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Abstract

The lack of security measures among the Internet of Things (IoT) devices and

their persistent online connection gives adversaries a prime opportunity to tar-

get them or even abuse them as intermediary targets in larger attacks such as

distributed denial-of-service (DDoS) campaigns. In this paper, we analyze IoT

malware and focus on the endpoints reachable on the public Internet, that play

an essential part in the IoT malware ecosystem. Namely, we analyze endpoints

acting as dropzones and their targets to gain insights into the underlying dy-

namics in this ecosystem, such as the affinity between the dropzones and their

target IP addresses, and the different patterns among endpoints. Towards this

goal, we reverse-engineer 2,423 IoT malware samples and extract strings from

them to obtain IP addresses. We further gather information about these end-

points from public Internet-wide scanners, such as Shodan and Censys. For the

masked IP addresses, we examine the Classless Inter-Domain Routing (CIDR)

networks accumulating to more than 100 million (≈78.2% of total active public

IPv4 addresses) endpoints. Our investigation from four different perspectives

provides profound insights into the role of endpoints in IoT malware attacks,
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which deepens our understanding of IoT malware ecosystems and can assist

future defenses.

Keywords: Internet of Things; Endpoints; Malware

1. Introduction

The Internet of Things (IoT) has reshaped the way in which people, busi-

nesses, and even cities interact with their environment through Internet-connected

devices. There is no doubt that IoT devices have benefited the global economy

and made our lives more efficient. With the number of IoT devices soaring into

the tens of billions [1], the potential adversaries have set their sights on these

devices knowing that they are always connected. To this end, malicious code

that targets IoT devices is on the rise that infects the device itself and receives

code updates from dropzones around the world. Acting as intermediate nodes,

these infected devices have the potential to launch attacks on other targets to

form a massive distributed denial-of-service (DDoS) attack [2, 3, 4, 5]. More-

over, the majority of these IoT devices are at a high risk to the new threats due

to the lack of security awareness among consumers and the lack of consensus on

security standards among the IoT industry [6, 7].

Bastys et al. [8] demonstrate that popular IoT app platforms are susceptible

to attacks by malicious applet makers. With less than half of consumers chang-

ing default passwords on their IoT devices [9], it is a no surprise that malware

like Mirai has been able to amass a large botnet to launch massive DDoS attacks

by simply using a dictionary of common IoT login credentials [10]. Compared

to traditional hardware with operating systems with automated updates, IoT

devices tend to have slower patch times and insecure communication [11]. It

makes them “ideal targets” for additional attacks like the Key Reinstallation

Attack (KRACK) exploit [12]. It abuses design flaws in cryptographic Wi-Fi

handshakes to reinstall existing keys which allows attackers to eavesdrop on

network traffic or even inject malicious content [13].
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Alrawi et al. [14, 15] revisited the literature and evaluated security of IoT de-

vices and software, unveiling various outstanding in the existing ecosystem that

could be resolved with existing solutions. With the proliferation of IoT devices

in today’s world, we even see decades-old attacks resurface to take advantage

of vulnerable IoT devices [15]. For example, the SSHowDowN Proxy attack

discovered by Akamai [16] utilizes a 12-year old vulnerability in OpenSSH to

effectively take over the device to remotely generate attack traffic.

The impact of IoT malware is significant. Compromising IoT devices at

scale, adversaries form a network of botnets to launch major attacks. For exam-

ple, recently, 13,000 compromised IoT devices were used to generate persistent

traffic of 30 Gbps, targeting numerous financial institutions, with significantly

low intensity than the recorded Mirai botnet attack that generated devastating

attack traffic of 620 Gbps [17]. Similarly, a service provider in the US survived

the largest DDoS attack with attack traffic staggering to 1.7 Tbps [18].

Realizing the susceptibility of the IoT devices, malware authors can exploit

such weaknesses to employ them as intermediary targets for large attacks [19,

20]. For an attack to be successful, the Command and Control (C2) servers, the

intermediary targets, and the victim must be connected to the Internet, thereby

making it essential to study these endpoints.

In this work, we extract endpoints from IoT malware samples by reverse-

engineering those samples and perform a data-driven study to analyze their

different traces, such as geographical affinities, organizations, ports, and their

exposure to attacks. Taking our earlier work [21] forward, this work dives deeper

into exploring the geographical affinity between endpoints by studying their

region- and city-level characteristics. Additionally, this work explores the de-

vices characteristics (behind endpoints) accessible through the public Internet

that are covered by the attack purview. Our work is essential to understand the

Indicators of Compromise (IoCs) and the behavioral aspects of the targets that

can be used for threat intelligence or threat hunting. For the masked IP ad-

dresses in the malware, we analyze the Classless Inter-Domain Routing (CIDR)
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192.250.89.120
192.156.131.6
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168.157.227.67
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push ebp 
mov ebp, esp
sub ebp, 3
sub esp, 4
mov esp, ebp
push edi
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Figure 1: Data collection and extraction system. We start by collecting malware binaries from
IoTPOT [23]. The dataset is reverse engineered to extract the embedded IP addresses, which
is then categorized into dropzones and target IP addresses. Using VirusTotal and Geolocation
APIs, we extract additional behavioral information of the IP addresses. ORG.: organization
information of the collected IP addresses.

addresses that accumulate to more than 100.7 million IP addresses accumula-

tion to ≈78.2% of total IPv4 addresses. We calculate the ratio with respect to

the total responsive public IPv4 addresses as observed using Censys [22].

Contributions. The main goal of this study is to analyze the dynamics exposed

by the affinities among endpoints. A successful attack environment encompasses

endpoints that act as the enablers. They help inflate the attack impact by

acting as sources for the expansion of the network botnets. Practically, these

endpoints are used to obtain instruction for infection, such as downloading shell

scripts, malware binaries, and launching a flood attack [15]. The creation of an

attack environment also requires endpoints that are targeted with an intention

to create or expand a network of infected devices. Such devices can be selected

algorithmically (using domain generation algorithms) or by use of a static and

exhaustible list [24]. Emphasizing on the enabling and the targeted endpoints,

we make the following contributions.

1. We analyze the dropzone-target inter-relationships. Specifically, we inves-

tigate the target IP addresses among different dropzone IP addresses.

