
AutoDefense: Reinforcement Learning Based
Autoreactive Defense Against Network Attacks

Yu Mi
Case Western Reserve University

yu.mi@case.edu

David Mohaisen
University of Central Florida

david.mohaisen@ucf.edu

An Wang
Case Western Reserve University

an.wang@case.edu

Abstract—Attributed to the programmability and visibility
provided by Software Defined Network (SDN) technologies, more
flexible and complex functions can be performed on network at-
tacks. However, identifying the attack traffic accurately for attack
mitigation is a challenge. Most existing solutions leverage traffic
characteristics to achieve this goal. Recent attacks characteristics
have become more complex and indistinguishable from legitimate
traffic. In this paper, we propose AutoDefense, a novel frame-
work that leverages reinforcement learning techniques to deploy
defense policies dynamically and adaptively based on the signals
collected from the data plane. While we seek to achieve the same
goal with the existing efforts where the network/server resources
the attackers control should be limited, we allow more legitimate
flows to enter the network, rather than relinquish bandwidth
when attacks happen. Through evaluations, we demonstrate that
AutoDefense could reduce 39% of the attack traffic and allow
48.6% more legitimate flows in the network. AutoDefense also
improves the average flow completion time by 42.7% for the
flows with a long tail latency.

I INTRODUCTION

Distributed denial of service (DDoS) attacks have been the
most persistent and lethal threats on the Internet, where they
have recently been weaponized to cause significant damages
to the Internet infrastructure [36], [44]–[46]. In particular,
flooding attacks remain dominant, where they are simple to
launch yet quite difficult to mitigate. Recent studies have
identified trends that suggest the more sophisticated strategies
and increasingly comprehensive targets that exacerbate this
threat landscape [19], [48], [49].

To address this gap, the prior works attempt to distinguish
legitimate and attack traffic in order to block the attack traffic.
Such approaches could be broadly categorized as detect-and-
block schemes. However, the existing detection mechanisms
are mostly performed in a passive way by relying on the
characteristics of the captured attack traffic. To improve the
detection accuracy and limit the resources an attacker can
occupy, we adopt a proactive tactic instead: We opportunis-
tically increase the available bandwidth for certain flows in
the hope that legitimate flows would grab more bandwidth
than the attack flows. The key insight is the following: we
hypothesize that the attackers try to overwhelm the target link
bandwidth by issuing spoofed traffic, so they cannot respond to
any bandwidth changes by generating reactive signals. On the
other hand, legitimate (TCP)1 flows could proactively take the
spare bandwidth and send higher volumes of traffic, leading to

1In this study, we focus on the legitimate TCP flows since their congestion
control may further constrain the resources obtained by the legitimate flows
under attack. We, however, do not limit the types of attack traffic.

potential behavior changes. We leverage the changes to distinct
legitimate flows, and encourage more fractions of legitimate
flows to arrive at the server by isolating them from the rest.
The advantages of this approach are twofold. First, the domain
knowledge of the attack traffic; e.g., attack model, is not
required in this approach, since the efforts are focused on the
legitimate TCP traffic. Second, this approach allows the system
to react faster to attacks by replacing the anomaly detection
with a temporary rate limiting.

Such a defense mechanism requires managing bandwidth
flexibly and adaptively. Recent advances of SDN technologies
and programmable network devices enable opportunities to
achieve this goal. Nonetheless, designing an efficient frame-
work is still a challenge for three reasons. 1 The eventual
goal of our framework is to opportunistically allocate more
bandwidth to legitimate flows. To increase this opportunity,
we need to narrow down the target flows from which we make
selections. However, it is a challenging task since we do not
have any apriori knowledge on the legitimate flows. 2 With
the recent advances in machine learning techniques, it has be-
come tremendously popular among system operators to deploy
effective and efficient defenses. While most existing efforts
employ supervised or semi-supervised learning approaches to
classify traffic, labeled data is hardly available in practice.
Moreover, recent research works examined the robustness
of such classification-based DDoS detection algorithms, and
demonstrated that adversarial flows could be generated to
decrease the detection rate to below 50% [6]. As a result,
conventional end-to-end machine learning algorithms that gen-
erate packets labels do not fit our needs—for this reason,
we propose to leverage a reinforcement learning (RL) based
approach. 3 It is challenging to design a model that allows
RL to translate network events to effective classification rules
that identify and isolate legitimate flows. RL has been utilized
in the context of routing optimization, which is pioneered by
Boyan et al. [13]. Recent attempts also apply RL techniques
for traffic optimization [16]. Our problem is different in that
we attempt to find a set of classification rules optimized for
each individual device.

To fill this important gap, we propose an RL-based ap-
proach to generate clusters over packets sampled from the
data plane, and derive optimal classification rules for legitimate
traffic. The training process of RL, where an agent repeatedly
interacts with the environment, addresses the limitations of
the current operation modes of SDN by allowing the control
plane to make intelligent decisions quickly with the properly
defined set of actions. Such interactions could be triggered

automatically by events, such as attacks that are detected based
on system metrics in the data plane. We call such a mode the
autoreactive SDN mode. To narrow down the target flows, we
also design and implement measurement schemes to identify
flows that are most likely to be legitimate.

Several works proposed (supervised) decision-tree based
solutions for packet classification [11], [20], [41]. However,
our work is motivated by the need for an unsupervised learning
algorithm, with a limited to no controller prior knowledge. As
a result, we adopt a decision-tree based clustering technique,
called CLTree, in our design. CLTree was initially proposed by
Liu et al. to partition a data space into clusters by introducing
virtual data points [28]. Given the clusters, we are able to
formulate the optimization goal of our RL model as finding
the set of packet clusters from which we generate classification
rules that isolate the legitimate traffic to minimize the conges-
tion signals in the data plane. We also employ various compact
data structures, such as bloom filters and hash tables, to collect
the signals required for the operation of our framework.

Main contributions. Our main contributions are as follows. 1
We demonstrate the change of congestion signals upon attacks
in the data plane through an empirical study (Section II). 2
We present a learning based approach for identification of le-
gitimate traffic based on data plane signals (Section III). 3 We
present a prototype that is implemented on Open vSwitch [39]
and Pytorch [38] (Section III-D) to realize our approach. 4
We presented a comprehensive evaluation of AutoDefense, and
a demonstration that AutoDefense could effectively reduce the
attack traffic by 39% and allow 48.6% more legitimate flows in
the network, using application benchmark and synthetic traffic
derived from real-world traces (Section IV).

