
A Scalable and Dynamic ACL System for In-Network Defense

Changhun Jung†
Ewha Womans University

mizno@ewha.ac.kr

Sian Kim†
Ewha Womans University

ksy60a@ewha.ac.kr

Rhongho Jang
Wayne State University

r.jang@wayne.edu

David Mohaisen
University of Central Florida
David.Mohaisen@ucf.edu

DaeHun Nyang
Ewha Womans University

nyang@ewha.ac.kr

ABSTRACT
In-network/in-switchAccess Control List (ACL) is an essential secu-
rity component of modern networks. In high-speed networks, ACL
rules are often placed in a switch’s Ternary Content-Addressable
Memory (TCAM) for timely ACL match-action and management
(e.g., insertion and deletion). However, TCAM-based ACL systems
are encountering an scalability issue owing to increasing demand
on AI-powered autonomous defenses that detect and block attacks
online, which inevitably derives finer-grained ACL rules. Existing
solutions minimize the TCAM usage by partially offloading ACL
matching into larger Static Random-Access Memory (SRAM) or
customized hardware. Nevertheless, current SRAM-based solutions
induce high management costs, especially a high rule-deployment
latency, which delays time-sensitive defense actions. Also, the cus-
tomized hardware approaches have its own scalability issue. To
support autonomous defenses at a scale, in this paper, we propose
an in-switch ACL system called PortCatcher, which breaks the
trade-off between scalability and rule management latency. System-
wise, we detach layer-4 port matching from TCAM for improving
its memory efficiency. Algorithm-wise, we introduce a novel port
(range) rule representation concept, called linear range map (LRM),
which enables port (range) matching in SRAM-based hash tables.
LRM guarantees not only fast and scalable port matching but also
low-latency ACL management for timely defenses. With static ACL
datasets, we show that PortCatcher saves 74%∼90% TCAM space
compared to state-of-the-art approaches by adding a small overhead
to SRAM (0.49 SRAM entry per ACL rule). Also, we deploy Port-
Catcher on a programmable switch to demonstrate that PortCatcher
can serve the 5-tuple rule matching at a line rate, where port rules
are completely matched in SRAM. With an attack traffic-driven
dynamic ACL dataset, our use case study shows that PortCatcher’s
rule deployment is 168x faster than the state-of-the-art approach,
allowing our in-network defense system to block 92.09% (55.45%
more) malicious packets and all flows in an attack trace.

†These two authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560606

CCS CONCEPTS
• Networks → Bridges and switches; • Security and privacy
→ Access control.

KEYWORDS
In-network ACL, dynamic management, low-latency defense, scal-
able port (range) matching

ACM Reference Format:
Changhun Jung†, Sian Kim†, Rhongho Jang, David Mohaisen, and DaeHun
Nyang. 2022. A Scalable and Dynamic ACL System for In-Network Defense.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA.ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3548606.3560606

1 INTRODUCTION
Access Control List (ACL) is an essential security component ofmod-
ern networks, and plays an important role in blocking unwanted
and malicious network traffic. To date, in-network/switch ACL is
wildly used in various network contexts, such as backbone [82],
core [73], data center [66, 78], edge [33], and enterprise [51] net-
works, for data plane defenses and access control alike.

In general, ACL rules are created by network administrators
based on network policies for basic and static network control
purposes (i.e., static ACL), including network flow control, quality
of service (QoS), unused port blocking, where the size of ACLs
can be 100K entries or even larger [21]. Traditional ACL systems
match the source and destination IP addresses to perform a layer-3
network control. However, due to the need for finer-grained layer-4
network control and defenses [40, 55, 76, 80], the support of layer-
4 ACL (L4-ACL) becomes essential. Nevertheless, the L4-ACL’s
additional matching of the protocol and source-destination ports
fields inevitably increases the memory overhead. Even worse, a
special property of the port rule, namely range matching, triggers a
memory inefficiency issue to meet the fast matching requirements,
which aggravates the problem of scalability.

Meanwhile, there has been a surge in demand for online/in-
network attack detection andmitigation, i.e., autonomous defense [14,
50, 87], thanks to advances in deep and machine learning technolo-
gies [11, 28, 57, 65, 85] and the programmability of modern network
switches [58]. Such a trend, in turn, requires in-switch/in-network
ACL systems that are capable of rapidly and scalably deploying
dynamically-generated ACL rules (i.e., dynamic ACL). Recent ad-
vances in in-network autonomous defense systems [14, 50, 80, 87]
enabled onsite attack defenses by allowing flow-level investigation.

https://doi.org/10.1145/3548606.3560606
https://doi.org/10.1145/3548606.3560606

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

Therefore, unlike static ACL rules with diverse matching types
(i.e., exact, range, wildcard), dynamic ACL mainly performs exact
per-flow matching. Considering that the L4-ACL has a large flow
ID (i.e., 13-Byte ID per layer-4 flow) and the massive number of
machine-generated exact matching rules under a large-scale attack,
scalability is also a crucial factor in dynamic ACL.

We stress that the scalability issue of the legacy static ACL is
as urgent as the dynamic ACL’s for in-network autonomous de-
fense systems for the following reasons. First, the static ACL, as
a preliminarily filter, can prevent out-of-interest network traffic
from unnecessarily triggering the attack defense loop (i.e., detection
and action), which helps reduce the burdens of the entire system.
Second, the static and dynamic ACLs that coexist in a switch’s
data plane have to share and compete for fixed and scarce memory
resources. Nevertheless, with the ever-increasing network traffic
volume, ACL’s scalability is often sacrificed to guarantee high-speed
and non-delayed packet processing. In particular, ACLs today uti-
lize advanced and high-speed memory, such as Ternary Content-
Addressable Memory (TCAM), which supports a hundred million
longest prefix matching (LPM) per second by exploiting hardware-
backed parallel processing. Although TCAM meets the functional
needs of L4-ACLs, namely port range matching of static ACL and
exact matching of dynamic ACL, it is extremely constrained in re-
cent switches (i.e., up to 8.2 MB [13]) and is preferentially assigned
to more essential network functions, such as routing. To date, sev-
eral works have been proposed to improve TCAM’s memory effi-
ciency [16, 17, 41, 44, 47, 52, 53, 61, 62, 68, 70, 71, 90]. Unfortunately,
their memory-saving effects are limited to scaling out neither the
static nor the dynamic ACL (see section 2.2 for details).

A better approach to resolve the scalability issue stemming from
(1) the port range rules of the static ACL and (2) volumetric exact
matching rules of the dynamic ACL is to offload partial ACLmatching
from TCAM to SRAM [19, 25, 74, 75, 84] assisted by an external rule
separation function (i.e., external encoding). However, we observe
that the existing approaches induce high rule deployment latency
due to the complex external functions, which is unacceptable for
an in-network autonomous defense system to defend against attack
flows in real-time. As such, we argue that a complete and desirable
in-network ACL system must: (1) support both scalable static and
dynamic ACLs, and (2) guarantee low-latency rule deployment for
dynamic ACL rules, to allow viable in-network defenses.

In this paper, we design, implement, and evaluate a new L4-ACL
architecture that breaks the trade-off between the scalability and
latency of ACL systems. Our ACL system, called PortCatcher, sep-
arates layer-4 port matching from the IPs and protocol matching,
and performs a two-stage matching for efficiency. In the first stage,
IPs and protocol matching is performed in TCAM. This separation
allows us to save a large amount of TCAM by eliminating the dupli-
cate IP and protocol definitions having different port range rules. In
the second stage, which is a key contribution of this paper, the port
(range) matching is executed in SRAM using a novel rule match-
ing primitive, called the Linear Range Map (LRM). LRM is a port
rule representation where the rule-transformed entries are stored
efficiently and matched quickly in SRAM-based simple hash table.
At the core of LRM, port rules, regardless of the matching types
(i.e., range matching in static ACL and exact matching in dynamic
ACL), are all projected into bitmaps, where one bit stands for a

16-bit layer-4 port (i.e., for scalability). Then, multiple optimiza-
tion functions are designed to further improve memory efficiency,
particularly by handling duplicated, long-range, and wildcard port
rules. Therefore, using LRM, PortCatcher supports scalable port
matching in both static and dynamic ACL management scenarios.
Especially, for autonomous defense systems that dynamically gen-
erate per-flow ACL rules [14, 50, 80, 87], PortCatcher uses only
72-bit TCAM and 102-bit SRAM memory per flow in the worst
case, which means the programmable switch used in this work [12]
can host millions of ACL rules with 𝑂 (1) MB TCAM and 𝑂 (10)
SRAM memory. It is worth mentioning that the latest switch pro-
cessor has an increased memory space (i.e., 8.2 MB TCAM and 160
MB SRAM [13]). However, the TCAM is still not large enough to
scale out ACL management, but PortCatcher can take advantage
of the larger SRAM to scale out the port matching. Moreover, with
straightforward-yet-efficient ACL rule processing functions in the
control plane, PortCatcher supports low-latency ACL deployment
that meets the needs of autonomous defenses. While the TCAM-
SRAM hybrid concept is not new, PortCatcher is the first in-switch
ACL system that supports scalable and low-latency ACL matching
and management in SRAM without a specialized hardware.
Contributions. Our key contributions in this paper are as follows:
(1) We design PortCatcher, a novel L4-ACL system to break the
trade-off between the scalability and latency of ACLs without re-
quiring any specialized hardware. (2) We introduce a novel port
range rule representation, LRM, to enable scalable and low-latency
ACL match-action and management with a simple SRAM-based
hash table. (3) We optimize PortCatcher with four design ideas to
minimize PortCatcher’s memory consumption without sacrificing
ACL management latency. (4) We deploy PortCatcher on a pro-
grammable switch to verify PortCatcher’s real-time matching per-
formance. Our evaluation results based on static ACL datasets show
that PortCatcher saves 74%-90% of TCAM compared to ACLTCAM
and 36%-61% compare to ALPM. (5) With an attack traffic-driven
dynamic ACL dataset, our use case study shows that PortCatcher’s
rule deployment is 168x faster than a state-of-the-art approach,
allowing our in-network defense system to block 92.09% (55.45%
more) malicious packets and all flows in an attack trace.

2 BACKGROUND AND MOTIVATION
The reported global distributed denial-of-service (DDoS) attacks
have rapidly increased in volume over the past decade [1, 20]. The
targets of DDoS attacks are not limited to endpoints, but also single
and multiple networks’ transit-links for indirectly making endpoint
servers unreachable [37, 67]. In practice, specialized hardware com-
ponents, e.g., hardware firewalls, are used to address such security
issues. However, firewalls are expensive. Thus, they are placed at
the border of an autonomous system (AS), with limited power in
defeating attacks that target internal AS links [37, 67]. To prevent
such threats, any single node of the network should be able to
perform the defense once malicious flows are detected, thus an
in-network or in-switch ACL has become a crucial component that
is available in most network devices. Over the last few decades, net-
work monitoring and attack detection functions have been greatly
improved through advanced network flow measurement data struc-
tures [23, 29, 30, 32, 34, 42, 43, 46, 48, 49, 59, 69, 77, 83] and machine

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

learning techniques [11, 28, 57, 64, 65, 85, 86]. Moreover, the cen-
tralized view of software-defined network (SDN) enabled global
detection of attack flows and action against them.With these efforts,
we are inching closer to autonomous in-switch defenses, which will
automatically detect and blockmalicious flows based on pre-defined
rule sets or using learning modules within a network switch.