2. We perform a geographical analysis of the dropzones and targets. Towards

this, we analyze the locations of dropzones and their target IP addresses.

3. We perform a network penetration analysis of the targets and dropzone IP
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addresses. Specifically, we analyze risks associated with the IP addresses

through insights gained from Shodan, an Internet-connected devices search

engine.

4. We analyze the attack exposure of networks and IP addresses. For masked

target endpoints, we examine the entire network and study the network

devices and their exposure to risk.

The results of our analysis provide insightful findings about the role of endpoints

in IoT malware ecosystems, which can also assist effective defenses in the future.

Organization. We describe our dataset, data augmentation and pipeline, and

outline our goals and objectives in section 2. In section 3, we perform IP address-

centric analysis of the endpoints followed by a network-centric analysis in sec-

tion 4. We review the related work in section 5 and discuss the implications

of the results in section 6. Finally, we present conclusions and future work in

section 7.

2. Dataset and Goals

We describe our dataset and its augmentation, and describe the goals and

objectives of this work. We reverse-engineer the malware and extract endpoints

from the strings. We then add information related to the endpoints from differ-

ent sources to facilitate our analyses. Fig. 1 presents the process at a high-level;

we explain the process in the rest of the section.

2.1. Dataset

We were faced with the difficulty of obtaining IoT malware samples and

turned to one of the first honeypots specifically targeted towards IoT threats.

Proposed in 2015 by Pa et al. [23], the IoTPOT honeypot emulates the Tel-

net services (later improved to include other services) of different IoT devices

and communicates with a back-end component called IoTBOX, which operates
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Table 1: Distribution of malware by family. DZ stands for Dropzone.
Target family Count % DZ family Count %
Gafgyt 930 95.58 Gafgyt 2,294 98.96
Tsunami 39 4.01 Tsunami 24 1.04
SINGLETON 3 0.31 - - -
Lightaidra 1 0.10 - - -

multiple virtual environments including eight different CPU architectures (e.g.,

MIPS, ARM, etc.). We obtained a total of 2,423 IoT malware samples, which

were graciously given to us by the authors of IoTPOT. The dataset represents

four different malware families, labelled by augmenting the results from Virus-

Total (VT) and by using AVClass [25]. For malware samples that do not have

a decisive family label from the VT results, those malware samples are labeled

as SINGLETON. The distribution of malware families can be seen in Table 1.

We reverse-engineer and analyze the malware samples using Radare2 [26],

an open-source malware analysis framework. We find strings in the malware

binaries, especially IP addresses, and classify those addresses by their association

with special keywords into two classes: dropzone and target IP addresses,

defined as follows:

• Dropzone IP. Adversaries often keep malware binaries in remote servers to

distribute them after gaining access to victim devices. These remote servers are

identified by dropzone IP addresses, controlled and managed by adversaries

and used for malware propagation and management. As such, the dropzone

IP addresses are associated with wget, HTTP, TFTP, GET, or FTP in the

residual strings obtained from the malware analysis.

• Target IP. To infect victim hosts, the malware uses a list of IP addresses,

including target devices. We refer to these IP addresses as targets. We note

that a large number of those target addresses in our analysis are masked. For

example, 123.17.*.* is one of the target IP address that is masked at /16; the

attacker can utilize this address targeting all IPs in the network address space.

We find the internal network addresses (e.g., 192.168.*.*), loopback ad-
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Figure 2: An overview of the dropzone and target in the malware life-cycle. The attacker
uses a pre-configured or infected server (dropzone) for attack propagation. The attacker tries
to propagate to targets by exploiting weaknesses. The malware accesses the dropzone and
downloads scripts and payload to the target. The infected target devices repeat the process.

dresses (e.g., 127.0.0.1) from our target dataset and remove them, since they

are irrelevant to our analysis. Also, we note that the Mirai source code con-

tained a list of “don’t scan” addresses, including various U.S. Department of

Defense (DoD) address blocks, as well as internal addresses [27], which we ex-

clude. Fig. 2 shows the dropzone and target in the malware life-cycle, including

dropzone setting, victim host (target) compromise, and download of malware

from the dropzone to the target.

Data Augmentation. We group the target and dropzone addresses by mal-

ware. Since a dropzone can be used by multiple malware, and to analyze the

overall sample-space a dropzone caters to, we cluster the target IPs by each

dropzone.

Using UltraTools [28], a free Domain Name Server (DNS) and domain lookup

tool, and Censys [29], each of the targets and dropzones is augmented with

country, ASN (Autonomous System Number), and location (e.g., latitude and

longitude). Using Shodan [30] we also obtain vulnerable endpoints on the Inter-

net that are susceptible to targeted attacks. We correlate the results obtained

from Shodan with our target and dropzone addresses to augment those ad-

dresses with additional information, such as vulnerabilities in services on those

addresses, operating systems used running on top of them, and open ports (i.e.,
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services running on the addresses).

We observe some dropzone addresses have no current information, e.g., they

are no longer connected to the Internet. This confirms that the dropzones are

short-lived—long enough to carry out an attack and short not to be detected. As

such, we leverage historical data of those IP addresses from Shodan to determine

the necessary data points associated with them.

Data Overview. The distribution of the target addresses exposes family-level

affinities by highlighting what set of addresses is being targeted by different mal-

ware. In particular, we observe a total of 106,428 target IP addresses, resulting

in 2,211 unique target IP addresses associated with 973 malware samples. This

makes the analysis of affinities, by understanding what makes these target IP

addresses the favorite among malware authors, of paramount importance.

The use of dropzone IP addresses by the malware exhibits that the malware

shares dropzones among themselves, with some contacting multiple dropzones

for commands. In particular, for the dropzones, we find that 877 unique drop-

zone IP addresses are being shared by 2,318 malware samples with 2,407 oc-

currences. Moreover, while we successfully extract dropzone IP addresses from

the majority of malware samples, we can find target IP addresses only in fewer

malware samples. This shows a thought pattern of malware authors, i.e., while

they share the dropzone IP addresses in the static code, they do not reveal the

target IP addresses. This can be because they obfuscate this part of the code,

employ domain generation algorithms, or use a custom list of IP addresses in

the downloaded binary file (i.e., DNS.txt) from a dropzone at runtime, as shown

in Fig. 3.