II MOTIVATION

II-A Temporal locality of traffic

Traffic locality is the phenomenon that is commonly seen
in network systems and observed in various application sce-
narios, such as peer-to-peer (P2P) live streaming [29], content
caching [43], and MapReduce task scheduling [47]. Benson
et al. [12] conduct an empirical study of the network traffic
in 10 data centers that belong to three different types of
organizations, university, enterprise, and cloud data centers.
One of the key findings in their study is that the number
of active flows per second is under 10k per rack across all
data centers. In a more recent study conducted by Hardegen et
al. [22], they attempted to use DNN to predict the likely char-
acteristics of real-world traffic flows. They collected network
data from a real-world production network at Fulda University,
and analyzed the characteristics of flows. In their analysis, they
found that flow communications are active for a relatively short
period of time, which further suggests that the average number
of active flows per time unit should be small.

In a similar study by Avin et al. [10], they systematically
analyze the structures featured by packet traces in networks.
The packet traces used in this study come from three real-
world traces and a few other synthetic traces. In this study, they
introduce a metric, called temporal complexity, to represent
the level of time dependency among packets. The lower the
complexity, the stronger the time dependency there is. Their

studies show that the data center workloads are skewed and
bursty, featuring much temporal and spatial structure. The key
takeaways of both studies suggest that the majority of traffic
is carried by a relatively small subset of flows within a short
period of time. Such findings reveal a promising opportunity
to profile legitimate traffic within short time periods.

II-B Data plane signals upon attacks

Intuitively, TCP flows should react to the attack traffic
due to the TCP congestion control mechanism. To further
understand this reaction, we perform a measurement study in
the network’s data plane to observe the behaviors of legitimate
flows when under attack. For this experiment, we interconnect
three hosts with a software switch running Open vSwitch. One
host runs Apache clients, another host runs the server, and the
third host generates attack traffic to the server.

In this experiment, we assumed that both the legitimate
users and the attackers send traffic to the target server. More-
over, we configured the legitimate users to run the Apache
benchmark to request a file of 5 MB from the server, with
2000 concurrent requests. To simulate a realistic data center
environment, we created 250 different IP addresses on the
user machine using the aliasing feature and by configuring
NIC aliases. The attack traffic is randomly generated using
hping3 [1] with spoofed IP addresses. We then collect the
number of retransmitted packets that were generated by the
legitimate users from the switch. We note that we enforce a
rate limiting rule for all flows when the attack happens in this
experiment. The results are shown in Figure 1.

In this figure, we use the x-axis to represent the elapsed
time (in seconds) and the y-axis to show the number of the
retransmitted packets per second. The grey area highlights the
time span during which the attack is taking place. We also
highlight the average number of packet retransmissions with
two dash lines in the figure, which is 181 pps (packet-per-
second) before the attack, and becomes 537.7 pps afterwards.
As shown, this number is tripled upon the attack, which
suggests that the attack traffic would cause legitimate flows to
retransmit more packets. The enforced rate limiting rule further
magnifies this effect. We also argue that a similar trend should
also exist for the out-of-order packet deliveries. However, they
are less likely to appear in our testbed, since the intermediate
switch directly connects the source and the destination hosts.

We also analyzed two traces collected from real-world
and synthetic attacks. The first trace contains a DNS ampli-
fication/reflection attack, staged by researchers between two
sites (USC/ISI, Marina del Rey, California and CSU, Fort
Collins, Colorado) [2] and additionally contains anonymized
non-attack traffic. The second trace is the CSE-CIC-IDS2018
dataset [3], which contains synthetic attack traffic with seven
different attack scenarios and legitimate traffic that simulates
normal user behaviors. For both traces, we randomly select a
segment that contains attack traffic and count the number of
retransmissions for each flow. We compare the numbers for
legitimate flows and malicious flows. The results are shown
in Figure 2, where the x-axis represents the time in seconds,
the y-axis shows the number of retransmissions per flow, and
the grey areas highlight the time period when the attack took
place. In Figure 2a, we can clearly observe that there are

0 10 20 30 40 50 60 70
Time elapsed(s)

0

1000

2000

3000

Oc
cu

ra
nc

e
pe

r s
ec

on
d(
/s
)

Packet retransmission

Fig. 1: The number of retransmitted packets be-
fore and after the attacks.

0 500 1000 1500 2000
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

o
f si

gn
als

 pe
r fl

ow

Malicious
Total

(a) DNS amplification attack.

0 1000 2000 3000 4000 5000
Time

0.00

0.01

0.02

0.03

0.04

0.05

0.06

o
f si

gn
als

 pe
r fl

ow

Malicious
Legitimate

(b) LOIC HTTP attack.

Fig. 2: The number of retransmitted packets under various attacks.

significantly more packet retransmissions for legitimate flows
during the attack and this number falls back to normal after
the attack ends. Since the attack traffic does not contact packet
retransmissions, we select the Low Orbit Ion Cannon (LOIC)
HTTP flooding attack from the second trace and make the
same comparisons. In Figure 2b, we can observe a similar
trend with that in Figure 2a. In addition, we can also see
that the number of packet retransmissions for the legitimate
flows is much larger than that of the malicious flows. This
observation provides important insights into the design of
AutoDefense – that malicious flows are less likely to generate
packet retransmissions during attacks.

II-C Learning-based clustering

Unsupervised clustering is an intuitive class of approaches
and has been demonstrated as an effective direction for de-
tecting intrusion attack traffic at a low cost [51], [52]. The
key challenge is to label the generated clusters. Naturally,
we can define certain metrics, such as cluster density, to
distinguish different clusters based on predefined threshold
values. However, it is difficult to determine good thresholds
without any prior knowledge. Thus, we are motivated to apply
a learning-based approach to tackle this hurdle.