FlowLens [14] is recently proposed to measure per-flow packet
size distribution in a switch’s data plane and detect botnet traffic
and covert channels using machine learning in the switch’s control
plane. Similarly, Jaqen [50] and Poseidon [87] proposed to detect
attack flows in the data plane with a compact data plane data struc-
ture. Ripple [80] focused on defending against link-flooding attacks
using a set of decentralized switches across the network. These
systems concern a control delay of centralized frameworks and sug-
gest a new paradigm, namely flow-level detection in the data plane.
Such an approach must be supported by a scalable and low-latency
ACL system, for defending against large-scale attacks without delay.
However, as the key component that is responsible for performing
eventual defense actions (e.g., packet drop), the current in-switch
ACLs hardly meet the demands of modern networks because of
two drawbacks: scalability and rule management latency.

2.1 Challenges of in-network ACL
Memory constraint of network devices (scalability). Core net-
work switches must contain high-speed memory (e.g., TCAM) to
execute network functions (i.e., match-action) under a large vol-
ume of packets. However, TCAM is a scarce resource in network
switches with a few megabytes storage capacity [13], restricted by
its large physical size, high power consumption, and high price
tag. Therefore, as shown in Figure 1 1 , the network functions,
especially in-switch ACLs, face a serious scalability issue due to
the memory resource constraint in the data plane. First, a network
policy-based static ACL is essential for routine network control and
defense. Since an IP-based coarse network control can no longer
meet the network operators’ needs, given the coexistence of virtual
machines and various applications behind an IP, the L4-ACL has
been widely adopted in practice, although it requires more memory
since additional fields, i.e., protocol and source-destination ports,
should be matched. Second, recent in-network autonomous defense
systems rely on either machine learning [14] or a predefined pol-
icy [50, 80, 87] to generate ACL rules dynamically for blocking ma-
licious flows, which will add extra burdens to resource-constrained
switches, as shown in Figure 1. The fundamental difference be-
tween static and dynamic ACL rules is that the static ACL rules
involve various matching types, such as exact, range, and wildcard
matching [72], whereas the dynamic ACL has exact matching rules
only, as most in-network autonomous defense systems perform
flow-level detection and action [14, 50, 80, 87]. We stress that both
static and dynamic ACLs are essential building blocks of in-network
defense systems. Due to the resource constraints, a complete and de-
sirable in-network defense system must support memory-efficient
static and dynamic ACLs simultaneously.
High management cost (latency). Static ACLs are usually man-
aged offline, which means the ACL rules have a relatively loose time
constraint for rule population. However, an autonomous defense
system requires a tight ACL deployment deadline to block attack

Figure 1: The in-switch ACL’s scalability issue caused by a
memory resource competition in the data plane.

traffic at low latency, as shown in Figure 1 2 . Unfortunately, the
existing solutions address the scalability by designing a complex
rule encoding function, which results in a high management cost
when deploying newly generated rules (e.g., [17, 70, 75]). It is worth
noting that the ACL management overhead in this case may be
negligible for a single tuple-based network application, such as
destination IP-based routing. However, the complexity is signifi-
cant when handling 5-tuple-based ACL rules (§5). To this end, we
conclude that the current ACL systems have become a bottleneck
in autonomous defense systems due to the rule deployment latency.

2.2 Trade-off: Scalability vs. Latency
The existing L4-ACL systems focused only on improving the static
ACL’s scalability [3, 9, 17, 70, 75], ignoring the emerging needs of
the dynamic ACL for a low-latency attack blocking. However, as we
discussed previously, the scalability of the static ACL is as crucial
as the dynamic ACL since it reduces the burden of the autonomous
defense system. Although these solutions do not directly benefit
the dynamic ACL with exact matching rules, their designs, namely
port matching isolation [3, 9] and SRAM offloading [75] inspired
our system framework design, as described in the followings.

L4-ACL can be expressed as 𝐿 = {𝑅1, 𝑅2, ...𝑅𝑛}, 𝑅𝑖 = (𝑀𝑖 , 𝐴𝑖),
where𝑀𝑖 is a matching field that consists of source-destination IPs,
source-destination ports, and the protocol of a flow (5-tuple), and
𝐴𝑖 is the corresponding action to be taken, when matched.
1 TCAM-only L4-ACL (baseline). It is commonly accepted that
TCAM is essential for in-network functions (i.e., match-action func-
tions), including ACL, as it supports hundreds of millions of parallel
LPM. While TCAM fits perfectly for IP matching, it exposes a critical
memory shortcoming in 5-tuple matching (i.e., ACLTCAM). An IP def-
inition belongs to a prefix rule that works with an IP address and
mask to match a particular IP address (IPi/32 =IPi) or a range of
IP addresses (IPi/24 ∈ [IPj,IPk]). Either case can be expressed and
stored as a single TCAM entry and be parallelly searched among
other entries. A combination of source IP, destination IP, and pro-
tocol can also be expressed by a single TCAM entry, thanks to the
ternary matching feature. Unlike the IP addresses, however, the
port rule may define an arbitrary range, which should be expressed
with one or more prefix rules (or TCAM entries), triggering the well-
known range-to-prefix expansion issue (i.e., memory inefficiency).
For instance, to perform port range matching, a 16-bit range port
rule, e.g., 𝑟𝑎𝑛𝑔𝑒 < 1024, can be expressed with one prefix 000000∗.
However, 𝑟𝑎𝑛𝑔𝑒 > 1023 should be expanded with six prefixes:
000001∗, 00001∗, 0001∗, 001∗, 01∗, 1∗. As a result, a single range rule
could generate multiple TCAM entries with duplicated IPs and pro-
tocol definitions, which significantly reduces the TCAM’s storage
efficiency section 5.2). A continuous range should be expressed

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

with at most 2𝑤 −2 entries with an internal Binary-Prefix approach,
where𝑤 is the range bit length [70]. A Portsrc (𝑤 = 16) range rule
can be expanded up to 30 TCAM entries. Even worse, a combination
of Portsrc and Portdst may result in a single range matching rule
to be expanded up to 900 TCAM entries. Even though the upper
bound can be lowered to 2𝑤 − 4 with a complex Gray code-based
encoding scheme [17], the increased encoding complexity makes
dynamic management of ACL rules more challenging, especially
when ACL rules must be deployed instantly to block malicious
flows (i.e., rule management latency).
2 TCAM-LOU-based L4-ACL (port isolation). The logical op-
eration unit (LOU) is specialized hardware for port range rules. Each
LOU stores only start and end ports of a range rule, and is associated
with an IP and protocol definition for 5-tuple matching. Lastly, the
LOU checks if a port falls into the range using operator-operand
pairs (e.g., > 128 and < 1024). By isolating the port matching from
TCAM (IP and protocol matching), ACL saves TCAM and avoids
the range-to-prefix expansion issue. Unfortunately, there are only a
limited number of LOUs in commercial switches, which is a major
drawback of this approach. For instance, modern switches have
only 24∼104 LOUs [2, 3, 8, 9], allowing them to support up to 104
different port range rules. Although ACLLOU’s operation is straight-
forward and fast, it limits the diversity of port rules of switch ACL.
Despite of its scalability issue, ACLLOU clearly shows that the port
matching isolation is a promising direction for saving TCAMmemory.

Instead of LOU, one may suggest that range matching can be
easily performed by setting up a hash table in SRAM, where IP and
protocol are a key and the corresponding range list is a value. How-
ever, we note that an IP and protocol rule may be associated with an
indefinite number of port (range) rules, which should be matched
sequentially. Unfortunately, this design is infeasible for pipeline-
based switches due to limited programmability (i.e., prohibition of
loop operations and memory double access [4, 87]).
3 TCAM-SRAM-based L4-ACL (SRAM offloading). An alter-
native for saving TCAM is to offload a portion of matching tasks to
SRAM. ALPM [75], a state-of-the-art approach, divides a match-
ing field (i.e., 𝑀𝑖) into two bit-wise portions, and stores the most
significant bits (msb) in TCAM and less significant bits (lsb) in
SRAM. In the encoding phase, ALPM first constructs a binary trie
(i.e., prefix tree) using all entries, then trims and stores its subtrees,
where the total number of nodes is smaller than a threshold (𝑠), in
pre-allocated and equal-sized (𝑠) SRAM partitions. Finally, the root
node (e.g., 101∗) of each subtree among the SRAM partition indices
is stored in TCAM. We note that ALPM is originally designed for a
single field LPM (i.e., IP), but one can extend the same idea to match
multiple fields (e.g., 5-tuple). However, this extension faces three
issues. First, ALPM still requires port range-to-prefix expansion
before constructing the trie (i.e., encoding). Second, since SRAM
does not support ternary matching, the offloaded portion (i.e., 5-
tuplelsb) will produce a massive amount of duplicated leaf nodes
(SRAM entries). Assuming that the offloaded portions are source
and destination ports, a port rule (src=ANY, dst=17) will produce 216
SRAM entries to match all port combinations (i.e., SRAM memory
efficiency). One can further offload fewer bits to the SRAM, but the
TCAM’s saving effect diminishes. Last but not least, a simple ACL
management operation (e.g., rule insertion and deletion) triggers

Table 1: Scalability vs. Latency
ACLTCAM ACLLOU ALPM PortCatcher

TCAM 5-tuple IP, Proto 5-tuplemsb IP, Proto
SRAM - - 5-tuplelsb Port
LOU [9] - Port - -
Data
Plane

Scalability Poor Poor Poor Good
Latency Line rate Line rate Line rate Line rate

Control
Plane

Scalability Low Low Very High Low
Latency High Low Very High Low

complex operations, including trie re-construction, TCAM update,
and multiple SRAM partition updates, which delay a time-sensitive
defense action to be taken in the data plane (section 5.3).

2.3 Our Approach
Inspired by ACLLOU and ALPM, our L4-ACL system, called Port-
Catcher, is designed to isolate the port matching from 5-tuple match-
ing and completely offload it in SRAM, as shown in Table 1. Our
design choice not only avoids TCAM’s inefficiency (i.e., range-to-
prefix) but also saves TCAM memory by excluding port defini-
tions (i.e., saves 32-bit per TCAM entry). Uniquely, we propose a
novel Linear Range Map (LRM) concept to enable hash table-based
scalable and non-delayed port match-action without specialized
hardware. Essentially, LRM is a bitmap representation of port rules
designed for expressing both exact and range rules in a memory-
efficient way. Thanks to the design, PortCatcher supports scalable
static and dynamic ACL management simultaneously. Moreover,
the low management cost of LPM allows PortCatcher to guarantee
low latency in the dynamic ACL rule deployment to block malicious
flow immediately (section 5.4).