We also notice that 40% of the malware samples contain target IP addresses,

while 95.66% of them contain dropzones in their strings. We also observe disas-

sembled codes of malware samples that have dropzone but no targets, which is

explained either: (i) code-based generation of IP addresses, rather than static

IP address listing [31], and (ii) packing.
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wget \%s -q -O DNS.txt
|| busybox wget \%s -O DNS.txt
|| /bin/busybox wget \%s -O DNS.txt
|| /usr/busybox wget \%s -O DNS.txt

Figure 3: Retrieving a list of target hosts.

2.2. Goals and Objectives

The objective of this work is to conduct a comprehensive analysis of end-

points in IoT malware, including sources, C2’s, intermediary targets, and vic-

tims. In particular, we formulate questions that we answer through a data-

driven analysis to find the correlations between the endpoints of the dropzones

and targets, addressing the following goals:

• Dropzone-Target Inter-Relationships. Since malware associated with

certain dropzones point to specific target IP addresses, could these IP ad-

dresses be similar or identical to the addresses of targets in other dropzones?

To answer this, we reverse-engineered and analyzed the malware’s disassembly

to extract all target IP addresses for each dropzone.

• Geographical Analysis. What are the characteristics of the areas where

the dropzones are located? How does this affect the distribution of dropzones

and targets? For that, we analyze the distribution of the distance between

the dropzones and their targets, and examine the distribution from various

perspectives at the country, state, and city level.

• Network Penetration Analysis. What are the vulnerable services used

for both dropzones and target IP addresses? Which organizations own these

addresses? We analyze attributes of dropzone and target IP addresses such

as their active network ports, organization, and known vulnerabilities from

Internet-wide scanners; Shodan and Censys [29].

• Attack Exposure. How exposed are the IP addresses in the target’s network

address space? Towards this, we analyze the targets and look for vulnerabil-

ities in the services that they use. For the masked targets, we analyze the

network space and examine their up-to-date susceptibility.
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Figure 4: CDF graph of the number of attacks in the unique target IP. Most of them are
targeted less than 10 times.

To answer these questions, we divide our data-driven analysis into (i) IP

centric analysis and (ii) network centric analysis. We cover those directions in

the two following sections.

3. IP Centric Analysis

In this section, we analyze the dropzone-target inter-relationship, conduct a

country-, region-, and city-level geographical analysis of IP addresses, and per-

form a penetration analysis of the IP addresses to examine their susceptibility.

3.1. Dropzone-Target Inter-relationship

To inspect the dropzone-target relationship, we examine the affinity between

the dropzone and the target IP addresses. Fig. 4 shows the cumulative distribu-

tion function (CDF) of the number of attacks that a unique target IP address

receives. While ≈77% of the unique target IPs received less than 10 attacks,

one unique target IP received 72 attacks.

Throughout this research, we found one dropzone IP (50.115.166.193) that

was only associated with one malware sample, and that sample pointed to 1,265

network addresses, which was significantly larger than the average of 121 target
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Figure 5: Distribution of dropzones by the number of target IPs. The location of each circle
is based on the country extracted from the dropzone IP lookup information.

Table 2: Top 5 dropzone IPs per the number of targets.
Rank Dropzone IP Malware Total Targets

1 163.172.104.150 35 9,529
2 145.239.72.250 22 5,632
3 45.76.131.35 17 4,352
4 64.137.253.50 26 3,066
5 198.175.126.89 11 2,816

IP addresses for a typical malware sample. Also, they are masked network

addresses (most of them are /16 masked, as mentioned in Table 11), which

means that one target network address can be larger dynamically. Conversely,

the dropzone IP (5.189.171.210) has 86 associated malware samples, but each

of those points to a single target IP address.

Geographical Distribution. Fig. 5 plots the location of dropzone IP ad-

dresses around the world and the distribution by the number of the target IP

addresses they are associated with. As shown in Fig. 5, dropzones can be found

distributed mainly in North America and Europe. Moreover, through our fur-

ther analysis we found that the first IP address (163.172.104.150) (Table 2)
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Figure 6: CDF graphs showing the distribution of the number of overlapped target IP ad-
dresses and their ratio.

is associated with 35 malware samples affecting 9,529 target IP addresses.

Shared Targets Between Dropzones. To inspect the shared targets between

dropzone IP addresses, we group the dropzone IP addresses and report the

common (overlapping) targets among the dropzones. Since dropzones can be

associated with multiple instances of malware, each malware can have its own

list of target IP addresses. If we assume that a dropzone has a union of target

IPs for each malware belonging to that particular dropzone, we can aggregate

all of their target IPs into a larger set of target IPs. We denote Udz as the

union of all target IPs for a particular dropzone. To analyze the overlapping

target IP addresses and understand the criteria for choosing target addresses,

we compare Udz of each combination of dropzone addresses from a dataset of

877 unique dropzone addresses. Using combinations, we found combinations of

(
877

2

)
=

877!

2!(877− 2)!
= 384, 126.

Upon removing 365,968 cases that do not have common target IP between them,

we reduce the combination to 18,158 dropzone IP pairs. This dataset of 18,158

dropzone IP pairs is a combination of only 247 unique dropzone IP addresses

from the dataset of 877 unique dropzone IP addresses.

We found 71 cases that had more than 300 overlapped target IPs in Fig. 6(a).
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Table 3: Top 5 Cases of the number of overlapped targets by the number of dropzone pairs.
Rank Overlap Targets Dropzone Pairs %
1 101 1,385 7.63
2 141 1,230 6.77
3 110 1,078 5.94
4 106 1,028 5.66
5 75 1,000 5.51

Fig. 6(b) shows that there were 2,199 cases (12.11%) which are 100% overlapped

between dropzones. Overall, we found 6,451 cases (35.53%) in which the overlap

was more than 80%. In Table 3, we list the top 5 cases of the number of over-

lapped target IP addresses by the number of dropzone pairs and the percentage

that these pairs are from the total of 18,158 dropzone IP pairs. Notice that

these top 5 cases of dropzone pairs make up over 30% of all cases.

Summary. It is evident from the results of the above analysis that a large

number of targets are being shared between dropzones. If the target IP addresses

between different dropzones are matched 100%, it is possible that the attacker

obtained the same targets through similar vulnerability analysis (i.e., Shodan)

or shared the target list from other attackers through underground communities.