III SYSTEM DESIGN AND IMPLEMENTATION

III-A Overview of AutoDefense

AutoDefense aims to mitigate flooding attacks by observing
the congestion signals when attacks happen in the network,
which indicate that the legitimate flows may be adversely
affected. Thus, AutoDefense collects packet samples from the
data plane and generates mitigation policies based on these
packets in the control plane. In order to generate the policies,
we aggregate packets based on their source and destination IP
prefixes by performing unsupervised clustering. To evaluate
the effectiveness of the generated policies and adjust the
clustering, we leverage reinforcement learning (RL) techniques
to guide the partitioning and pruning of clusters. To provide
feedback to the RL agent, AutoDefense also monitors flow
statistics and activity signals in the data plane.

Figure 3 illustrates the architecture overview of AutoDe-
fense. In the data plane, it consists of three main compo-
nents: active flow monitoring, signalling packet recognition
and metering/forwarding rules. The active flow monitoring is
introduced to identify flows that have longer lifespans, which
are more likely to be legitimate. The active flow monitoring
helps guarantee that the collected samples contain some le-
gitimate packets so that the RL model generates appropriate
policies that allow these flows to get more bandwidth. The

Meter Table

Port

Port

Port

Port

Flow
Table

Flow
Table

…
….

Active Flow
Monitoring

Signaling
Recognition

Reward

dropped
packets

State

Fig. 3: Architecture of AutoDefense.
signalling recognition module detects congestion signals, such
as out-of-delivery and packet retransmission, which often
occur in legitimate flows when attacks happen. AutoDefense
also employs the existing metering and forwarding tables in
the switches to limit and forward traffic.

In the centralized controller, we train an RL model to
build clustering trees based on the collected dropped packets.
Although the growth of clustering trees is mainly driven by the
sampled packets, the goal of the RL model is to compute a
policy that maps the clusters to a pruning action that optimizes
the rewards. Similar to many existing RL solutions [31]–[33],
we also employ a neural network to implement the RL policies
in our design. Finally, the model calculates rewards based
on the results obtained from the signalling packet recognition
module. The key idea is based on the insight that legitimate
flows may generate more out-of-order deliveries and packet
retransmission signals caused by congestion when attacks
happen. Then the rewards are used to help the RL agent adjust
the parameters, thus guiding the progress of the training. We
discuss the details of each component in the rest of this section.

III-B Throttling attack traffic

When attacks happen, the switch may observe increasing
packet drops at the egress queue due to congestion. As a
reaction to this, the controller initializes rate limiting rules to
control congestion in the networks. AutoDefense uses the meter
table in the Open vSwitches to enforce the rate limiting policy.
In our design, we redirect all the traffic to the same meter,
thus flows competing for the limited number of tokens. Even
though the rules are intended to prevent the attack traffic from
reaching the target server, this does not help reduce collateral

Fig. 4: Examples policies.

damage to the legitimate flows. That is, the packets would be
dropped by the meter when there are not enough tokens. As a
result, further actions need to be taken to protect the legitimate
flows by electing them out.

An illustrative example of this idea is shown in Figure
4. In this example, the attack activity has been detected and
two legitimate flows, A and B, and a malicious flow, C, are
traversing the router. Initially, all three flows are processed
by the default rate limiting rule of priority 10 in the for-
warding table. Through active flow detection and collection
(Section III-C) and clustering, a new forwarding rule for flow
A is generated and inserted into the forwarding table. But
flow B, which arrives later—thus not captured by the active
flow detector—remains constrained by the rate limiting rule.
Eventually, we attempt to generate forwarding rules for all the
legitimate flows while confining the malicious flows to limited
bandwidth with the rate limiting rule.

III-B1 Resuscitating legitimate flows.

The goal of this step is to identify and isolate the legitimate
flows from the rate-limited path. To this end, AutoDefense
collects the packets dropped by the metering rules and derives
profiles of the legitimate traffic from them. Unlike most exist-
ing efforts that perform classifications based on the features
extracted from the packets or flows, we use the real-time
activity signals for identification instead. Such a design is
based on our finding (as shown in Figure 1) that retransmitted
packets would spike for legitimate traffic when congestion
continues. The key challenge, however, is to monitor and
report the real-time signals efficiently and effectively given
the amount of traffic in the data center network systems. To
address this challenge, we design and implement a filtering
mechanism that helps focus the efforts on active flows, which
are more likely to be legitimate. The filtering mechanism is
discussed in detail in Section III-C.

On the controller side, AutoDefense leverages an RL model
to group the dropped packets into clusters. Without any knowl-
edge on the traffic patterns, we use a clustering via decision
trees [28] approach, also known as CLTree, which aims to
find the intrinsic structure of the packets. The growth of the
tree is mainly dictated by the information gain criterion [7].
Each node in the tree represents an area in the IPv4 address
space that is scoped by the ranges of source and destination
IP addresses. To avoid the substantial overhead caused by
frequent rule update in the data plane, we rely on a soft timer,
i.e., idle timeout, that is associated with each rule, to eliminate
the expired ones. Given the clusters, the RL agent then needs
to distinct the ‘good’ clusters from the ‘bad’ ones. The RL
agent performs tree pruning to implement this action.

To improve the efficiency, the built CLTree is updated
once per episode, which contains five training steps. The
packet samples that are collected in each step will be clas-
sified into one of the existing clusters. To extract useful
information from the CLTree, we leverage tree pruning to
identify the most probable legitimate clusters. Pruning is a
data compression technique that reduces the size of the tree by
eliminating the nodes that do not satisfy a particular criterion.
Pruning generally requires human intervention based on their
knowledge and experience to achieve the optimal size of the
tree. Unfortunately, this requires additional human efforts and
expertise. However, this challenge provides an opportunity for
us to leverage the reinforcement learning techniques to learn
the pruning parameters, which are discussed in detail next.

III-B2 What to learn for optimization

We note that recent studies have revealed a new trend of
botnet-as-a-service (BaaS) that could be exploited by attackers
to launch DDoS attacks [15], [23]–[25]. Such a trend will
potentially lead the attackers to a wider footprint across the
Internet. Moreover, the attackers are more likely to utilize the
purchased bots to send attack traffic alternatively in order to
avoid detection. As a result, the attack flows are more likely
to come from dispersed sources with shorter duration. Based
on that, we identify two features of the clusters that the RL
model could utilize when making pruning decisions:

1 Number of instances in a cluster: This feature reflects
the duration of attack flows. The longer a flow is, the more
packets it contains, thus more likely to be collected to the
control plane, and vice versa. By the same token, legitimate
flows will more likely fall in larger clusters. Our RL agent is
designed to find the threshold of this parameter, which we call
min Y, to eliminate the “bad” clusters and reduce the number
of generated rules.