3 PORT RANGE MATCHING IN HASH TABLE
Before delving into our design, we describe LRM, which enables a
hash table-based port range matching in SRAM.

3.1 Bitmap Representation of Port Ranges
A layer-4 port rule is given as a source-destination port range pair.
For example, assume a port range rule consisting of four port rule
pairs: (30, 40-180), (30, 215-228), (170-225, 80), and (181-219, 200-
240). For a hash table-based range matching, we break down these
port (range) rules into 1,810 (=141 + 14 + 56 + 39 × 41) individual
source-destination pairs, i.e., all the points in the black area in
Figure 2(a) but not the range, and then store each pair as a 32-bit
table entry (16 bits per source and destination ports). By doing so,
a packet with layer-4 port fields can be matched using the hash
table (i.e., hash table-based exact port matching). However, this
approach suffers from scalability and latency issues. As discussed
earlier, port rules with port range settings can be extended to a
massive number of 32-bit table entries, which degrades the memory
efficiency significantly. In addition, the port rule management (e.g.,
insertion and deletion) is extremely costly since the extended port
entries are stored in the hash table separately and independently,
which causes a high latency in the dynamic control scenario (i.e.,
autonomous defense).

A naïve approach to implementing our idea is to express the port
rules in a two-dimension bitmap for port matching. However, the
bitmap approach is still costly (i.e., 232 bits). Moreover, the port rules
are not matched independently, but with the IP and protocol rules

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(a) Port range rules’ logical map (src, dst): (1) (30, 40-180),
(2) (30, 215-228), (3) (170-225, 80), (4) (181-219, 200-240).

Linear Range Map Entry (LRME)

(30, 64~95) 010…000 111...111 (192~223, 80) 000...000 000...000

(30, 96~127) 010…000 111...111 (224~225, 80) 000...011 000...000

(30, 160~180) 010…000 000...111 (181~191, 224~240) 111...000 000...111

(30, 215~223) 010…000 111...000 (192~219, 200~223) 000...111 111...000

(30, 224~228) 010…000 000...111 (192~219, 224~240) 000...111 000...111

(30, 40~63) 010…000 111...000(1) (170~191, 80) 111...000 000...000(3)

(2)

(30, 128~159) 010…000 111...111 (181~191, 200~223) 111...000 111...000(4)

Dst Port

0 31 0 31

010000000000000000000000000000Src Port: 30 11111111111111111111111100000000Dst Port: 40~63

Offset

32 Port Aggregation 40%32 = 830%32 = 30

[PAI = 30/32 = 0] [PAI = 40~63/32 = 1]

Src Port

30th 8th

(b) Linear Range Map (LRM) with 32 port aggregation for the logical map in (a). Each entry has source-destination
port bit map representing exact port ranges. All the LRMEs will be stored in the hash table.

Figure 2: Linear Range Map (LRM) with illustration.

(i.e., 5-tuple matching). As such, the bitmap should be created for 𝑟
distinct IP and protocol rule pairs (i.e., 𝑟×232), which is unacceptably
large. Our observation is that the bitmap wastes memory because
it reserves the space for undefined ports. Therefore, we propose
the LRM Table to store only the meaningful portion of the bitmap
(i.e., black area in Figure 2(a)) using a simple hash table. To do so,
we suggest LRM port aggregation to represent port range rules in
a compact bitmap format. We further propose three optimization
designs, namely range reversing, ANY port handling, and Universal
LRM table with deduplication to scale up the table capacity.

3.2 LRM: Range Representation for Hash Table
To enable the LRM-based port matching with a hash table, we
introduce a compact representation of port rules, called LRM with
port aggregation, which internally aggregates the continuous ports
into a source-destination port bitmap, called LRM entries (LRME).
As shown in Figure 2(b), we break down the port rule (30, 40-180)
into five continuous subsets: (30, 40-63), (30, 64-95), (30, 96-127),
(30, 128-159), and (30, 160-180), where each subset includes up to 32
continuous ports for both source and destination, in what we call
32-port aggregation. Then, we express each subset using two 32-bit
bitmaps, where each bit stands for a single individual port value, as
shown in Figure 2(b). By repeating this process for every port rule,
we eventually obtain 28 32-bit bitmaps, which saves us 98.5% of
the memory compared to the naïve hash table-based approach (i.e.,
1,810 32-bit entries). Eventually, we store these bitmaps (LRME)
into a hash table for port matching purposes.

An LRME can be promptly located in a hash table by its starting
port number, and a specific port number of interest can be located
within an LRME by the offset. Thus, LRME is in substance a position
code of port ranges. To locate LRMEs in the hash table, we use the
first source and destination ports of LRMEs divided by the port
aggregation size (e.g., 32) to calculate a port aggregation index
(PAI). For instance, the 32-PAI of a port pair (30, 40-63) is <0, 1>,
as shown in Figure 2(b). Therefore, every aggregated LRME will
have a unique PAI to be used as the item key in the hash table.
Moreover, the port matching can be done by calculating the offset
(see Figure 5 for the runtime port matching logic).

1 Optimization 1 port range reversing. Even with the port
aggregation, some port range rules generate a large number of
LRMEs. For instance, the port range {≥ 1024} generates 2,016
LRMEs, even with a 32 port aggregation. To tackle this issue, we
can reverse the range definition for a port rule with a large coverage
(i.e., range covers more than 216/2 ports) with a reversed action
(e.g., drop to permit). Therefore, we can reduce the number to as
low as 32 LRMEs by reversing the range as {< 1024}. We note that
the reversed action is handled by a reverse flag in our system.
2 Optimization 2 ANY port handling. The port rules can have
four different “ANY” settings varying source and destination ports,
namely (src=ANY,dst=ANY), (ANY,-), (-,ANY), and (-,-), where “-”
refers to a concrete port or port range definition. “ANY” rules are
a major challenge for LRM, since a port rule (30, ANY) with 32-
port aggregation generates 216/32 LRMEs and (ANY, ANY) creates
232/32/32 LRMEs. While we can resolve the issue using the range
reversing, the solution also wastes memory with “ANY” rules gener-
ated LRMEs. To further understand this issue, assuming that we use
an invalid port number (i.e., 0) to express the “ANY” in the port rule
(i.e., range reversing). As such, the port rule (30, ANY) becomes (30,
0), and the problem is that the destination port portion of its LRME
is less meaningful since no packets use port “0”. Therefore, we can
save the memory for “ANY” rules by maintaining these rules in
separated tables with half-sized LRMEs. Moreover, an (ANY, ANY)
does not generate LRMEs in our system design (section 4).
3 Optimization 3 Universal table with port rule deduplica-
tion. LRM can work as a port blacklist to block the traffic from or
to disallowed ports. However, in a general L4-ACL, port rules are
combined with IP and protocol definitions for 5-tuple-based access
control (i.e., rule integrality). Therefore, every IP and protocol rule
should have a unique LRM that represents a set of port rules. For
memory efficiency, PortCatcher is designed to maintain a universal
hash table for multiple LRMs. To distinguish LRMs in the table, we
assign a unique ID, called LRM-ID, to every LRM. Eventually, the
LRM-ID combined with PAI will be used as an item key to locate a
unique LRME (see Figure 5). For multiple IP and protocol rule pairs
with the same port rule set, a single LRM with the same LRM-ID is
shared to avoid LRME duplication in the table (i.e., memory saving).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

P4Runtime API

Flow

Stage-1 Stage-2

Drop

Data Plane

Control Plane

TCAM

IP Table

IP and Protocol rules Port Range rules

ACL Handler

SRAM

Port Table

Figure 3: System Architecture. The ACL handler separates
L4-ACL rules in two parts, namely IP and port, and then in-
stalls each part into the corresponding data plane modules.
Subsequently, the data plane modules run independently to
filter out unwanted/malicious network traffics based on in-
stalled rules (i.e., black-list ACL).

4 PORTCATCHER: SYSTEM DESIGN
In this section, we introduce our L4-ACL matching system, namely
PortCatcher, and its data plane and control plane designs.

4.1 System Overview
Our L4-ACL consists of three components: IP module, port module,
and ACL handler. As shown in Figure 3, the IP and port modules
are implemented in the switch data plane (i.e., ASIC) to perform a
two-stage matching, where the source IP, destination IP, and proto-
col are matched in the IP module with TCAM (stage-1), and then
the source and destination ports are matched in the port module
with SRAM (stage-2). The ACL handler resides in the switch control
plane (i.e., general CPU board running a network OS), which is
responsible for managing ACL rules based on the data plane de-
sign. The communication between the data and control planes is
realized with runtime API over PCIe, which is generally supported
by commercial switches.

4.2 Data Plane Modules
As shown in Figure 4, we design two match-action tables in the data
plane to isolate the port matching from IP and protocol matching.
Therefore, ACL rules should be stored separately but without losing
the integrality. In other words, a packet must match two tables’
entries that belong to an identical ACL rule. To resolve this issue,
we designed a coupled matching mechanism and implemented it
in the IP table’s action and port table’s matching logic.
(1) IP table (stage-1): The IP table resides in TCAM and the match-
action logic is conducted as follows:

• Matching field. IP table’s matching fields include source IP,
destination IP, and protocol (1 in Figure 4). When defining
an L4-ACL rule, each IP also defines amask tomatch a subnet.
The protocol also requires a mask to match the exact number
or any. We note that TCAM’s mask has a “don’t care” bit for
generic wildcard matching.
• Action code. Once matched with a table entry, the corre-
sponding action data (i.e., 1 in Figure 4) is passed to the next
stage using a pre-defined action code (get_coupling_info())
for port table matching at stage-2. For L4-ACL rules with
a (src=ANY, dst=ANY) port rule, PortCatcher sets the rule
action as “Drop” and skips the rest of the matching.

• Action data. The action data is the information required
for the port table matching. As shown as 1 in Figure 4
, PortCatcher stores port rules separately in three tables:
Src ANY, Dst ANY, and No ANY. Therefore, the action data
reserves three independent sub-fields accordingly. In each
sub-field, LRM-ID is a unique ID to lookup a group of port
rules associated with the matched TCAM entry (i.e., IP and
protocol rule pair or its LRM), as shown in Figure 2. A REV
flag to indicate whether the port range rules are stored in a
reversed manner.

