM). We observe that the misclassification rate of
models with adversarial training is just as high as models without
adversarial training. For instance, our BERT model trained with
adversarial examples suffers a misclassification rate of 96.31% when
tested with a new dataset (MR dataset).

To validate the temporal changes of models and prove the trans-
ferability and generalization of our findings, we extend our exper-
iments to other model architectures and observe that WordCNN
and LSTM-based models suffer even a higher misclassification. In
particular, LSTM-based model fared the worst with a misclassifi-
cation rate of 99.71% (after adversarial training) when tested with
adversarial examples using the Yelp dataset.

The findings in this work call for further investigation into the
impact of actual deployment on the behavior of models with respect
to defense mechanisms. While we address adversarial training in
this work, the insight can be applied to any defense mechanism that
incorporates training processes, where the effect of this training
diminishes by introducing new samples into the original model that
may feature distribution shift. Given the simplicity of the model
output we considered here (sentiment), it is unclear how much
of our insight generalizes to other NLP tasks, e.g., Natural Lan-
guage Inference and Question Answering, which will be our future
work. Moreover, given the fundamental characteristics exploited
in this work for demonstrating the limitations of adversarial train-
ing, it would be interesting to see how such insight translates to
performance degradation in less constrained domains (e.g., image).

In conducting our experiments, we considered a simplistic sce-
nario: the distribution shift of the model as result of the shift in the
underlying data distribution is done once. This somewhat deviates
from the natural data dynamics: a model is typically updated by data
increments happening over a period of time that are incorporated
in the training model, which we pursue in the future.
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