2 Instance density in a cluster: This feature measures the
level of flow dispersion. Using the number of instances alone
could not optimize the pruning because a significant number
of attack packets could be grouped into a single cluster. This is
due to the fact that CLTree generates clusters based on infor-
mation gain, which could be lower than a predefined threshold
when a cluster contains a group of unrelated elements. For this
reason, our RL agent also considers the instance density, and
seeks to find its threshold that optimizes pruning. We call this
threshold the min ID.

Given a node Ni from the clustering tree, assume that there
are J samples; i.e., sj for 0 < j ≤ J , in the node that fall
in particular source and destination IP ranges. The IP range
is defined as: ranget(Ni) = [argmin(sj .t), argmax(sj .t)],
t ∈ {srcIP, dstIP}, j ∈ [1, 2, ..., J] Thus, the instance
density, i.e., ID, of a node Ni is calculated as: ID(Ni) =
J/max(argmax(|ranget(Ni)|), 1)), t ∈ {srcIP, dstIP} ,
which is the ratio between the number of nodes and the
maximum range length. Both min Y and min ID are used in
our pruning algorithm. In the algorithm, all the nodes whose
instance number and density are lower than certain thresholds,
i.e., min Y and min ID, and their subtrees are pruned. In
addition to the two parameters learnt by the RL model, we
also set an upper bound for the number of instances a cluster
could have for it to be pruned, i.e., max Y. The purpose of this

value is to prevent larger clusters that contain both attack and
legitimate packets from being pruned. Most of such clusters
exist in the higher branches on the tree.

To determine max Y, we use the false positive rate of
the active flow monitoring module in our system. A major
component of this module is a bloom filter that helps filter
out packets that have not been seen before. Given that the
false positive rate of a bloom filter p could be calculated as
a function of the number of elements n in the filter, the filter
size m and the number of hash functions k, p is calculated as
0.03 in our system [34]. Thus, max Y is set to be 3%, which
means that a cluster is likely to contain legitimate packets if it
has more than 3% of the collected packets. More details of this
module are discussed in Section III-C. In the following section,
we discuss how our RL model learns the optimal parameters
to generate the policies.

III-B3 How to learn for optimization

Finding the optimal pruning parameters to generate the
policies could be challenging due to the dynamics of network
traffic. Legitimate flows may be subject to change in terms of
their volumes and sources constantly. In addition, the amount
of attack packets that are collected by the switches within the
data plane varies due to the false positives introduced by the
active flow monitoring module. Both factors determine that the
optimal pruning parameters are not constant values over time,
motivating us to adjust them dynamically. An intuitive solution
is to perform a grid search over possible parameters to identify
the optimal ones. However, it may take long to perform an
exhaustive search online while attacks are happening. Thus,
we leverage the RL techniques to tune the parameters.

AutoDefense adopts Deep Q-Networks (DQN) [35] to
approximate the mapping from states to actions. The states
are observed from the environment and taken as input to the
agent to generate an action. Since the goal of our RL model
is to find the optimal parameters to prune the tree, the state of
the clustering tree is taken as the environment that the agent
interacts with. The states are represented as fixed-size vectors
that contain five features of the clustering tree, including the
current pruning parameters, the number of collected dropped
packets, the number of rules that we currently have, and the
average number of packets that the clusters contain. Each
episode during the learning process represents a sequence of
actions to adjust the pruning parameters. Specifically, the RL
agent performs five pruning actions with the obtained param-
eters over the same clustering tree independently within each
episode. The tree will be reset before starting each pruning
action. Each pair of new parameters will be updated based
on the values obtained from the previous time-step within
each episode. In this manner, the agent has the opportunity
to explore the parameters ranges exhaustively.

Actions. The agent is designed to increase or decrease the
pruning parameters by a factor of a, where a represents an
exponent. Given that we do not have any prior knowledge
on the possible parameter range, we attempt to emulate
exponential search in our system. The agent performs the
actions to adjust both parameters, i.e., min Y and min ID,
at the same time according to the following equations:
min Yt+1 = min Yt × 2at1 ,min IDt+1 = min IDt × 2at2 .

Thus, the parameters will be either increased by twice
or reduced by half depending on the actions. where
at1, at2 ∈ {−2,−1, 0, 1, 2} and selected according to the
actions taken by the agent.

Rewards.: In our design, we emphasize the rewards should
reflect the effectiveness of the mitigation rules deployed in the
data plane. As mentioned in § II, the number of out-of-order
deliveries and retransmissions are key indicators of network
congestion. Therefore, the reward is calculated as:

rt = min(Te − (Cr + Co)/max(Ca, 1), 0) (1)
where Cr and Co represent the number of retransmitted
packets and out-of-order packets collected in the data plane,
respectively. Ca indicates the number of active flows in the
data plane. The purpose of calculating the ratio between the
number of signals and the active flows is to avoid rewarding
the situation when the active flows are strangled by the attack
traffic. When that happens, the absolute number of the signals
could be low, while the number of active flows remain high.
Thus, we calculate the average number of signals per active
flow instead. In Equation (1), Te represents a tolerance factor
that represents the acceptable number of signals that could
occur in a network without interrupting applications. Such a
factor could be derived from empirical measurements of a
network system. We set this value to be 0.03 as discussed
in Section III-B2. The training process of the model is mainly
driven by the flow statistics and signals we collect from the
network data plane. We discuss the monitoring and collecting
modules of AutoDefense in the following sections.

III-C Data plane monitoring

An essential step of AutoDefense is to monitor and collect
packets from the data plane for training the RL model.
However, it is a challenging task to monitor every single flow
in the data plane, especially with the limited computation and
memory resources of switches. On the other hand, it is unnec-
essary to collect packets from all flows to enable effective and
efficient learning in our system. Since AutoDefense is tasked
with generating profiles of the legitimate flows, we only collect
packets that belong to active flows in the data plane. Next, we
discuss how AutoDefense detects the active flows.