For example, a simple search of “default password” on Shodan gives 69,093

results. Additionally, a sizable match suggests that the target list may have been

partially shared, or the attacker may have added or removed certain targets to

the list for directed attacks.

3.2. Geographical Analysis

In this section, we focus on the distribution of the distances between the

dropzones and their target IPs. It will be apparent that a large number of

dropzone-target pairs have a certain range of distances, which is related to the

distribution of dropzones and their targets in each country. For example, we

noticed that there are several target IPs located in Vietnam, Brazil, and China.

To visualize the flow of attacks in a holistic sense, we plotted circular areas

whose sizes are proportional to the number of targets and are placed according
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Figure 7: Attacks trends between dropzones and target IPs. We only plot attacks that have
over 500 target IPs. The orange circle represents dropzones, and blue, red, and green circles
stand for target areas.

to their location on a world map with geodesic lines originating from various

dropzone locations (see Fig. 7).

Distance Between Dropzone and Target. As mentioned previously, a drop-

zone IP can be associated with several malware instances where each malware

can point to one or more target IPs. Knowing the locations of these IPs, we

calculate the distance between the dropzone and its target if they are related

to the same malware instance. Each distance shows the locality of the attack.

The total number of calculated distance cases is 111,480. Fig. 8 presents an

alternate view with a histogram plot of the distances between the dropzones

and their target IPs.

Our result of the majority of the distance shows the 8K-10K km range had

the most frequent number of cases totaling 34,479 (30.93% of all dropzone-target

distance cases). In this range, countries with the most target IPs are Brazil,

Vietnam, and China, in order. The countries with dropzones in this range are

European countries, including Italy, France, and the Netherlands. According to

Table 4, a large number of dropzones exist in the US, but they also have target

IPs in Brazil, Vietnam, and China, with a distance between dropzone and target

in the range of 12K-14K km and 10K-12K km.

Country-level Analysis. In this part, we look at the overall attack trend
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Figure 8: Histogram graph of distances between dropzone and target IPs. One bar represents
the number of dropzone-target pairs with a distance that has a value within the range of the
x-axis.

between dropzones and their targets on a world-scale. For each dropzone, we

collect all of the target IP addresses and extract location information (e.g., lat-

itude, longitude) to display the average position of the target area (not the

exact position). The target areas are scaled according to the number of tar-

get IP addresses they contain. Fig. 7 shows the results of our country-level

analysis, where we limit to only plotting dropzones with more than 500 target

IP addresses. The locations of the dropzones (depicted in orange) are spread

around various countries, but we highlight that there is a large concentration of

target areas focused in Central Asia.

Table 4 lists the top 5 countries by the number of dropzone and target IPs.

Note that the US has a large distribution of dropzones pointing to targets in

Asian countries such as Vietnam. Additionally, China and Brazil contain a large

number of target IP addresses originating from European countries. To help ex-

plain these findings, we turn to the results from researchers at Kaspersky Labs.

They stated that China and Vietnam were in their top-3 countries with the

most-attacked IoT devices, with Brazil following closely behind [32]. Imperva

Incapsula (a global content delivery network and DDoS mitigation company)

also confirms that Vietnam (12.8%), Brazil (11.8%), and China (8.8%) were the

countries with the most infected devices (from the Mirai botnet) [27]. Moreover,
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Table 4: Top 5 countries by the number of target and dropzone IPs. Countries include: United
States (US), Netherlands (NL), France (FR), United Kingdom (GB), Italy (IT), Vietnam
(VN), Brazil (BR), China (CN), India (IN), and Pakistan (PK).

Rank Country Dropzones % Rank Country Targets %
1 US 1,041 43.25 1 VN 26,290 24.70
2 NL 278 11.55 2 BR 20,572 19.33
3 FR 188 7.81 3 CN 15,799 14.84
4 GB 183 7.60 4 IN 5,598 5.26
5 IT 177 7.35 5 PK 5,076 4.77

Table 5: Top 5 US states by the number of target IPs and dropzone IPs. States include:
Washington (WA), New Jersey (NJ), Missouri (MO), New York (NY), Arizona (AZ), Florida
(FL), New Mexico (NM), California (CA), Illinois (IL), and Michigan (MI).

Rank State Dropzones % Rank State Targets %
1 WA 253 24.40 1 FL 506 30.67
2 NJ 188 18.13 2 NM 356 21.58
3 MO 151 14.56 3 CA 283 17.15
4 NY 112 10.80 4 IL 151 9.15
5 AZ 79 7.62 5 MI 83 5.03

these countries should intuitively contain the highest representation of vulnera-

ble devices, such as devices with default credentials or known vulnerabilities. To

validate the former, we query “default password” in Shodan; we found Taiwan,

United States, China, Vietnam, and Thailand in the top five countries, which

is partly counter-intuitive.

Region-level Analysis. Using regional information from IPinfo [33], we plot

a heatmap representing the distribution of dropzones and targets for the entire

United States. As shown in Fig. 9(a), we see that Washington and New Jersey

contain a high concentration of dropzones. Interestingly, Washington and New

York have lots of data centers [34]. We discuss this observation further in §3.3.

Likewise, we see in Fig. 9(b) that a high number of target IPs reside in Florida

and New Mexico. Table 5 lists the detailed breakdown of the top 5 dropzone

and target IPs according to their US State. Overall, we had 1,037 dropzone IPs

distributed over 20 US States and 1,650 target IPs spread over 22 US States.

City-level Analysis. Using Shodan [30], we look up the city in which given

dropzone IPs are used, and we use IPinfo to find the city information of the
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target IPs (whenever available). We note that the city information may not

exist for every IP in our data, so our region-level and city-level analyses show

different distributions. Overall, we had 541 dropzone IPs distributed among 75

cities and 1,003 target IPs spread over 364 cities. In Table 6, we list the top 5

cities per the number of dropzone and target IPs. We can see the US cities top

the rank for the dropzone, and China and Vietnamese cities top the ranks for

the targets. In Fig. 10(a), we note that the blue circles represent the number of

dropzone IPs in the range (0, 5] with red and green circles representing dropzone

IPs in ranges (5, 30] and (30, 120), respectively. Similarly, Fig. 10(b) has the

blue circle representing target IPs in the range (0, 5] with red circles as (5, 30]

and green circles as (30, 50).