(2) User metadata (coupling stage-1 and stage-2): User meta-
data is a user-defined data structure for data communication within
a switch’s data plane. Any function in the packet processing pipeline
can read and write the user metadata in its own stage. In our system,
the user metadata is mainly responsible for delivering IP table’s
action data (i.e., coupling information) to the stage-2 port table (2
in Figure 4). Our user metadata has six variables, 51 bits in total,
including three 16-bit LRM-IDs, three 1-bit REV flags.
(3) Port table (stage-2): The port matching is activated only if a
packet matches one of the entries in the IP table and its action is
not “Drop”. As shown by 3 in Figure 4, the port table consists of
three independent hash tables, each of which is associated with a
sub-field of IP table’s action data. At stage-2, PortCatcher retrieves
the action data from the user metadata and sequentially lookup Src
ANY, Dst ANY, and No ANY tables with the corresponding LRM-ID
in sub-fields. The port tables are as follows:
• Matching field. The port table performs exact matching
with a key that consists of LRM-ID and PAI (driven from the
packet’s port information). LRM-ID is used for locating a
unique LRM (representing a set of port rules, per Figure 2)
associated with the matched IP and protocol entry and the
PAI is for searching an LRME that covers the ports of the
packet.
• Action code and logic. Once the key is found in the table,
the port table will simply copy the action data (i.e., LRMEs)
into the user metadata using the predefined action code
(get_LRME()) for port matching and REV flag handling.
• Action data (LRMEs). The action data field stores LRMEs.
As shown in Figure 4, only the No ANY has both source and
destination LRMEs (64 bits). The other two tables store either
source or destination LRMEs for the non-ANY port rule, thus
each LRME requires only 32 bits memory (i.e., SRAM saving).

(4) Port matching and REV flag handling: The eventual port
rule matching is performed after acquiring an LRME in port table.
As shown in Figure 5, once an LRME is found in the hash table,
PortCatcher checks whether the bits that represent the input values
(i.e., packet’s ports) are “1” or not by executing AND with the LRME
and the bitmap of a port (pair). For example, port 183’s bitmap is
1 ≪ 23, where 23 is an offset calculated by offset = 183 mod 32 =
23 in the case of 32 port aggregation. For the No Any table, the
matching is independently performed for source and destination
ports. However, only the both-matched case (neither is zero) is
considered the eventual matching (4 in Figure 4). However, we
note that the eventual matching of a port rule does not necessarily
mean the packet should be dropped, since port range rules can be
stored in a reversed manner. Therefore, after lookup, PortCatcher

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

③ < Port Table >

Action Code

SrcPAI DstPAI LRM-ID - SrcLRME DstLRME

12 17 3 get_LRME() N/A 000....101

23 5 5 get_LRME() N/A 111....111

… … … ... N/A …

Dst 7 9 12 get_LRME() 111....101 N/A

ANY … … … ... … N/A

No 14 52 7 get_LRME() 111....101 000....101

ANY … … … ... … …

Src

ANY

Action Data (LRME)Matching Field

① < IP Table >

LRM-ID REV LRM-ID REV LRM-ID REV

3 T 5 F - -

12 T 7 T - -

- - - - 9 F

- - - - - -

… ... … ... … ...

Action Data (Coupling Field)

Src ANY Dst ANY No ANY

Action Code

192.167… / 32 ... 17 / 255 get_coupling_info()

192.168... / 24 … 6 / 0 get_coupling_info()

192.169... / 19 … 6 / 255 get_coupling_info()

192.170... / 19 … 17 / 255 Drop

… … … ...

Dst IP

/ Mask

Src IP

/ Mask

Matching Field

Proto

/ Mask

Drop or

get_coup.

Pkt

AND

④

Drop

⑥

REV

⑤

Reversed

Matching

SrcLRME,

DstLRME

Lookup

②

SrcPort,

DstPort

Stage-2

SrcPort, DstPort

Stage-1

192.167.../32, ..., 17/255, 32768, 80

Matching

Figure 4: Workflow of PortCatcher with IP table and port table in the data plane. IP and protocol parsed from a packet header
of a flow is matched with IP table in TCAM. If matched, the port range matching is performed in the port table of SRAM. Two
tables implemented in match-action unit (MAU) isolate the IP and port matching.

11111111𝟏11111111111100000000000

Inputs: LRM-ID, 𝑆𝑟𝑐 𝑃𝑜𝑟𝑡, 𝐷𝑠𝑡 𝑃𝑜𝑟𝑡, REV

Stage-1

Lookup (LRM-ID, 𝑷𝑨𝑰(𝑆𝑟𝑐 𝑃𝑜𝑟𝑡), 𝑷𝑨𝑰(𝐷𝑠𝑡 𝑃𝑜𝑟𝑡))

Port Aggregate Index

e.g., 32 PAI: PAI (𝑆𝑟𝑐 𝑃𝑜𝑟𝑡 → 183) = 183/32 = 𝟓

Stage-2

Linear Range Map Entry (LRME)

Src Port LRME

111…
Dst Port LRME

160 = 𝟓 × 32191

183 𝑚𝑜𝑑 32 = 23

183

Both==1?

Yes

not matched

matched

NoMatching Logic

AND00000000𝟏00000000000000000000000 000…

64-bit

Port Table

(Hash Table)

Input

REV

Figure 5: LRME searching and port matching logic.

check REV flag (5 in Figure 4) to determine whether the packet
should be dropped or sent to the next stage (e.g., routing). If the
port numbers are matched, REV “false” triggers the “drop” action;
otherwise, PortCatcher moves to the next table. If not matched,
REV “true” drops the packet (6 in Figure 4); otherwise, moves to
the next table. The packet is permitted only if it passes all port
tables. This procedure is illustrated in the dotted box of Figure 5.

4.3 Control Plane Module: ACL Handler
The ACL handler resides in a switch’s control plane and commu-
nicates with the data plane table with PCIe-based runtime APIs.
The primary responsibility of the ACL handler is twofold. One is
to convert 5-tuple ACL rules in a form that is required by the data
plane tables (i.e., IP and port). The ACL rule processing consists
of four steps: IP and protocol rule deduplication and port ANY
handling (1), port rule deduplication (2), port rule reversing (3),
and LRME generation (4), as depicted in Figure 6. The other one
is to store ACL rules and keep track of the data plane tables using
the shadow ACL for quick ACL management, as shown in Figure 6.
In the following, we describe the process of static ACL deployment
and dynamic ACL rule management (i.e., insertion and deletion).

4.3.1 Static ACL deployment. A static ACL is a fixed set of rules
driven by the network policies and is deployed when initializing
switches. Therefore, it requires relatively a loose deadline. Algo-
rithm 1 in Appendix A.1 illustrates the ACL rule handling process.
IP and protocol rule deduplication and port ANY handling.
Given a list of 5-tuple ACL rules, the ACL handler first aggregates

ACL rules based on IP and protocol fields using a linked hashmap
with IP and protocol pair as the key and port rules as the values
(lines 8-9). Therefore, duplicated IP and protocol definitions will be
eliminated and each distinct IP and protocol rule pair is followed
by a set of port (range) definitions as a linked list. During this pro-
cess, the ACL rules are sorted into four groups: bothANY, srcANY,
dstANY, and noANY (lines 10-13), based on the “ANY” setting in
source and destination ports. Rules in the bothANY group are in-
serted into an IP (hashmap) table with the coupling field as “Drop”
(line 9), so that the port matching will be skipped. The rule in the
other groups are put into separate linked hashmaps (lines 10-13).
Next, the ACL handler repeats port rule deduplication, port rule
reversing, and LRME generation for PortsrcANY, PortdstANY, and
PortnoANY, independently (lines 15-18).
Port rule deduplication. Port rule deduplication is done by swap-
ping the key/value of the port tables, i.e., <K, V>→ <V, K> (line 18),
so that the duplicated port rule sets are eliminated and each distinct
port rule set is followed by a list of IP and protocol definitions. Note
that the deduplication functions will group a number of rules and
process them at once, in a way similar to a batch mode operation.
Port rule reversing. After obtaining port rule tables, the ACL han-
dler reverses the port rule sets that cover more than 215 ports to
reduce the amount of LRMEs to be generated (line 17). For exam-
ple, for a port rule set, (ANY, 1-512), (ANY, 1024-2048), and (ANY,
4096-65535), of an IP and protocol rule pair, its total coverage is
62,977 ports, larger than 215. Therefore, the REV_flag is “true”. The
flag is used in LRME generation function to generate LRMEs in a
reversed manner. General in-network ACLs block malicious flows
with “permit/deny” actions. For non-reversible actions (e.g., priority
queue), PortCatcher has an option to skip the reversing.
LRME generation. LRME generation is a process of converting
port rules into hash table entries (i.e., 32-bit or 64-bit bitmap). Fig-
ure 2 explains the LRME generation logic, and Algorithm 2 in
Appendix explains in more details the used functions. Given a port
(range) rule set (𝑉), it generates a list of LRMEs paired with their
PAIs (i.e., <PAI, LRME>), which are IDs or location information of
the LRMEs. Eventually, these LRMEs are stored in an LRME linked
hashmap (i.e., LRMEsrcANY, LRMEdstANY, LRMEnoANY) with 𝑉 as
their key. The uniqueness of LRM-ID is guaranteed by assigning
the 𝑉 ’s (LRM’s) unique index in LRME tables (line 20). Moreover,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

ACL Rules

① IP and Protocol Dedup.

/ Port ANY Handling

② Port Rule

Deduplication

③ Port Rule

Reverse

④ LRME

Generation

Shadow ACL

IP Table Port Table

TCAM SRAM

Control Plane

Data Plane

P4Runtime API

Load,

if dynamic

Figure 6: The rule encoding process of ACL handler in the
control plane. Four functions help to synchronize ACL rules
between control plane and data plane modules.

LRM-ID and REV_flag, as the information needed for coupling IP
and port tables, are stored in the IP table combined with the IP and
protocol definitions (lines 19-21).
Data plane installation. As shown in Algorithm 1 (lines 22-23),
the ACL handler populates the entire IP table into TCAM in the
data plane and installs LRMEs into the data plane’s SRAM. Three
SRAM-based hash tables are reserved in the data plane to store
LRMEsrcANY, LRMEdstANY, LRMEnoANY tables, separately. Moreover,
when installing an LRME, its LRM-ID and PAI are used as the hash
table key to ensure LRME can be uniquely located and identified.

4.3.2 Shadow ACL for dynamic rule management. As shown in
Algorithm 1 (lines 22-24), the ACL handler also stores IP, port,
and LRME tables in the control plane database, called Shadow ACL.
Shadow ACL is responsible for synchronizing ACL rules installed
in the data plane for fast and dynamic ACL management. We note
that the data plane does not support the dynamic ACL management
feature due to its limited programmability. Moreover, PortCatcher’s
data plane tables have only highly-compressed port rule representa-
tions (i.e., LRMEs) but not the raw port rules. Therefore, the shadow
ACL is crucial for a seamless ACL management. The essential idea
of our dynamic ACL management is to reuse IP, port, and LRME
tables for low-computation and non-delayed rule insertion and
deletion. Algorithm 3 in Appendix A.3 shows the detailed dynamic
insertion and deletion operations.
Rule priority.We note that a rule priority notion is essential for
any ACL systems, since the continuous rule deployment will over-
flow the finite data plane resources and new rules may conflict
with previous rules. There has been a body of work [24, 73, 88, 89]
focused on the rule priority issue, which can be leveraged by Port-
Catcher to evict rules on-demand.

5 EVALUATION
In this section, we first evaluate PortCatcher’s memory efficiency
and computational overhead using a real-world dataset-driven
ACL benchmark. Next, we compare PortCatcher with the standard
ACLTCAM and the state-of-the-art ALPM [75] and discuss the trade-
off between scalability and rule management latency. Then, we
use an attack traffic-driven ACL dataset to show that PortCatcher
can deploy dynamically-generated ACL rules with a low latency
to block malicious traffic rapidly. Finally, we discuss the resource
consumption and rule matching speed of PortCatcher in data plane.