III-C1 Active flow collection

Detection. An important factor to consider when determining
whether a flow is active or not is its occurrence frequency.
Given a fixed time period, frequency could be captured by flow
volume or packet counts. Therefore, we design and implement
schemes to detect active flows in the switches. Many schemes
have been proposed for this purpose on different platforms
(see Section VI). To strike a balance between efficiency and
accuracy, we adopt part of the detection scheme of Elastic
Sketch [50], which is inspired by Ostracism—which is a
procedure under Athenian democracy in which any citizen
could be expelled through voting. This scheme consists of two
parts: a “heavy” part for elephant flows and a “light” part for
mouse flows. The “heavy” part of the scheme employs a hash
table and the number of positive and negative collisions (votes)
to identify heavy hitters. We introduce this table to our active
flow detection module and extend it by including an additional
filtering mechanism to narrow down our target flows.

Given the non-negligible chance that mice flows may
prevent more active flows from accumulating vote+ due to
the collective volume and possible collisions, we add another
layer of filter to prevent mice flows from passing through and
reaching the hash table. We use a bloom filter for this purpose.
Only packets that belong to an existing flow are allowed to
increment the votes in the hash table. In practice, this could
also be replaced by a counting bloom filter to enable a higher
threshold for the mice flows. To maintain the entries and counts
in the hash table, we periodically decrease all vote+ and voteall

by half so that the new flows have a chance to survive in
the table. Similarly, we clear the entire bloom filter bitmap
every 40k packets. In addition to the packet-level statistics,
we also maintain flow-level statistics; e.g., the timestamp of
the last acknowledged packet in a flow, in the hash table for
detecting flow signals; e.g., packet retransmissions and out-of-
order deliveries.

Collection. Once active flows are identified, we further sample
packets from the active flows that suffer from the attacks.
Recall that the controller initializes rate limiting rules to
throttle attack traffic upon the detection of the attacks, as
mentioned in Section III-B. As a result, both legitimate and
attack packets could be dropped by the same meter. Among
the dropped packets, we associate them with the active flows
previously detected and sample them with a fixed-size ring
buffer data structure in the switch. When the ring buffer is full,
the switch notifies the controller and forwards the collected
samples, which will be used to generate clustering trees.

III-D Implementation

We implement AutoDefense over the Open vSwitch [39]
and Ryu [17] controller platform. Note that the proposed
scheme can be easily implemented over programmable
switches as well, with very minimal modifications. The RL
model is implemented based on the OpenAI Gym [14] with Py-
torch [38]. For the data plane implementations, we instrument
the Open vSwitch and extend the standard OpenFlow protocols
so that we could perform additional operations. For the Open
vSwitch, we implement some additional data structures to
fulfill the monitoring purposes, such as the bloom filters and
hash tables. To pair the entries in the hash table, we adopt the
linear combination of two hash functions to generate more hash
results as introduced by Kirsch et al. [27]. We also extend the
Netlink messages to support the new control messages. Shared
memory is used for transmitting packet samples from kernel
to userspace.

IV EVALUATION

IV-A Evaluation setup

AutoDefense is evaluated on the Cloudlab platform [40]
with application benchmark, synthetic data generated by
hping3, UFONet [4] and real-world traffic patterns. The eval-
uations are performed in a 10 Gbps network with bare-metal
machines that run Ubuntu 16.04. Each host used in our
experiment contains two Intel E5-2630v3 8-core CPUs, 64GB
RAM, and Intel X710 NICs.

The setup is the same with that of the one in our motivation
experiment (as described in Section II). Three machines are
interconnected with each other by a host that runs Open

vSwitch. They are running as clients, attackers, and the target
server, respectively. In our evaluation, both the clients and
the attackers generate traffic, and attempt to reach the target
server at the same time. For legitimate traffic, we run the
Apache benchmark over multiple simulated IP addresses (250
by default) by using NIC aliases. The clients are configured to
download files of diverse sizes (5 MB by default) with different
concurrency levels (2000 by default).

For synthetic attacks, we use hping3 to send the attack
traffic at the rate of 500 kpps. We also use a specialized DDoS
traffic generating tool, UFONet, to generate the attack traffic in
our evaluations. For the mimicry attacks, we configure a traffic
generation tool, Harpoon [42], following the traffic patterns
extracted from the WC’98 dataset [9]. Harpoon is a flow-level
traffic simulation tool and could generate valid signals for the
flows it simulated. The WC’98 dataset is an access record from
the world cup official website in 1998, where the visitors issue
random access. For the following experiments, the initial rate
limiting meter in the Open vSwitch is set to 100 kpps. All
evaluations demonstrate the average results of 3 experiments.

We answer three questions by our evaluations. 1 What is
the performance of the learning module in the control plane?
2 How well does AutoDefense, taken as a whole, perform in

defending against attack traffic? 3 How accurate and effective
will AutoDefense be when operating under mimicry attacks?
To answer these questions, we evaluate AutoDefense from four
aspects. We discuss each of them in the following.

IV-B Performance of the learning module

A major metric to evaluate the performance of the RL
model is the coverage of the classification rules derived from
the generated clusters. In other words, how many legitimate
flows could be covered by the classification rules? The cover-
age is evaluated over two groups: the coverage of the newly
generated rules at the end of each training epoch, and that
of the rules remaining in the switch tables. For the newly
generated rules, we use the packets sampled from the data
plane for coverage evaluation. Recall that we use a sliding
window scheme to pool the sampled packets across multiple
epochs together for training. Thus, the packet pools are used in
this evaluation. Whereas for the rules in the switch tables, we
use all the legitimate flows in the dataset for the calculation.
The results are shown in Figure 5

In this figure, Accuracypool represents the coverage of the
newly generated rules, and Accuracyrule is the coverage of the
rules in the switch tables. The red arrow indicates the start of
the attack traffic. By observing the trend of Accuracypool, we
can easily see that the overall coverage of the newly generated
rules is high, which is attributed to the high accuracy of the
monitoring modules in the data plane. On the other hand,
Accuracypool also steadily increases as the learning progresses.
The maximum coverage of Accuracypool is about 90%.