Summary. We observe that the US has a large distribution of dropzones tar-

geting Asian countries, e.g., Vietnam. We also see that China and Brazil are

victims of sources from European countries. Kaspersky Labs’ [32] report and

Imperva Incapsula [27] support our findings, confirming that the Mirai botnet

mostly targets Vietnam, Brazil, and China. We also observe that the most

targeted cities are in the Asian countries, which are intuitive in light of the

country-level results (results omitted for the lack of space). In our region and

city-level analyses, we found a clear relationship between the distribution of

dropzones and organizations, as shown in §3.3.

3.3. Network Penetration Analysis

In this section, we focus on the additional attributes contained in the IP

address, leveraging the information gathered from Shodan and Censys [29], in-

cluding active ports, vulnerabilities, and organizational information.

Active Ports. For each dropzone and target IP address, we obtain a list of

active ports from Shodan and Censys. In total, we extracted 5,745 active ports

from 716 of the 877 dropzone IPs and 1,114 active ports from 129 of 189 of

the non-masked target IPs. We note that malware authors mask the octets of

the target IP addresses, which they determine dynamically at runtime. In this
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(a) Distribution of dropzones by US State.

(b) Distribution of targets by US State.

Figure 9: Distribution of dropzones and target IPs in the United States. This figure shows
dropzone and target mainly exist in which state in the US.

analysis, we only use the IP addresses that are not masked. A summary of our

results is shown in Table 7 and Table 8. We notice that the largest portion of

active ports is common services such as SSH (port 22), HTTP (port 80), and

HTTPS (port 443). However, other active ports associated with target IPs are

highlighted in Table 8, including the SUN Remote Procedure Call (RPC) on

port 111 and the Network Time Protocol (NTP) on port 123.

Port 111 is used by the Port Mapper service over the TCP and UDP pro-

tocols [35], which essentially is a port lookup service for the Open Network
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(a) Distribution of dropzones by city. (b) Distribution of targets by city.

Figure 10: Distribution of dropzones and target IPs throughout the world. Notice that a large
number of dropzones are distributed in the US and Europe and targets are mainly distributed
in Asia (Vietnam, China).

Table 6: Top 5 Cities per dropzone and target IPs. Cities in the US occupy top ranks with
respect to dropzone IPs and cities in Vietnam and China have a lot of target IPs, which
demonstrate a case similar to the country-level analysis.

Rank City Dropzones % Rank City Targets %
1 Seattle 113 20.89 1 Hanoi 48 4.79
2 Buffalo 49 9.06 2 Guangzhou 32 3.19
3 London 39 7.21 3 Beijing 21 2.09
4 Clifton 29 5.36 4 Rome 19 1.89
5 Kansas 27 4.99 5 Islamabad 18 1.79

Computing Remote Procedure Call (ONC RPC) system designed by Sun Mi-

crosystems in the 1980s for their Network File System [36]. As described in RFC

1833 [35], the port numbers for RPC programs and services are determined dy-

namically on startup, so if a client wishes to make ONC RPC calls, they will

query the Port Mapper on port 111 to obtain the appropriate RPC service port.

As reported by L3 Communications in August 2015 [37], the Port Mapper ser-

vice became a new attack vector for adversaries seeking to amplify their DDoS

attacks. This is due to the fact that when Port Mapper is queried, the response

size varies significantly depending on which RPC services are available on the

host. In their examples, L3 Communications show that a 68-byte query results

in a 486-byte response for an amplification factor of 7.1x with responses as large

as 1,930 bytes for amplification of 28.4x. If adversaries spoof the victim’s IP for

UDP packets directed towards vulnerable devices with port 111 open, they will

ultimately be redirected back en masse towards the victim (i.e., a UDP flood

attack).

Port 123 is reserved for the Network Time Protocol (NTP) [38], which is used
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Table 7: Top 10 active ports in dropzone IPs. Most shown ports are used for well-known
network services.

Rank Port Count % Service Description
1 22 641 32.57 SSH The Secure Shell (SSH) Protocol

2 80 600 30.49 HTTP World Wide Web HTTP

3 443 350 17.78 HTTPS HTTP protocol over TLS/SSL

4 25 276 14.02 SMTP Simple Mail Transfer

5 21 275 13.97 FTP File Transfer Protocol [Control]

6 3306 224 11.38 MySQL MySQL database system

7 53 187 9.50 DNS Domain Name Server

8 110 175 8.89 POP3 Post Office Protocol - Version 3

9 143 171 8.69 IMAP Internet Message Access Protocol

10 993 165 8.38 IMAPS IMAP over TLS protocol

to synchronize network clocks using a set of distributed clients and servers. Per

various reports, NTP could be abused in DDoS amplification attacks [39]. Much

like the exploit for the Port Mapper service described above, NTP is also UDP-

based and can be prone to “IP spoofing” for DDoS attacks [40]. As emphasized

in [41], exploiting NTP has a great potential for amplification attacks due to the

“monlist” command that a typical attacker sends to NTP servers, which returns

the last 600 IP addresses previously synchronized with the NTP server using

30 separate UDP packets, each of which is 448 bytes. The overall size varies

depending on the server, but the data volume is almost 1,000x larger than the

packet originally sent by the attacker.

Vulnerabilities. We then explore the susceptibility of IP addresses by ex-

amining the vulnerabilities associated with services running on them. For the

vulnerable endpoints, we gather the Common Vulnerabilities and Exposures

identifier (CVE-ID), a unique identifier assigned by MITRE [42] to standardize

security vulnerabilities.

We analyze the vulnerabilities in the dropzones to understand their dynam-

ics. Table 9 shows the top six vulnerabilities by the number of dropzone IPs,

and we further analyze them to assess their root causes. We found that CVE-

2017-15906 is the most frequent, which is found in 203 dropzone IPs, affecting

448 instances of malware. According to the National Vulnerability Database
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Table 8: Top 10 active ports in target IPs. With the exception of a few, most shown ports
are used for common services.