Figure 7: The distribution of datasets with five ACL seeds
generated by ClassBench.

5.1 Testbed and Dataset
To show the feasibility of PortCatcher, we implemented our system
in a programmable switch [58] with a low cost (section 5.5 for re-
source consumption and rule matching speed). The programmable
switch is equipped with a Tofino2 data-plane processor [12], pro-
viding 𝑂 (1) MB TCAM and 𝑂 (10) SRAM capacity, and 1.6 GHz
Pentium D-1517 control-plane CPU [58]. To evaluate our system,
we interconnected the switch with a traffic generator equipped with
AMD RyzenTM 5 2400 G 8-core CPU, 16 GB of DRAM, and Intel
XL710 40 Gbps network adapter. We used two datasets, namely
ClassBench [72] and attack trace-driven [35] datasets.
Static ACL rules. ClassBench is used to evaluate PortCatcher’s
scalability in a static ACL scenario (see section 5.3). The dataset
was created by analyzing 12 real-world datasets from Internet Ser-
vice Providers (ISPs), network equipment vendors, and research
institutes. Also, it covers all possible matching types (i.e., exact,
range, and wildcard matching) with various distributions, as shown
in Figure 7. Thus, it is widely used in network applications [10,
26, 39, 45, 54, 60]. As shown in Figure 7, five ACLs with 10K rules
were created, varying the port rule definitions. We note that the
ClassBench generates source IP, destination IP, and protocol with
a uniform distribution. However, the distribution of the source
and destination port definitions is controlled by pre-defined seeds,
which define the generation probability among different rule types:
wildcard (WC), high range (HI), low range (LO), arbitrary range
(AR), and exact matching (EM). WC matches every port number
(0-65535). HI and LO mean ephemeral user port range (1024-65535)
and well-known system port range (0-1023), respectively. ARmeans
arbitrary port range rule and EM rule matches one exact port. We
can observe that WC dominates source port rules. On the contrary,
the destination port rules show diverse distributions among seeds.
Therefore, the destination port distribution will have major effects
on the estimated results.
Dynamic ACL rules. In our use-case study on attack traffic block-
ing performance with dynamic ACL, the ACL dataset is generated
using the CIC attack trace [35] to analyze PortCatcher’s dynamicity
(see section 5.4). The derived ACL dataset has only the exact match-
ing rules transformed from all individual L4-flows (i.e., 306,355
flows in total), since the existing in-network autonomous detection
system performs flow-level actions [14, 50, 80, 87].

5.2 Analysis of PortCatcher’s Efficiency
5.2.1 Analysis of TCAM saving effects (IP table). Constrained by the
data plane’s TCAM, PortCatcher offloads port matching completely
to SRAM, which results in shortened TCAM entry definition using
only IP and protocol parts and the following TCAM saving.

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Range-to-prefix expansion prevention.As discussed in the mo-
tivation, the ACLTCAM suffers from a TCAMwaste due to the range-
to-prefix expansion for port range rules. Here, we assume ACLTCAM
is based on the widely used internal binary-prefix approach [70],
which expands a port range rule to up to 30 prefix rules (i.e., TCAM
entries) in the worst case. Since PortCatcher prevents the range-to-
prefix expansion by performing only IP and protocol matching in
TCAM, the number of TCAM entries required by PortCatcher is
the same as the number of ACL rules in the worst case (i.e., black
reference line in Figure 8). Figure 8 shows the number of TCAM
entries required in ACLTCAM when varying ACL dataset. As shown,
acl3 presents the highest expansion rate of 230%, since the rule set
contains a large number of HI and AR port rules (i.e., 13% and 11%).
The acl4 has a similar amount of HI and AR rules, thus 10K ACL
rules are expanded to 21K TCAM entries. acl1 and acl5 fall into a
similar case, although major expansions are triggered by AR rules.
Among the five rule set, acl2 has the lowest expansion of 130%,
since the rules mainly consisted of WC (69%) and EM (22%) rules.
TCAM entries deduplication. Due to the isolation design, Port-
Catcher can further reduce the number of entries by eliminating
duplicate IP and protocol entries since it is common for ACL rules
to have the same source IP, destination IP, and protocol definitions,
but different port settings. The TCAM saving effect is demonstrated
in Figure 8. As shown, PortCatcher can save 0.07∼3.53K TCAM en-
tries by deduplicating the TCAM entries. Compared with ACLTCAM,
PortCatcher can save 25%∼72% of TCAM entries.

5.2.2 Analysis of SRAM saving effects (port table). Although SRAM
is not as constrained as TCAM in a switch, it is still limited to
tens of megabytes [13, 50]. Therefore, several optimization efforts
have been made for PortCatcher, including port aggregation, port
range reversing, ANY port handling, and port rule deduplication,
to reduce the number of SRAM entries. Table 2 breaks down the
SRAM saving effects in the execution order.
Baseline (LRM concept). In the baseline approach, a concrete
port rule of an LRM is converted to an LRME and consumes one
hash table entry. For example, the port range rule (src=30, dst=ANY)
generates 65,536 LRMEs. As shown in Table 2-Baseline, ACL rule
sets are converted to 0.26, 2.73, 3.63, 3.06 and 0.29 trillion LRMEs,
respectively. Obviously, the amount of LRMEs is unacceptably large.
Port ANY rule handling. Thememory efficiency can be improved
notably by handling port ANY rules system-wise with separated
hash tables and port table action logic. Therefore, the number of
LRMEs is reduced by 216 times compared with the baseline and
saves 1.9 trillion LRMEs on average, as shown in Table 2-ANY.
Port rule deduplication. Since the IP and protocol entries, and
the port entries are separately handled, we also remove the dupli-
cated port rules, as we have done for the TCAM table. Intuitively,
multiple IP and protocol rule pairs may have the same port rule
sets producing the exact same LRM and LRMEs. To avoid such
LRME duplication, we let different IP and protocol entries share the
same LRM and LRMEs by assigning the same port table lookup key
(i.e., LRM-ID). Table 2-Dedup. shows the number of LRMEs after
deduplication. As shown, acl2 shows the most significant LRME
reducing effect (i.e., 166 times), which infers a large amount of IP
and protocol rules have the same port rule settings. While acl5 has

Figure 8: Analysis of TCAM saving effects. The number of
TCAM entries with five 10K ACL rule datasets.

Table 2: Analysis of SRAM saving effects. The number of
SRAM table entries with a function-wise breakdown: the
baseline (i.e., LRM), port ANY handling (ANY), port rule
deduplication (Dedup.), range reversing (REV), port aggre-
gation (Aggr.). The values in parentheses show the entry re-
duction ratio compared with the previous column.

LRM ANY Dedup. REV Aggr.
acl1 0.26T 4.11M (-99%) 0.75M (-81%) 61.08K (-91%) 3.59K (-94%)
acl2 2.73T 41.67M (-99%) 0.25M (-99%) 4.14K (-98%) 0.17K (-95%)
acl3 3.63T 55.42M (-99%) 13.53M (-75%) 272.64K (-97%) 10.74K (-96%)
acl4 3.06T 46.80M (-99%) 6.37M (-86%) 160.88K (-97%) 6.92K (-95%)
acl5 0.29T 4.52M (-99%) 1.74M (-61%) 30.29K (-98%) 2.87K (-90%)

the least amount of LRMEs, the number is further reduced by 2.59
times. Other ACL sets also saved SRAM memory significantly; by
5.48 times for acl1, 4.09 times for acl3, and 7.34 times for acl4.
Port range reversing. The next optimization is done for the port
range rules with a broad coverage, which generates a long list of
LRMEs (e.g., HI and AR). For such rules, we reverse a port range
definition, e.g., from (1024-65535) to (0-1023), with a reversed ac-
tion to reduce the amount of LRMEs. As shown in Table 2-REV,
the number of LRMEs is reduced notably to 105.80K, on average,
with the port range reversing. Noticeably, more significant LRME
reducing effects can be observed for acl2∼acl4 (i.e., reduced 41
times on average), which have more HI rules.
LRM port aggregation. For LRM, we introduced a concept called
port aggregation, which converts continuous ports into a port n-
sized bitmap, namely 𝑛-port aggression. With 𝑛 = 32 (i.e., 32-port
aggregation), we expect that a 128 continuous port range to be
expressed by only 4 LRMEs with port aggression. However, it may
not be efficient for discrete port rule sets, as a 32-bit LRME may
store only one port (i.e., EM). We observe that, although EMs are the
most common port rules in the ACL rule sets, the port aggregation
design is still able to reduce the number of LRMEs by around 32
times, as shown in Table 2-Aggr. It infers that the LRME saving by
the port aggregation is more significant than the memory waste
caused by discrete EM rules. As results, the number of LRMEs is
reduced to 0.13, 1.30, 1.73, 1.46, and 0.14 million, respectively.

To conclude, our optimization designs show positive and signif-
icant effects in reducing the number of LRMEs (i.e., SRAM table
entries) and saving SRAM memory. We note that the reduction of
the table entries not only addresses the SRAM’s scalability issue
but also speeds up the rule deployment, since the table entries (i.e.,
LRMEs) are managed independently in the port table.

5.2.3 Analysis of ACL initialization latency (control plane overhead).
The SRAM saving designs are integrated in our control plane mod-
ule, called ACL handler, which is executed to manage ACL rules

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

Figure 9: PortCatcher’s ACL initialization latency break-
down: (1) IP and protocol rule deduplication and port ANY
handling, (2) port rule deduplication and range reversing, (3)
LRME generation, and (4) TCAM and SRAM table insertion.

(e.g., insertion and deletion). In the following, we analyze the ACL
handler’s performance by breaking down the time consumption
(i.e., latency) of its core functions. This part of experiments simu-
lates the ACL’s initialization stage, where a network administrator
configures an ACL with a long list of static ACL rules (i.e., 10K
rules). After initialization, an autonomous intrusion detection mod-
ule may dynamically insert or delete ACL rules online. Unlike the
initialization stage, the dynamic ACL management handles less
ACL rules but requires a much tighter deadline for the rule deploy-
ment. The performance of PortCatcher as a dynamic ACL will be
further discussed in section 5.4.