By comparing these two curves, we can observe that
Accuracyrule stabilizes at a higher coverage than Accuracypool,
which could be up to 100%. The reason is that there exists a
soft timer with each rule in the switch tables. So that legitimate
flows could live longer in the data plane until they expire.
To address the potential concerns with the limited table size,

Fig. 5: Coverage of classification rules. Fig. 6: Learning vs. fixed threshold pruning. Fig. 7: Signal changes in the data plane.

we also dump the number of rules from the switch. While it
fluctuates over time, the maximum number of rules we observe
is 190 rules, which could hardly overflow the switch tables.

We also demonstrate the effectiveness of the proposed
learning scheme by comparing its Accuracyrule with that of
the scheme where fixed thresholds are used for pruning. The
fixed thresholds are the median values of min Y and min ID
obtained from the leaf nodes of the clustering trees. We can
observe that Accuracyrule is higher when the learning-based
scheme is utilized. Therefore, the learning-based pruning is
more effective than using fixed thresholds.

IV-C Effectiveness of defense

Effictiveness of learning. We first discuss the improvement of
learning over the collected samples. We compare the coverage
policy based on learned pruning parameters against the fixed
pruning parameters. The fixed pruning parameters are gener-
ated by calculating the median of minID and minY across all
the clusters. As shown in Figure 6, the learned policies have
the edge over the fixed parameters, proving that learning could
improve the accuracy of policy generated.

Number of retransmitted packets. The goal of the proposed
framework is to allocate more bandwidth to the legitimate
flows, thus increasing the fraction of legitimate traffic that
could reach the target server. As a result, we analyze the
number of retransmitted packets that happen in the data plane
and compare those with and without AutoDefense. The results
are shown in Figure 7. In this figure, the x-axis represents time,
while the y-axis shows the number of retransmitted packets per
second. In this experiment, AutoDefense is disabled until the
120th second (as highlighted in a grey shade). As such, we
use distinct colors to highlight the different time spans. The
average packet retransmission before the defense is enabled is
332.6 pps, while it becomes 98.6 pps afterwards. This indicates
that the number of retransmitted packets drops significantly
upon the deployment of AutoDefense.

Flow completion time (FCT). For the completeness of our
evaluation, we also evaluate the effectiveness of AutoDefense
from the application level. Typically, users want their flows to
finish as quickly as possible. Thus, FCT is an important metric
to evaluate user experience. In our experiment, each source IP
address may issue multiple flows to download a file repeatedly
from the Apache server since the IP addresses are scheduled
to send requests in a round-robin fashion.

1 Synthetic Attacks. In this experiment, we use hping3
to generate random attack traffic and present the Cumulative
Distribution Function (CDF) of the 50th percentile and the 95th

percentile FCT across all users in Figure 8. In addition to the

results in cases with and without the defense, we also have a
baseline that represents the CDF of FCT without attack traffic.
From these results, we conclude that AutoDefense improves
the 50th percentile FCT by 16.6% on average, and the 95th

percentile FCT by 42.7% on average. The disparity between
AutoDefense and the baseline is due to the overhead and the
false negatives in monitoring.

2 UFONet Attacks. We leverage UFONet to launch a com-
bination of various attacks, including HTTP-based flooding,
TCP-based flooding, and UDP-based flooding attacks. We
create 50 virtual IP addresses in total, any random 20 of which
launch these attacks for 1,000 times per attack type in each
round. The overall attack traffic rate is about 800 Mbps. In
this experiment, the clients are configured to download files
of diverse sizes, i.e., 500 KB, 5 MB and 50 MB, respectively.
The results of the FCT distribution are shown in Figure 9.
In this figure, we show the maximum FCT, the minimum
FCT, and the median FCT values. The values for 500 KB file
flows are shown on the left y-axis while those for the other
two groups are shown on the right y-axis. We can observe
that AutoDefense can effectively reduce the long tails of FCT
values during attacks. The overall FCT values are slightly
higher than those of the baseline scenario. The reason is that
more flows can finish the benchmark tests in the case with
AutoDefense. Moreover, we observe that AutoDefense works
more efficiently for shorter flows, since they are more time
sensitive.

IV-D Mimicry attack evaluation
Recent attacks show a trend of mimicry flash crowds that

are hard to be detected by mitigation systems [26]. Thus, we
also evaluate the performance of AutoDefense under mimicry
attacks derived from the WC’98 dataset. The legitimate flows
are generated based on the longer flows in this dataset.
The pattern that Harpoon simulates includes the flow size
distribution and the interval between each connection, where
the simulation could mimic the normal user from both the
temporal and spatial domain. Figure 10 shows the flow size
distribution of mimicry and legitimate flows.

Active flow detection. In mimicry attacks, attackers aim
to resemble the legitimate users. Therefore, the accuracy of
active flow detection largely determines the performance of
AutoDefense. We calculate statistics of the detection results,
which are shown in Figure 11. We can see that the detection
can achieve reasonable accuracy that enables effective learning
and signals collection.

Legitimate flow rate. To evaluate the effectiveness of AutoDe-
fense in defending against the mimicry attacks, we calculate
the aggregated rate (in Mbps) of legitimate flows and compare

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
50% percentile Flow Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
CD
F

w/o defense
w/ defense
baseline

0 5 10 15 20 25 30
95% percentile Flow Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

w/o defense
w/ defense
baseline

Fig. 8: Packet loss with different file sizes: 50th (left) and 95th percentile (right). Fig. 9: FCT in different scenarios.

100 101 102 103 104 105 106 107

Flow size(bytes)
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Pe
rc
en

ta
ge

 o
f f
lo
ws

Mimircy
Legitimate

0.0

0.1

0.2

0.3

0.4

Pe
rc
en

ta
ge

 o
f f
lo
ws

Fig. 10: Flow size distribution.
TPR FPR TNR FNR

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te
s

w/ Attack

Fig. 11: Accuracy of active flow detection.