Rank Port Count % Service Description
1 80 111 17.85 HTTP World Wide Web HTTP

2 22 106 17.04 SSH The Secure Shell (SSH) Protocol

3 443 67 10.77 HTTPS HTTP protocol over TLS/SSL

4 21 51 8.20 FTP File Transfer Protocol [Control]

5 25 49 7.88 SMTP Simple Mail Transfer

6 3306 40 6.43 MySQL MySQL database system

7 53 29 4.66 DNS Domain Name Server

8 8080 29 4.66 HTTP-alt HTTP Alternate (see port 80)

9 111 28 4.50 SunRPC SUN Remote Procedure Call

10 123 26 4.18 NTP Network Time Protocol

(NVD) [43], CVE-2017-15906 is a “medium” severity vulnerability where ver-

sions of OpenSSH before 7.6 do not properly prevent write operations in readonly

mode, allowing attackers to create several zero-length files that could exhaust

disk space. The second was CVE-2014-1692, labeled by NVD as “high” severity

vulnerability, where it allows remote attackers to launch a DoS attack through

memory corruption due to uninitialized data structures from the hash_buffer

function in OpenSSH. We note that these vulnerabilities are prevalent to the

target devices and do not tell much about the impacted dropzones. We observe

that 98.61% of dropzone IPs host a service that has the vulnerability CVE-

2014-1692. Additionally, one or more of the vulnerabilities facilitate unautho-

rized authentication, rendering device-level access. These observations reveal

that a remote unauthorized authentication vulnerability can be an indicator of

potential dropzone.

We also observe vulnerabilities that result in bypassing authentication and

crossing privilege boundaries, including CVE-2016-0777, CVE-2012-0814, and

CVE-2010-4478, which are vulnerabilities that allow an attacker to obtain access

permission on target devices by stealing sensitive information; (e.g., private key

or authorized key). For example, we observed that CVE-2011-4237 enables re-

mote attackers to make an unauthorized modification to the list of authenticated

keys by injecting an arbitrary HTTP header. More specifically, we observe that

17.04% of dropzone IP addresses (i.e., 144) have at least one of these four vul-
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Table 9: Top 6 Vulnerabilities by the number of dropzone IPs. Note that the dropzones use
vulnerable versions of OpenSSH.

Vulnerability IP Malware Description
CVE-2017-15906 203 448 OpenSSH/DDoS

CVE-2014-1692 142 320 OpenSSH/DDoS

CVE-2016-0777 142 325 OpenSSH/Private Key leakage

CVE-2012-0814 140 307 Cross-privilege boundaries/OpenSSH

CVE-2011-4327 140 307 OpenSSH/Authentication leakage

CVE-2010-4478 140 307 OpenSSH/Authentication override

nerabilities. These vulnerabilities provide a broad range of attack capabilities

that can be used by attackers to compromise the devices, then act as drop-

zones. Moreover, where some of the dropzones use the default credentials make

the devices an attractive target.

IP-Owning Organizations. We now examine the organizations that own the

given IP spaces identified in our analysis. In Fig. 11 we provide plots for the

CDF contrasting the IP-owning organizations and the number of dropzone IPs,

number of malware instances, and number of target IPs they point to. For

statistical instances of the head of the distribution, a breakdown of the top 10

IP-owning organizations is presented in Table 10. We notice that for each orga-

nization, there is a clear relationship between the number of dropzone IPs and

the number of malware instances they are associated with. However, there are

abnormal cases in our dataset, such as Cogeco Peer one (Canada) and MAROS-

NET Telecommunication Company LLC (Russia), which have only one dropzone

IP but point to 2,214 and 2,178 target IPs, respectively. In contrast, HOSTKEY

(that operates in the Netherlands and Russia [44]) has only two dropzone IPs

that are associated with two target IPs and two instances of malware.

Interestingly enough, the locations of these organizations coincide with the

heatmap of US States presented in Fig. 9(a), which illustrates the highest dis-

tribution of dropzones. For example, the organization with the greatest number

of dropzone IPs according to our data is Wowrack.com, which is a cloud ser-

vice provider with headquarter offices in Seattle, Washington [45]. Besides,

Wowrack operates eight other data centers in multiple cities across the United
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Figure 11: Organization v. the number of dropzone IP, malware and target IP. The similarity
in the CDFs is because there is a high probability that the organization that includes more
malware will contain more dropzone and target, except in a few cases (i.e., where one dropzone
refers to thousands of targets, or one dropzone refers to only one target).

States and Southeast Asia. As reported by AbuseIPDB [46], Wowrack.com IPs

have received several complaints of abusive activity from multiple sources. The

Canadian Internet Registration Authority (CIRA) has also urged administra-

tors to block domains originating from Wowrack.com (e.g., ns6.wowrack.com)

because they are associated with the Mirai IoT botnet [47].

By referring to Fig. 9(a), we also notice that New York State contains a

high number of dropzones--which is most likely caused by two organizations

from Table 10 that have data centers in the city of Buffalo, NY (Wowrack.com

and ColoCrossing [48]). Also highlighted in red is the state of Arizona, which

is home of Input Output Flood LLC [49] (ranked 10th for organizations with

several dropzones).

We cannot say for sure why these organizations contain the most drop-

zone IPs, although one can speculate that they are more tolerant to harboring

customers who engage in malicious activities, or are subject to compromise.

For example, the organization with the 3rd-highest number of dropzones in our

dataset is Choopa LLC, with a primary Point of Presence (POP) in the State

of New Jersey [50], which one can clearly see on the heatmap (colored dark-red)

shown in Fig. 9(a). While online public reviews are not an authoritative source

for quality and security [51], they are useful in shedding light on this organiza-

tion: the low ratings from the Google reviews of Choopa LLC put them in a

negative light.

Summary. We observe that while ports 80 and 22 are the most widely used
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Table 10: Top 10 organizations by the number of their dropzone IPs. In this table, most
organizations increase linearly in the number of dropzone, malware, and target.

Rank # Dropzone # Target # Malware Organization
1 46 16,586 126 Wowrack.com
2 36 19,878 114 Aruba S.p.A
3 22 10,282 62 Choopa LLC
4 16 3,816 47 DigitalOcean LLC
5 16 3,330 29 ColoCrossing
6 13 8,373 38 NForce Entertainment B.V.
7 11 1,701 24 Hydra Communications Ltd
8 9 4,354 35 Ad Net Market Media Srl
9 9 388 17 Wholesale Data Center LLC
10 6 1,220 8 Input Output Flood LLC

across endpoints, the usage of port 111 and port 123 by the target IP addresses is

predominant. Being two possible entry points for attacker, the usage should be

curtailed. We also observe the low presence of vulnerable services by dropzone

IP addresses, where vulnerabilities in the dropzones indicate that the attackers

override their authentication status and then utilize the OpenSSH vulnerabilities

to gain access to the device. Our analysis also indicates a tolerance of organiza-

tions towards the endpoints used in malware; the divergence between monetary

profit and trust loss among users (prospective domain buyers) deserves further

investigation.