Figure 9 shows the time consumption of each function in an
execution order from bottom to up. (1) The first function to be exe-
cuted by the ACL handler is the ANY port handling. As shown, acl2
contributes the highest latency of 1.04 seconds among five datasets,
since the dataset has the largest amount of port ANY rules (see
Figure 7 for the WC rule’s proportion). The other ACL rule datasets
consume less time (i.e., 0.40∼0.54 seconds), of which the trend fol-
lows the WC rule proportions of the five datasets. (2) The ACL
handler creates LRMs after reversing some long-range port rules to
shorter ones. acl2 consumes the least amount of time since 69.34%
of rules are WC and have been processed at the port ANY handling
stage. (3) The ACL handler converts LRMs to SRAM table entries
(i.e., LRMEs). The LRME generation is the most time-consuming
task, thus the amount of LRMEs that need to be generated must be
reduced. As shown in Table 2, the optimization design integrated in
the ACL handler functions can dramatically reduce the number of
LRMEs that have to be generated. Therefore, acl1, acl2, and acl5
consume negligible time to generate LRMEs, since it requires 3.59K,
0.17K, and 2.87K LRMEs, respectively. acl3 contributed the highest
latency among the five datasets since the number of the generated
LRMEs is the largest. (4) PortCatcher deploys the processed IP and
protocol rules and LRMEs into the data plane tables. We can see that
the time consumption of the five datasets is similar even though
the number of LRMEs varies. This result shows that the TCAM
entry (i.e., IP and protocol rules) deployment is the major factor
that delays the ACL rule deployment in the data plane. Moreover,
the result confirms that the TCAM entry reduction (i.e., prevention
of range-to-prefix expansion) is important for not only memory
efficiency but also the rule management latency.

5.3 System Performance with Static ACL
In the followings, we show the overall system performance of Port-
Catcher by comparing it with the legacy ACLTCAM and state-of-the-
art approach, ALPM, with a focus on the static ACL management.
We implement ACLTCAM with a P4 switch’s built-in TCAM ta-
ble and ALPM based on the disclosed patent [75]. For ALPM, we

offloaded only the destination port to SRAM (i.e., 16-bit SRAM parti-
tioning) since it is not designed for multi-tuple LPM and most of the
source port rules are WC, as shown in Figure 7. With PortCatcher,
we (1) offload both the source and destination port matching to
SRAM using similar memory space needed by ALPM, and (2) save
more TCAM space. In this experiment, we measure and analyze
the memory consumption of both the data plane and control plane.
Then, we measure the time consumption of the rule insertion and
deletion under a static ACLmanagement scenario. Moreover, we use
an attack traffic-driven ACL dataset to simulate the autonomous
attack defense. Finally, we discuss the overhead of PortCatcher
added to the switch’s data plane.

5.3.1 Overall memory consumption. Table 3 summarizes the data
plane and control plane memory consumption of the three systems.
Data plane. Given 10K ACL rules, ACLTCAM occupies more than
10K TCAM entries due to the range-to-prefix expansion. Since 104-
bit five tuples and the associated 104-bit masks are all stored in
TCAM, ACLTCAM consumes 336∼586 KB TCAM memory, which
is the highest among the three ACL systems, as shown in Table 3.
ALPM requires fewer TCAM entries than ACLTCAM, since the des-
tination port matching is offloaded to SRAM. Therefore, it only
expands the source port range rules to multiple prefix rules (i.e.,
TCAM entries). We observe that even though all source port rules
are WC, ALPM still requires more than 10K TCAM entries (i.e.,
11.04K). This is due to a unique design of ALPM that groups eight
SRAM entries into a partition by default, which means if a destina-
tion port rule is expanded to more than eight SRAM entries, more
than one SRAM partition will be created, and the same number of
TCAM entries will be generated to locate these partitions.

For ALPM’s TCAM table, the per-entry size is reduced to 88
bits, since only the destination port matching is excluded. Overall,
135∼146 KB of TCAM space is consumed, per Table 3. Among the
three schemes, PortCatcher requires the least TCAM space, due to
our protocol and port isolation (i.e., range-to-prefix expansion pre-
vention). Per Table 3, PortCatcher consumes 6.47K∼9.92K TCAM
entries, for five 10K ACL rule sets. In other words, PortCatcher
requires less than one TCAM entry per ACL rule, since PortCatcher
stores only distinct IP and protocol entries in TCAM (i.e., TCAM en-
try deduplication). Moreover, since both the source and destination
ports are matched in SRAM, the per-entry size of TCAM can be
reduced to 72 bits and the overall TCAM consumption is reduced
to 57∼87 KB. To conclude, PortCatcher saves 74%-90% TCAM space
compared to ACLTCAM and 36%-61% compared to ALPM.

Unlike ACLTCAM, PortCatcher and ALPM additionally consume
SRAM memory. As shown in Table 3, although PortCatcher and
ALPM consume similar amount of SRAM memory, the number of
table entries of PortCatcher is significantly smaller than ALPM (4.8K
vs. 19.2K on average), thanks to the LRM concept and optimization
designs (see Table 2). The difference in numbers affects the ACL
management–i.e., rule insertion and deletion–performance since
the SRAM entries in both PortCatcher and ALPM are stored and
operated independently (section 5.3.2 for more details).
Control plane. For continuous ACL management, ACL systems
have to store and track the deployed ACL rules in the control
plane. Especially for SRAM offloading, ACL system should cache
intermediate data (e.g., extended prefixes for ACLTCAM, LRM for

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 3: Comparison for memory requirement in the data plane (TCAM and SRAM) and the control plane among PortCatcher,
ALPM, and ACLTCAM with five 10K ACL rule datasets.

Data Plane Control Plane
TCAM SRAM DRAM (MB)Entry (#) Memory (KB) Entry (#) Memory (KB)

ACL ALPM Ours ACL ALPM Ours ALPM Ours ALPM Ours ACL ALPM Ours
acl1 19,627 10,756 7,642 498 137 67 19,627 3,590 77 73 0.24 985 0.22
acl2 13,265 10,653 9,928 336 135 87 13,265 176 52 63 0.16 1,279 0.13
acl3 23,115 11,531 6,476 586 146 57 23,115 10,744 90 118 0.29 833 0.21
acl4 21,118 11,267 7,927 536 143 70 21,118 6,928 82 99 0.26 1,021 0.22
acl5 20,441 10,997 7,525 520 140 66 20,441 2,874 80 68 0.25 970 0.20

(a) Insertion (b) Deletion

Figure 10: Static ACL management: the average per-rule la-
tency for PortCatcher and ALPM.

PortCatcher, and Trie for ALPM) generated during the rule encod-
ing process to reduce the redundant computations and to guarantee
the real-time performance. However, a naïve encoding approach
may generate a massive amount of intermediate data or require
heavy computations, which is undesirable for a dynamic ACL man-
agement scenario (e.g., online autonomous defense).

Table 3 shows the control plane memory consumption of three
schemes for storing intermediate data. For ACLTCAM, the required
memory is doubled compared to the TCAM consumption, since the
masks (“don’t care” bits or bit-wise ternary matching information)
have to be stored separately. We note that ACLTCAM generates table
entries directly with the range-to-expansion logic, which consumes
more TCAM entries (i.e., scalability issue) and delays the rule de-
ployment (i.e., latency issue). We observed that ALPM presented
the highest overhead, since it has to maintain both the encoded
table entries and 16-depth trie data structures for destination port
rules. Such a trie is needed for every distinct IP, protocol, and source
port rule (i.e., TCAM entry in ALPM). As such, ALPM consumes
833∼1,279 MB DRAM memory in the control plane, per Table 3.
PortCatcher’s control plane memory consumption is lower than
ALPM, since PortCatcher uses a compact bitmap representation for
ACL port rules (i.e., LRM). Moreover, our optimization designs elim-
inate duplicated expressions. While PortCatcher’s requires slightly
more memory than ACLTCAM in the data plane, the LRM-based
SRAM offloading helps save TCAM space significantly (i.e., 74%-90%
of TCAM space saving), as shown in Table 3.

5.3.2 ACL management latency. Next, we use additional 2K ACL
rules to simulate static ACL management and measure the per rule
management latency. We exclude ACLTCAM in this experiment due
to its unsatisfiable scalability in the data plane.
Insertion.We deploy 10K static ACL rules into the switch’s data
plane, and 2K additional rules are independently processed in the
control plane and deployed into the data plane. Subsequently, we
measure the per-rule time consumption (i.e., latency) for the 2K
rules. The rule insertion is different from ACL initialization (§5.2.3)

in that it needs to revisit and update the intermediate data (e.g.,
LRM or trie) recorded for existing rules. Such changes may lead to
deletion/update of the TCAM and SRAM table entries. Figure 10(a)
shows the average per-rule insertion latency of PortCatcher and
ALPM. The data plane and control plane latency are shown sepa-
rately. With PortCatcher, the latency for the five ACL datasets is
0.76 ms∼1.59 ms , which is much smaller than ALPM’s latency at
2.19 seconds on average. During the insertion process, PortCatcher
triggered only 0.49∼1.38 SRAM entry insertions per rule on average.
We note that ALPM presents a very high overhead when construct-
ing a trie for new port (range) rules, which in turn delays the overall
rule deployment. PortCatcher’s time consumption mainly depends
on the number of LRMEs to be generated, as shown in Algorithm 2
in Appendix A.2. As can be seen in Table 2, PortCatcher’s optimiza-
tion designs reduce this number significantly.
Deletion. In some cases, inactive rules need to be removed from
the ACL in order to release memory space for new rules. Both
PortCatcher and ALPM support an ACL rule deletion function.
Therefore, we measure and compare the latency in removing in-
serted ACL rules based on the previous experiments. Figure 10(b)
shows the per-rule deletion latency over five ACL rule datasets.
PortCatcher provides 0.72 ms to 1.75 ms for five ACL datasets,
with 0.30∼1.12 SRAM entry deletions per rule. On the one hand,
with ALPM, the deletion latency is 0.36 ms to 0.92 ms, depend-
ing on the dataset. PortCatcher shows better performance than
ALPM for acl3, although it does not show a good performance for
other datasets. Moreover, ALPM’s deletion is faster since the simple
trie-based deletion can be done in 𝑂 (𝑀) time, where𝑀 is the key
size (32 bits for ALPM). However, the simple logic presents a huge
memory overhead (∼1 GB of DRAM for only offloading destination
ports), per Table 3. However, PortCatcher is slower than ALPM
with some datasets since it has to reconstruct LRMEs for memory
efficiency. Instead, PortCatcher requires only a few hundred KBs of
memory in the control plane. Although the results vary depending
on the dataset, the overall result show that both are comparable for
deletion time. Moreover, considering the huge insertion delay with
ALPM, PortCatcher is more reliable in static ACL management.
Remarks. PortCatcher andALPM share the same data plane setting
(hardware), thus the comparison is fair. The fundamental difference
between the two schemes is the control plane ACL rule processing
logic (software). The results suggest that ALPM’s software process-
ing dominates the overhead in terms of the overall latency, whereas
our LRM-based processing is lightweight.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

(a) # of deployed rules over time (b) Latency distribution of deployed rules (c) # of missed packets and flows

Figure 11: Attack traffic blockingwith dynamicACL: Rule deployment latency ofALPMandPortCatcher. (a) shows the number
of deployed rules over time compared with the requested actions. (b) shows the distribution of per-rule latency of PortCatcher,
(c) shows the number of missed packets and missed flows varying ACL systems

5.4 Attack Traffic Blocking with Dynamic ACL
For an end-to-end system evaluation, we use a general framework
proposed by a recent autonomous defense system [14], where a per-
flow attack detection module resides in the switch’s control plane
and generates dynamic ACL rules for suspicious flows. Meanwhile,
the control plane module of the ACL system will be responsible for
deploying the ACL rules into data plane module. Since our focus
is only the ACL performance, we assume an error-free and zero-
delay detection module. Then, we measure rule deployment latency,
which starts from a rule installation request and ends upon com-
pletion of deployment. We also introduce two metrics, the missed
flows and packets, to show the explicit dynamicity requirements.