0 50 100 150 200 250 300
Time(s)

2

4

6

8

10

Th
ro
ug

hp
ut
 (G

bp
s)

User rate w/defense
User rate wo/defense
Ground truth

Fig. 12: Legitimate flow rate.

that with the case without the defense. The results are shown in
Figure 12, where the attack is launched around the 15th second,
and the ground truth represents the legitimate flow rate without
any attacks. We observe that AutoDefense manages to keep the
legitimate flow rate close to the ground truth (line rate) at 10
Gbps, which otherwise would decrease by half without any
defense. The average packet size of the legitimate flows is
about 1300 bytes. Overall, AutoDefense mitigates the mimicry
attacks effectively.

IV-E Comparison with MiddlePolice

In this study, we compare the performance of AutoDefense
with that of the prior related work, MiddlePolice [30]. Mid-
dlePolice protects the target from DDoS attacks by deploying
middlebox functions in the network dataplane. A middlebox
measures the total downstream loss rate between the middle-
box and the target as well as the loss rate of each individual
sender. Then, credits are assigned to each sender to minimize
the downstream loss rate. When the credits are used up, and the
downstream loss rate exceeds a predefined threshold, packets
from this sender will be blocked.

We evaluate the kernel module of MiddlePolice by deploy-
ing it in our Top-of-Rack (ToR) switch, and the capability
handling module (CHM) in the target hosts. However, to keep
updating the downstream loss rate, MiddlePolice requires a few
long-term connections; otherwise, the network will be fully
throttled since the loss rate cannot be updated once it exceeds
the threshold. In this experiment, we emulate 8 legitimate users
and use hping3 to generate SYN flooding traffic. We disable
the source IP address spoofing in this experiment because
random source traffic will not trigger the detection period of
MiddlePolice.

Figure 13 compares the throughput of the legitimate flows
with AutoDefense and MiddlePolice. In the figure, the x−axis
shows the time and the y−axis shows the throughput in Mbps.
We can observe that both AutoDefense and MiddlePolice can
defend against such flooding attacks effectively. AutoDefense
can achieve almost line rate, which is close to the ground
truth flow rate. But MiddlePolice experiences nearly 30%

0 50 100 150 200 250 300
Time(s)

0

2

4

6

8

10

Th
ro
ug
hp
ut
 (G

bp
s)

User rate w/AutoDefense
User rate w/MiddlePolice
Ground truth

Fig. 13: AutoDefense vs. MiddlePolice.

bandwidth degradation when the downstream loss rate exceeds
the predefined threshold because MiddlePolice does not admit
more packets (by limiting credit allocation) in the following
periods in this case. Such a credit allocation scheme makes
MiddlePolice more effective when senders’ traffic do not share
bottleneck downstream links with the attack traffic.

V DISCUSSION

AutoDefense is designed based on the detection of TCP
packet retransmission signals. Thus, AutoDefense is effective
in defending against flooding attacks, such as the TCP SYN
flooding attacks and HTTP GET flooding attacks, although it
may fail to detect attacks that do not cause network congestion,
such as the infiltration attacks. Moreover, AutoDefense relies
on the changes of the retransmission signals to guide the
learning of RL agent so that it can better distinguish between
legitimate flows and attack flows. As a result, attacks that
are constructed to simulate legitimate user behaviors are more
difficult to be distinguished by AutoDefense since they also
generate the same packet retransmission signals.

VI RELATED WORK

Most cyber threats that exist on the Internet today rarely
stay the same for extended periods of time. As a result,
there are many new threats that enterprise networks must
deal with all the time. Machine learning-based techniques
have been particularly efficient and effective in detecting such
evolving threats [5], [8] by eliminating the complexity of
conventional defense mechanisms that often require significant
human intervention. Dishi et al. developed a machine learning-
based framework to detect IoT DDoS attack traffic and find

that random forest, K-nearest neighbors, and neural network
classifiers are especially effective [18]. A similar effort is
conducted by Hamza et al., in which they develop a framework
to detect anomalous patterns of MUD-compliant network
activities by performing three classification techniques and
find that clustering-based approaches perform the best among
others [21]. To tackle the high false alarm problem, Nguyen
et al. design and implement a federated learning framework to
train a distributed DNN that collects packets from multiple
vantage points for anomaly detection [37]. In the defense
space, Liu et al. [30] proposed MiddlePolice which deploys
middlebox functions to protect targets against DDoS attacks
through filtering.

VII CONCLUSION

DDoS has been a consistent and lethal threat to the Internet.
Conventional defense solutions that leverage the end-to-end
machine learning techniques to detect and mitigate against
attack traffic may be unreliable. They also heavily rely on their
prior knowledge of the attacks. To address these concerns, we
propose a framework, called AutoDefense, that leverages an
RL model to identify and isolate legitimate flows to allow
more legitimate traffic into the system. To that end, we train
a neural network to find the optimal policy that maps a set
of sampled packets to a group of packet classification rules.
Our evaluations show that AutoDefense could reduce 39% of
the attack traffic and allow 49% more legitimate flows in the
network. In the future, we will address issues that may arise
due to model size, drift, and latency considerations.

VIII ACKNOWLEDGEMENT

We would like to thank the reviewers of CNS’22 for their
feedback. This work is supported in part by the NSF grants
CNS-2008468 and a Google Faculty Research Award. Dr. Mo-
haisen is also supported in part by NRF-2016K1A1A2912757.

REFERENCES

[1] Active network security tool. [Online]. Available: http://www.hping.org/
[2] “Usc/isi ant project,” https://tinyurl.com/2p84v339, 2013.
[3] “IDS 2018 | Datasets,” https://tinyurl.com/yfrb2vun, 2021.
[4] “UFONet – Denial of Service Toolkit,” https://ufonet.03c8.net, 2021.
[5] A. Abusnaina et al., “Adversarial learning attacks on graph-based iot

malware detection systems,” in Proceedings of IEEE ICDCS, 2019.
[6] ——, “Examining the robustness of learning-based ddos detection in

software defined networks,” in Proceedings of IEEE DSC, 2019.
[7] R. Agrawal et al., “An interval classi er for database mining applica-

tions,” in Proceedings of the VLDB, 1992.
[8] H. Alasmary et al., “Soteria: Detecting adversarial examples in control

flow graph-based malware classifiers,” in Proceedings of IEEE ICDCS,
2020.