4. Network centric analysis

Malware specifically aimed at IoT devices tend to recruit a large number of

intermediary targets to launch attacks on high-profile targets ultimately. The

malware typically identifies the intermediary targets using their IP addresses

which are either mentioned in their source code or downloaded via dropzone.

For example, Fig. 3 demonstrates how malware attempts to download a file

named DNS.txt which possibly contains the list of target IP addresses. As for

the endpoints in the code base, these could include IP addresses and masked IP

addresses, only a prefix (e.g., 123.17.%d.%d).

In the previous sections, we analyzed the IP addresses explicitly in the mal-
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ware code base. For masked IP addresses, malware typically uses functions to

hide the targets from the malware analysts and determine the targets dynami-

cally. These functions are invoked during run time to determine the remaining

of the masked octets. Malware authors seldom obfuscate these functions – we,

therefore, in this section, examine the entire /16, /24, or /8 network to probe

their susceptibility.

Using CIDR notation, Table 11 shows that 98.92% of the target endpoints

are masked, mapping to 126 unique /8 networks and 1,869 unique /16 networks

and 27 unique /24 networks. Removing the /16 networks covered in /8 and /24

networks, we have 125 /8 networks and 435 /16 networks. We evaluated and

analyzed these networks to investigate their exposure to risk. In particular, we

examined the devices on these networks and looked at the services being used.

These 560 networks are then searched on Censys [22] which maps to 100,793,403

active IP addresses, which also allows us to analyze their active ports. As

different devices use different services to operate, we clustered the IP addresses

by their device types and studied which ports were being used. Considering that

open ports lead to increased security risks, we look for ports that are necessary

for a device to operate without any misfire. Taking a conservative approach,

we suggest that if a port is being used by less than 10% of devices in a given

device type, it should be closed to reduce its exposure to risk. We observe that

except for VoIP phone (over 77% of them used five ports), more than 75% of

the devices among all the other device types have only two or fewer ports being

used. Fig. 12 shows the number of devices within a device type in log scale and

the number of ports being used by less than 10% of the devices. In this figure,

the two graphs show a similar pattern. We speculate this result is due to more

attacks taking place on the popular devices (e.g., target devices of the Mirai

consist of security cameras, DVRs, and consumer routers [10]). Additionally,

the susceptibility of high-wattage IoT devices, such as heating, ventilation, and

air conditioning (HVAC), power distribution units (PDU), etc., can be abused

by the attackers to launch large-scale coordinated attacks, e.g., power grids, as
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Table 11: Composition of Target IPs for masked and not-masked networks. “In Total" means
the total number of target IPs, “In Unique" means the composition of non-duplicated target
IPs.

Address Total % Unique %
/24 137 0.13 27 1.22
/16 104,369 98.07 1,869 84.53
/8 776 0.73 126 5.70

Not-masked 1,146 1.08 189 8.55
Total 106,428 100.00 2,211 100.00
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Figure 12: Total number of devices and ports that used less than 10% of devices. The left
Y-axis is the number of ports, the right Y-axis is the total number of devices, and the X-
axis is the device types. Device types include: DSL/cable Modem (DCM), Infrastructure
Router (IR), Network Attached Storage (NAS), Digital Video Recorder (DVR), Intelligent
Platform Management Interface, (IPMI) Power Distribution Unit (PDU), Kernel-based Vir-
tual Machine (KVM), Heating, ventilation, and Air Conditioning (HVAC), Programmable
Logic Controller (PLC), Environment Monitor (EM), Industrial Control System (ICS), and
Water Flow Controller (WFC).

has been demonstrated by Soltan et al. [52].

Summary. The division of the endpoints by devices and then determining their

exposure to the attackers represent the chances of an endpoint being compro-

mised. Based on our analysis, we suggest the users close the ports that aren’t

necessary for the uninterrupted execution of their devices. These endpoints

need to be further examined in-depth to understand the pattern that could pre-

dict an endpoint’s chances of being compromised. The suggestions could be

finally narrowed, with specific device centered recommendations, and by prob-

ing them individually by performing an offensive penetration testing. However,

in this work, we understand the data-centric landscape and put forward the sug-

gestions with a conservative approach and without carrying out any offensive

analysis undermining ethics.
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5. Related Work

Table 12: Comparison with Related work. We compare the objective of the works, the analysis
method used, static (S) or dynamic (D), and the dataset size.

Study Objective Method Dataset
Antonakakis et al. [10] Analysis D Honeypot, Logs
Cozzi et al. [53] Analysis S/D 10,548
Pa et al. [23] Analysis D Honeypot
Vervier et al. [54] Analysis D Honeypot
Anwar et al. [55] Detection S 2,899
Bendiab et al. [56] Detection D 1,000

A summary of the related work is in Table 12. Recent studies related to

IoT malware have primarily focused on classifying IoT Malware. IoTPOT,

proposed by Pa et al. [23], was one of the first honeypots specifically for IoT

threats. Antonakakis et al. [10] analyzed the Mirai botnet to understand their

execution. Cozzi et al. [53] investigated the malware samples to understand

their capabilities. Anwar et al. [55] statically analyzed the IoT malware bi-

naries to exhibit their features and strategies. Multiple studies have proposed

machine and deep learning-based detection systems using statically generated

features [57, 58, 55, 59, 56]. Sivanathan et al. [60] further characterized the net-

work traffic attributes. Rafique and Caballero [61] used the network signatures

from executing malware binaries to cluster them into families. Additionally,

West and Mohaisen [62] used 28,000 expert-labeled endpoints extracted from

≈100K malware binaries for binary threat classification. Deep learning algo-

rithms have been leveraged to identify malicious endpoints [63].