To measure the rule deployment latency, we first deployed 3K
static ACL rules using ClassBench (acl1). Then, we replayed 10K
flows of CIC 2017 attack trace [35] to trigger per-flow dynamic rule
installations. Since we assume the detection module is error-free
with zero latency, it generates a dynamic ACL rule immediately
whenever a new attack flow is observed. As a result, 10K L4-ACL
rules will be generated and installed in the switch’s data plane. To
measure the number of missed packets and flows, we conducted a
simulation with the full trace of the CIC dataset, which contains
6,378,442 packets and 306,355 flows.

5.4.1 Rule deployment latency. Figure 11(a) shows the number of
deployed rules over time for PortCatcher and ALPM. The black line
with square dots shows the accumulated rule installation requests
(i.e., action requests) over time. The closer a line is, the faster the re-
quested rules are installed in the data plane. As shown, PortCatcher
can install dynamic ACL rules without delay, whereas ALPM fails
in handling the dynamic rule deployment due to the huge rule
installation latency. This result matches the previous analysis, as
shown in Figure 10(a). Figure 11(b) shows the per-rule latency dis-
tribution of PortCatcher. Among the 10K rules, 44.12% of the rules
are deployed within 12 ms. Moreover, 76.52% of the rules can be
installed within 13 ms. As a result, PortCatcher consumes 13.10 ms
on average to insert a single rule, with our switch’s control-plane
CPU (i.e., Intel Pentium 1.6 GHz), which is 168 times lower than
ALPM’s 2.19 seconds.
Remarks. The latency mainly depends on the CPU performance
in the switch’s control plane. Since LRM-based rule processing is
lightweight, the latency can be tightened further with a better CPU.
To verify our assumption, we emulated the same experiment with
a better CPU (i.e., Intel Xeon 6230R 2.10 GHz). Per the result, the
average per-rule latency dropped rapidly to 5.93 ms. Considering

that our attack trace’s average inter-packet arrival time (IAT) is
13.54 ms, PortCatcher should be capable of blocking most attack
traffic immediately. Last but not least, we note that the control-plane
CPU is an upgradable option for switch vendors.

5.4.2 Analysis of missed packets and flows. Figure 11(c) shows
the number of missed packets and missed flows when considering
three schemes: PortCatcher, ALPM, and ACLTCAM. As shown, Port-
Catcher missed only 7.91% of the attack packets, out of a total of
6,378,442 packets, with 13.10 ms rule deployment latency, which is
much lower than ALPM’s 63.36% with 2.19 seconds latency. More-
over, ACLTCAM missed 93.54% of the packets, since it missed 91.18%
malicious flows out of 306,355 flows due to memory constraints.
Remarks. Per the results, ACLTCAM is not a viable option for dy-
namic ACL due to its poor scalability. Since PortCatcher and ALPM
did not miss any flows, it is clear that ALPM’s high latency in rule
deployment caused the massive packet missing. Also, we conclude
that PortCatcher’s rule deployment latency meets the requirement
for the CIC dataset, since it successfully filtered out 92% of the
attack traffic. PortCatcher consumes 9-Byte TCAM and 13-Byte
SRAM memory per L4-ACL rule. As such, the overall data plane
memory consumption for the 306,355 flows is 2.62 MB and 3.79 MB
for TCAM and SRAM, respectively, which means that PortCatcher
can work under a higher traffic volume. Appendix A.4 describes
the scalability analysis in more detail.

5.5 Used Resource and Matching Speed
Resource consumption. PortCatcher’s matching logic in P4 suc-
cessfully fits into the data plane of the resource-constrained Tofino
programmable switch with 338 lines of P4 code: 70 lines for match-
ing logic and 268 lines for data structure and function definition.
We present the implementation details in Appendix A.5. We se-
quentially break down the data plane codes of PortCatcher into
four sequential functions: IP table matching, LRME lookup, port
table matching, and reversed matching. Then, we measured the
hardware resources consumed by the four sequential functions of
PortCatcher, where the results are normalized by the clean switch
implementation (i.e., switch.p4 [5]).

Table 4 shows the normalized resource usage of the switch. As
shown, an average of 4.17% of TCAM, 2.47% of SRAM, 1.25% of
Hash Bit, and 2.60% of Arithmetic Logic Unit (ALU) are used for
the four functions over all stages. The other resources (gateway,
match search bus, etc.) were automatically allocated for the data-
control plane communication, parser, deparser, etc. Overall, our data

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 4: Function-wise resource usage for PortCatcher.
Optimization Functions

Resource IP & Protocol LRME Port Rev. AVG.
Type Match. Lookup Match. Match.
TCAM 16.67% 0.00% 0.00% 0.00% 4.17%
SRAM 0.42% 7.71% 0.42% 1.35% 2.47%
Hash Bit 0.00% 2.80% 1.60% 0.60% 1.25%
ALU 2.08% 4.17% 2.08% 2.08% 2.60%

Figure 12: Function-wise packet processing latency of Port-
Catcher analyzed by P4 compiler’s log.

plane codes added 6.72% overhead. We note that Tofino’s compiler
strictly limits the computation of the data plane algorithms, and
PortCatcher’s logic was shown in Table 4 to fit into the switch’s
pipeline resource constraints. This means that adding PortCatcher
still guarantees the line-rate packet processing [36, 56, 83].
Rule matching speed. PortCatcher’s data plane logic easily fits
the resource-constrained packet processing pipeline of the Tofino
switch, which means PortCatcher supports the full line rate of
packet processing [56]. Moreover, it adds only several dozens of
nanosecond in terms of latency to the pipeline (see Figure 12),
and a large room remains for other tasks. We note that the data-
plane clock-level latency is retrieved from the vendor compiler-
generated logs. ACLTCAM, ALPM, and PortCatcher add 3 ns (5
clocks with 1.6 GHz control-plane CPU), 8 ns (14 clocks), and 20 ns
(32 clocks) data-plane latency, respectively, without affecting the
line-rate processing. Even though PortCatcher does not affect the
throughput, it is factorized to see which part of its logic contributes
most to the overall latency. Function-wise, PortCatcher code was
broken down into the IP table matching, LRME lookup, port table
matching, and reversed matching, following the running logic. The
packet processing latency was then analyzed from the P4 compiler’s
log. Figure 12 shows the function-wise data plane latency when
adding and compiling the functions sequentially. As shown, LRME
lookup in SRAM contributes the most to PortCatcher’s total latency
(65.62%), followed by the IP table matching of 18.75%. The port
table matching and reversed matching add latencies of 6.25% and
9.38%, respectively. Overall, stage-1 with TCAM occupies 18.75%,
and stage-2 with SRAM occupies 81.25%. We note that the latency
given by the compiler log is based on the worst-case analysis.

6 RELATEDWORKS
Static and dynamic ACLs are essential security functions of in-
network defense systems, for both routine and adaptive defenses.
Benefiting from recent data structures [23, 29, 30, 32, 34, 42, 43,
46, 48, 49, 59, 69, 77, 83] and machine learning techniques [11, 28,
57, 64, 65, 85, 86], a body of in-network defense systems has been
proposed [14, 18, 27, 38, 50, 80, 87]. Once detected as malicious, the
in-network/switch ACL will be responsible for dropping the flow’s
packets. For instance, Poise [38] relies on a deep packet inspection
server to identify malicious flows. Once detected, a new ACL rule

of the corresponding flow should be installed into the data plane
ACL for mitigation actions. Such a dynamicity of recent defense
frameworks necessitates scalable and low-latency ACL systems (i.e.,
dynamic ACL).

Existing ACL systems improve TCAM’s memory efficiency by
exploring compact conversions of range rules into prefix match-
ing rules [16, 17, 41, 44, 47, 52, 53, 61, 62, 68, 70, 71, 90], where
the optimization effects are negligible for the dynamic ACL rules
dominated by the exact matching and improvement is limited for
static ACL rules with the scarcity of TCAM memory. The other
direction is to offload the partial or entire matching from TCAM
to SRAM [19, 25, 74, 84]. While the scalability can be addressed
for static and dynamic ACLs, the complex operations of these solu-
tions result in high time complexity, thus cannot meet the latency
requirement of the in-network autonomous defense systems.

PortCatcher is a standalone in-network/switch ACL system that
supports in-network autonomous defense systems with scalable
and low-latency ACL rule management. To scale up the defense,
these autonomous defense systems [14, 50, 80, 87] can benefit from
distributed measurement systems [15, 63, 81]. Recent promising
works, such as Ripple [80], have opened a possibility to defend
against link-flooding attacks using a decentralized detection and
mitigation strategies. Moreover, Bedrock [79] enriches in-network
ACL’s security application by showing a way to secure a remote
memory direct access (RMDA) system with address range matching.

7 CONCLUSION
Today’s paradigm for port matching leveraging hardware accel-
eration suffers from a trade-off between the scalability, due to an
ever-growing number of ACL rules, and the high rule deployment
latency, due to the high complexity of the encoding mechanisms.
To break this trade-off, we proposed a new direction for perform-
ing ACL port range matching in SRAM, while strictly separating
IP/protocol matching in TCAM. To enable a fast and scalable port
management in SRAM, a novel range representation method, called
“Linear RangeMap”, was proposed. Experiments on a programmable
switch showed impressive results, where one ACL rule was encoded
into 0.79 TCAM entry and 0.49 SRAM entry on average, and 0.35x-
0.61x TCAM space was saved in comparison to state-of-the-art
approaches. PortCatcher also has a negligible rule management
latency, which is necessary to block attack flows in real-time. Our
experiment showed that PortCatcher’s rule deployment is 168x
faster than the state-of-the-art approach, allowing our in-network
defense system to block 92.09% (55.45% more) malicious packets
and all flows in an attack trace.

ACKNOWLEDGMENT
This research was supported by the Global Research Laboratory
(GRL) Program through the National Research Foundation of Korea
(NRF) funded by theMinistry of Science and ICT (NRF-2016K1A1A2
912757) and by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-2020R1A2C2
009372). DaeHun Nyang and Rhongho Jang are the corresponding
authors. The authors would like to thank the anonymous reviewers
of CCS’22 for the thorough feedback that helped improve this paper.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

REFERENCES
[1] 2018. GitHub Survived the Biggest DDoS Attack Ever Recorded.

https://bit.ly/3ByHVj8.
[2] 2019. ACL TCAM and LOUs in Catalyst 6500. https://bit.ly/3bgRQyF
[3] 2019. Catalyst 7000 Troubleshooting TechNotes. https://bit.ly/2RGC49z
[4] 2020. 10k Device Family - Switch Architecture Specification. Barefoot Networks.
[5] 2020. The P4 Language Consortium. https://github.com/p4lang/switch
[6] 2021. NetFPGA. https://netfpga.org/
[7] 2021. P4-NetFPGA-public. https://github.com/NetFPGA/P4-NetFPGA-public/

wiki
[8] 2022. Cisco Nexus 3000 Series NX-OS Security Configuration Guide, Release 7.x.

https://bit.ly/2RJPNfS
[9] 2022. Cisco Nexus 7000 Series NX-OS Security Configuration Guide. https:

//bit.ly/3KqeTpG
[10] Mahdi Abbasi, Hajar Rezaei, Varun G Menon, Lianyong Qi, and Mohammad R

Khosravi. 2020. Enhancing the performance of flow classification in SDN-based
intelligent vehicular networks. IEEE Transactions on Intelligent Transportation
Systems 22, 7 (2020), 4141–4150.