[9] M. Arlitt et al., “1998 world cup web site access logs,” 1998.
[10] C. Avin et al., “On the complexity of traffic traces and implications,”

Proceedings of ACM SIGMETRICS, 2020.
[11] F. Baboescu et al., “Scalable packet classification,” Proceedings of ACM

CCR, 2001.
[12] T. Benson et al., “Network traffic characteristics of data centers in the

wild,” in Proceedings of ACM IMC, 2010.
[13] J. Boyan et al., “Packet routing in dynamically changing networks: A

reinforcement learning approach,” Adv. Neural Inf. Process. Syst., 1993.
[14] G. Brockman et al., “Openai gym,” arXiv:1606.01540, 2016.
[15] W. Chang et al., “Characterizing botnets-as-a-service,” in Proceedings

of ACM SIGCOMM, 2014.
[16] L. Chen et al., “Auto: Scaling deep reinforcement learning for

datacenter-scale automatic traffic optimization,” in Proceedings of ACM
SIGCOMM, 2018.

[17] R. S. F. Community, “Ryu sdn framework,” https://ryu-sdn.org/, 2017.

[18] R. Doshi et al., “Machine learning ddos detection for consumer internet
of things devices,” in Proceedings of IEEE SPW, 2018.

[19] C. Fu et al., “Realtime robust malicious traffic detection via frequency
domain analysis,” in Proceedings of ACM CCS, 2021.

[20] P. Gupta et al., “Packet classification using hierarchical intelligent
cuttings,” in Hot Interconnects VII, 1999.

[21] A. Hamza et al., “Detecting volumetric attacks on lot devices via sdn-
based monitoring of mud activity,” in Proceedings of ACM SOSR, 2019.

[22] C. Hardegen et al., “Predicting network flow characteristics using deep
learning and real-world network traffic,” Proceedings of IEEE TNSM,
2020.

[23] K. Huang et al., “Systematically understanding the cyber attack busi-
ness: A survey,” ACM CSUR, 2018.

[24] ——, “Casting the dark web in a new light,” MIT SMR, 2019.
[25] G. Kambourakis et al., “The mirai botnet and the iot zombie armies,”

in Proceedings of IEEE MILCOM, 2017.
[26] B. A. Khalaf et al., “An adaptive model for detection and prevention

of ddos and flash crowd flooding attacks,” in ISAMSR, 2018.
[27] A. Kirsch et al., “Less hashing, same performance: building a better

bloom filter,” in European Symposium on Algorithms, 2006.
[28] B. Liu et al., “Clustering via decision tree construction,” in Foundations

and advances in data mining. Springer, 2005.
[29] Y. Liu et al., “A case study of traffic locality in internet p2p live

streaming systems,” in Proceedings of IEEE ICDCS, 2009.
[30] Z. Liu et al., “Middlepolice: Toward enforcing destination-defined

policies in the middle of the internet,” in Proceedings of ACM CCS,
2016.

[31] H. Mao et al., “Resource management with deep reinforcement learn-
ing,” in Proceedings of ACM HotNets, 2016.

[32] ——, “Neural adaptive video streaming with pensieve,” in Proceedings
of ACM SIGCOMM, 2017.

[33] ——, “Learning scheduling algorithms for data processing clusters,” in
Proceedings of ACM SIGCOMM, 2019.

[34] M. Mitzenmacher et al., Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis, 2017.

[35] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013.
[36] S. Moss, “Major ddos attack on dyn disrupts aws, twitter, spotify and

more,” https://tinyurl.com/2p8nctwf, 2016.
[37] T. D. Nguyen et al., “Dı̈ot: A federated self-learning anomaly detection

system for iot,” in Proceedings of IEEE ICDCS, 2019.
[38] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Adv. Neural Inf. Process. Syst., 2019.
[39] B. Pfaff et al., “The design and implementation of open vswitch,” in

Proceedings of USENIX NSDI, 2015.
[40] R. Ricci et al., “Introducing cloudlab: Scientific infrastructure for

advancing cloud architectures and applications,” Magazine of USENIX
login;, 2014.

[41] S. Singh et al., “Packet classification using multidimensional cutting,”
in Proceedings of ACM SIGCOMM, 2003.

[42] J. Sommers et al., “Harpoon: a flow-level traffic generator for router
and network tests,” Proceedings of ACM SIGMETRICS, 2004.

[43] S. Traverso et al., “Temporal locality in today’s content caching: why
it matters and how to model it,” Proceedings of ACM CCR, 2013.

[44] A. Wang et al., “Capturing ddos attack dynamics behind the scenes,”
in Proceedings of DIMVA, 2015.

[45] ——, “A data-driven study of ddos attacks and their dynamics,”
Proceedings of IEEE TDSC, 2018.

[46] ——, “Delving into internet ddos attacks by botnets: characterization
and analysis,” Proceedings of IEEE/ACM ToN, 2018.

[47] Q. Xie et al., “Scheduling with multi-level data locality: Throughput
and heavy-traffic optimality,” in Proceedings of IEEE INFOCOM, 2016.

[48] J. Xing et al., “Ripple: A programmable, decentralized link-flooding
defense against adaptive adversaries,” in Proceedings of USENIX Secu-
rity, 2021.

[49] ——, “A vision for runtime programmable networks,” in Proceedings
of ACM HotNets, 2021.

[50] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proceedings of ACM SIGCOMM, 2018.

[51] S. Zanero et al., “Unsupervised learning techniques for an intrusion
detection system,” in Proceedings of ACM SAC, 2004.

[52] ——, “Unsupervised learning algorithms for intrusion detection,” in
Proceedings of IEEE NOMS, 2008.

http://www.hping.org/
https://ryu-sdn.org/
https://tinyurl.com/2p8nctwf

	Introduction
	Motivation
	Temporal locality of traffic
	Data plane signals upon attacks
	Learning-based clustering

	System Design and Implementation
	Overview of AutoDefense
	Throttling attack traffic
	Resuscitating legitimate flows.
	What to learn for optimization
	How to learn for optimization

	Data plane monitoring
	Active flow collection

	Implementation

	Evaluation
	Evaluation setup
	Performance of the learning module
	Effectiveness of defense
	Mimicry attack evaluation
	Comparison with MiddlePolice

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	References