Lei et al. [64] proposed a graph-based event-aware malware detection tool

for smart IoT devices through the event groups to exploit their Android ap-

plication’s behavioral patterns. Vervier and Yun [65] propose high-level secu-

rity and privacy labels for IoT devices towards consumer awareness. Alrawi et

al. [14] evaluated the IoT devices deployed in the home environment. Further,

Perdisci et al. [66] proposed IoTFinder to identify IoT devices by analyzing the

passive DNS traffic.

Studies have used internet-scanning services (e.g., Shodan [30]) augment-
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ing it with information gathered from the known vulnerability databases (e.g.,

NVD [43]) to measure the potential risks of Internet-connected devices. For

example, Genge and Enachescu[67] proposed ShoVAT (Shodan-based Vulnera-

bility Assessment Tool). They collected IoT device information such as open

ports, when they were scanned, banner data, and their operating system through

the Shodan API. Formby et al. [68] outlined security challenges in the existing

Industrial Control Systems (ICS) and addressed them by leveraging fingerprint-

ing methods. Feng et al. [69] proposed rule-based discovery and annotation of

IoT devices.

To the best of our knowledge, there is no recent work that analyzes the

relationships between the endpoints of IoT malware dropzones and their tar-

get devices. With that said, the closest study to our work is by Vervier et

al. [54] who deployed a honeypot to understand the threat landscape and the

operational pattern of the IoT malware. Additionally, Holz et al. [70] pre-

sented one of the first empirical studies of malware and dropzones conducted

over a seven-month in late 2008, focusing on keystroke-collecting malware (“key-

loggers”) with dynamic analysis using CWSandbox. Since keyloggers typically

contact dropzones upon execution, the authors successfully obtain the locations

of several dropzones mapped to different countries, shown to be Russia and the

US, among others. Although limited, prior works have looked into investigat-

ing Linux malware, and the malware endpoints have not received the required

attention. Cozzi et al. [71] analyze a dataset of IoT malware and note that the

obfuscation is rare in IoT malware, thereby making static analysis worthy.

6. Discussion

Our study focuses on the IP addresses present in the code base of the IoT

malware. Overall, we analyze the dropzone and the target IP addresses, covering

≈78% of the public IPv4 space. In this section, we discuss the implications of

our study.
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Possibility of re-attack and need for region-specific defense. Our anal-

ysis shows re-usability of target IP addresses by different dropzone IP addresses,

which may be due to the use of endpoints search through IoT search engines like

Shodan or Censys. This exhibits chances of race among the different adversaries

to get hold of the susceptible devices (e.g.,, use of default credentials).

We observe that the source of the attack is concentrated in the United States

and Europe, while the targeted endpoints are concentrated towards South Asia.

This shows a varying security posture of the different regions. For example,

despite being a small country in South Asia, Vietnam accounts for ≈25% of

the targeted endpoints, while Brazil is a distant second with ≈19% targeted

endpoints. This warrants a region-specific approach towards defense.

The study of open ports per device type shows the high presence of open

ports. We suggest that the ports that are not being used by 90% of the devices

be closed are unnecessary, and focusing on manufacturers and their service re-

quirement would help better understand the targeted devices.

Patch prioritization. Vulnerability analysis points at the existing endpoints

with vulnerable services running on them. However, it is common knowledge

that organizations and device manufacturers prioritize the patching of vulnera-

bilities, considering the open-source and wide reporting of vulnerabilities. When

prioritizing, they make use of vulnerability scoring systems, such as the Common

Vulnerability Scoring System (CVSS). CVSS version 3 assigns the vulnerabilities

a severity level of low, medium, high, or critical depending on the vulnerability

characteristics, such as impact.

A patch prioritization employment in an organization would push the vul-

nerabilities with critical severity at the top of the priority and those with low

severity to the bottom. However, non of the vulnerabilities in Table 9 have a

critical severity. We, therefore, suggest making use of vulnerability exploited by

malware as a modality for patch prioritization.

Validity. Given the bounded size of our dataset, one may argue that our

dataset and associated analyses do not necessarily give a complete view of the
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dynamics of the IoT malware endpoints. However, we argue that this view is

representative, and support this argument with an updated experiment.

To examine the validity of the dataset used and the IP addresses analyzed for

this study, we contrast the persistence of the dropzone and target IP addresses

outside the scope of the dataset used in this study. We observe a continued use

of the dropzone addresses analyzed in this study, reflecting the persistence of

the identified attack sources. Recall that we identify 877 unique dropzone IP

addresses, 436 (49.7%) of which are observed in the dataset used for comparison.

Overall, the IP addresses observed in the study are present in 35.7% (2,251

out of 6,303) of the malware in the dataset used for comparison. Additionally,

we investigate the usage of the vulnerable services leading to the most frequent

vulnerabilities by the devices on the public Internet. We observe that the vul-

nerable services are still in use, reflecting the possible use of these devices in

future malware campaigns. Moreover, we cover 78.2% of the public IPv4 space,

exhibiting the nature of the reachable devices.

7. Concluding Remarks

In this paper, we analyze the ≈78.2% of total responsive public IPv4 end-

points among dropzones and their targets as extracted from IoT software and

spread across the globe from diverse perspectives. First, we analyze the dropzone-

target inter-relationship and their affinity. We observe that the list of targets is

shared between attackers or compiled using similar conditions on IoT search en-

gines like Shodan or Censys. For our geographical analysis, we comprehensively

analyzed the distribution of the number of dropzones and targets (country, state,

and city level). We visualize the target areas representing dropzone locations

and their size scaled by the number of associated targets.

We utilized IoT search engines to conduct network penetration analysis of

the dropzones and target IPs. We extract information such as the organization,

the number of active ports, and vulnerabilities associated with the IP addresses;
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knowing which network ports are open on an IP address allows attackers to

exploit them for DDoS attacks. Our analysis of the vulnerabilities associated

with dropzone IP addresses, for example, reveals the level of risk involved and

which malware instances they are associated with. Organizations with a high

number of dropzone addresses indicate a tolerance for malicious activities and

a susceptibility to compromise.

Our distributed analysis shows the exposure of endpoints correlating to the

risk they possess. These endpoints need to be individually analyzed to extract

patterns for predicting the chances of them being compromised. This issue will

be our future work along with de-obfuscating functions to understand dynamic

IP generation by malware.
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