[11] Ahmed Abusnaina, Aminollah Khormali, DaeHun Nyang, Murat Yuksel, and
Aziz Mohaisen. 2019. Examining the robustness of learning-based ddos detection
in software defined networks. In 2019 IEEE Conference on Dependable and Secure
Computing (DSC). IEEE, 1–8.

[12] Intel Barefoot. Accessed August 8, 2022. Intel Intelligent Fabric Pro-
cessors. https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html

[13] Intel Barefoot. Accessed August 8, 2022. Intel® Tofino™ 3 Intelligent Fabric
Processor. https://www.intel.com/content/dam/www/central-libraries/us/en/
documents/product-brief-final-version-pdf.pdf

[14] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando
M. V. Ramos, and André Madeira. 2021. FlowLens: Enabling Efficient Flow Clas-
sification for ML-based Network Security Applications. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society.

[15] Ran Ben Basat, Gil Einziger, and Bilal Tayh. 2020. Cooperative Network-wide
Flow Selection. In 28th IEEE International Conference on Network Protocols, ICNP
2020, Madrid, Spain, October 13-16, 2020. IEEE, 1–11.

[16] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Hel-Or. 2018. Encoding Short Ranges
in TCAM Without Expansion: Efficient Algorithm and Applications. IEEE/ACM
Transactions on Networking 26, 2 (2018), 835–850.

[17] Anat Bremler-Barr and Danny Hendler. 2012. Space-Efficient TCAM-Based
Classification Using Gray Coding. IEEE Trans. Computers 61, 1 (2012), 18–30.

[18] Xiaoqi Chen, Shir Landau Feibish, Mark Braverman, and Jennifer Rexford. 2020.
BeauCoup: Answering Many Network Traffic Queries, One Memory Update at
a Time. In SIGCOMM ’20: Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication, Virtual Event, USA, August
10-14, 2020, Henning Schulzrinne and Vishal Misra (Eds.). ACM, 226–239.

[19] Y. Cheng and P. Wang. 2016. Scalable Multi-Match Packet Classification Using
TCAM and SRAM. IEEE Trans. Comput. 65, 7 (2016), 2257–2269.

[20] Catalin Cimpanu. 2020. AWS said it mitigated a 2.3 Tbps DDoS attack, the largest
ever. https://zd.net/2YGSMJh.

[21] Cisco. [n.d.]. Software-Defined Networking and Network Programmability: Use
Cases for Defense and Intelligence Communities. https://bit.ly/33SBtnK

[22] The P4 Language Consortium. 2018. 𝑃416 Language Specification.
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html.

[23] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[24] Levente Csikor, Dinil Mon Divakaran, Min Suk Kang, Attila Kőrösi, Balázs
Sonkoly, Dávid Haja, Dimitrios P Pezaros, Stefan Schmid, and Gábor Rétvári. 2019.
Tuple space explosion: A denial-of-service attack against a software packet clas-
sifier. In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies. 292–304.

[25] Q. Dai and H. Li. 2018. An Advanced TCAM-SRAM Architecture for Ranges To-
wards Minimizing Packet Classifiers. In Proceedings of the 20th IEEE International
Conference on High Performance Computing and Communications. 158–163.

[26] James Daly, Valerio Bruschi, Leonardo Linguaglossa, Salvatore Pontarelli, Dario
Rossi, Jerome Tollet, Eric Torng, and Andrew Yourtchenko. 2019. Tuplemerge:
Fast software packet processing for online packet classification. IEEE/ACM
transactions on networking 27, 4 (2019), 1417–1431.

[27] Dinhnguyen Dao, Rhongho Jang, Changhun Jung, David Mohaisen, and DaeHun
Nyang. 2022. Minimizing Noise in HyperLogLog-Based Spread Estimation of
Multiple Flows. In 52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2022, Baltimore, MD, USA, June 27-30, 2022. IEEE,
331–342.

[28] Rohan Doshi, Noah Apthorpe, and Nick Feamster. 2018. Machine learning ddos
detection for consumer internet of things devices. In 2018 IEEE Security and

Privacy Workshops (SPW). IEEE, 29–35.
[29] Cristian Estan and George Varghese. 2002. New directions in traffic measurement

and accounting. In Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications. 323–336.

[30] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences 31, 2 (1985),
182–209.

[31] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir Gure-
vich, Florian Zeiger, Reinhard Frank, and Michael Menth. 2021. A Survey on Data
Plane Programming with P4: Fundamentals, Advances, and Applied Research.
arXiv preprint arXiv:2101.10632 (2021).

[32] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. SketchVisor: Robust Network Measurement for Software
Packet Processing. In ACM SIGCOMM 2017. ACM, 113–126.

[33] Muhammad Ibrar, Lei Wang, Gabriel-Miro Muntean, Aamir Akbar, Nadir Shah,
and Kaleem Razzaq Malik. 2021. PrePass-Flow: A Machine Learning based
technique to minimize ACL policy violation due to links failure in hybrid SDN.
Computer Networks 184 (2021), 107706.

[34] Rhongho Jang, DaeHong Min, Seongkwang Moon, David Mohaisen, and DaeHun
Nyang. 2020. SketchFlow: Per-Flow Systematic Sampling Using Sketch Saturation
Event. In IEEE INFOCOM 2020. IEEE, 1339–1348.

[35] Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani.
2017. Detecting HTTP-based application layer DoS attacks on web servers in
the presence of sampling. Computer Networks 121 (2017), 25–36.

[36] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-free sub-rtt coordination.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 35–49.

[37] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. 2013. The Crossfire Attack. In
Proceedings of the IEEE Symposium on Security and Privacy, SP. IEEE Computer
Society, 127–141.

[38] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
2020. Programmable In-Network Security for Context-aware BYOD Policies. In
29th USENIX Security Symposium (USENIX Security 20). 595–612.

[39] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q
Maguire Jr. 2018. Metron:{NFV} service chains at the true speed of the under-
lying hardware. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 171–186.

[40] Naga Praveen Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Programmable
Data Planes. In Proceedings of the Symposium on SDN Research, SOSR 2016, Santa
Clara, CA, USA, March 14 - 15, 2016, Brighten Godfrey and Martín Casado (Eds.).
ACM, 10.

[41] Y. Kim, H. Ahn, S. Kim, and D. Jeong. 2009. A High-Speed Range-Matching
TCAM for Storage-Efficient Packet Classification. IEEE Transactions on Circuits
and Systems I: Regular Papers 56, 6 (2009), 1221–1230.

[42] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. 2004. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. ACM
SIGMETRICS PER 32, 1 (2004), 177–188.

[43] Abhishek Kumar and Jun (Jim) Xu. 2006. Sketch Guided Sampling - Using On-
Line Estimates of Flow Size for Adaptive Data Collection. In INFOCOM 2006.
IEEE.

[44] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary.
2005. Algorithms for advanced packet classification with ternary CAMs. In
Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, Roch Guérin, Ramesh
Govindan, and Greg Minshall (Eds.). ACM, 193–204.

[45] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. 2018. Cutsplit: A decision-
tree combining cutting and splitting for scalable packet classification. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2645–2653.

[46] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In NSDI 2016. USENIX Association, 311–324.

[47] A. X. Liu, C. R. Meiners, and E. Torng. 2010. TCAM Razor: A Systematic Approach
Towards Minimizing Packet Classifiers in TCAMs. IEEE/ACM Transactions on
Networking 18, 2 (2010), 490–500.

[48] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and general sketch-
based monitoring in software switches. In ACM SIGCOMM 2019. 334–350.

[49] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitor-
ing with univmon. In ACM SIGCOMM 2016. 101–114.

[50] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen: A high-
performance switch-native approach for detecting and mitigating volumetric
ddos attacks with programmable switches. In 30th USENIX Security Symposium
(USENIX Security 21).

[51] Soumya Maity, Padmalochan Bera, and SK Ghosh. 2012. Policy based acl configu-
ration synthesis in enterprise networks: A formal approach. In 2012 International

https://bit.ly/3bgRQyF
https://bit.ly/2RGC49z
https://github.com/p4lang/switch
https://netfpga.org/
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://bit.ly/2RJPNfS
https://bit.ly/3KqeTpG
https://bit.ly/3KqeTpG
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/product-brief-final-version-pdf.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/product-brief-final-version-pdf.pdf
https://bit.ly/33SBtnK

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Symposium on Electronic System Design (ISED). IEEE, 314–318.
[52] C. R. Meiners, A. X. Liu, and E. Torng. 2011. Topological Transformation Ap-

proaches to TCAM-Based Packet Classification. IEEE/ACM Transactions on Net-
working 19, 1 (2011), 237–250.

[53] C. R. Meiners, A. X. Liu, and E. Torng. 2012. Bit Weaving: A Non-Prefix Ap-
proach to Compressing Packet Classifiers in TCAMs. IEEE/ACM Transactions on
Networking 20, 2 (2012), 488–500.

[54] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and
Yunsong Lu. 2021. A framework for eBPF-based network functions in an era
of microservices. IEEE Transactions on Network and Service Management 18, 1
(2021), 133–151.

[55] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-25, 2017.
ACM, 15–28.

[56] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. 15–28.

[57] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. NDSS
(2018).

[58] Edgecore Networks. 2020. WEDGE 100BF-32X. https://bit.ly/2YDeyv2.
[59] D. Nyang and D. Shin. 2016. Recyclable Counter With Confinement for Real-Time

Per-Flow Measurement. IEEE/ACM Trans. Netw. 24, 5 (2016), 3191–3203.
[60] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A computa-

tional approach to packet classification. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication. 542–556.

[61] Ori Rottenstreich and Isaac Keslassy. 2010. Worst-Case TCAM Rule Expansion. In
INFOCOM 2010. 29th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies, 15-19 March
2010, San Diego, CA, USA. IEEE, 456–460.

[62] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat. 2016. Optimal
In/Out TCAM Encodings of Ranges. IEEE/ACM Transactions on Networking 24, 1
(2016), 555–568.

[63] Vyas Sekar, Michael K Reiter,WalterWillinger, Hui Zhang, Ramana Rao Kompella,
and David G Andersen. 2008. cSamp: A system for network-wide flowmonitoring.
(2008).

[64] Stefan Seufert and Darragh O’Brien. 2007. Machine Learning for Automatic
Defence Against Distributed Denial of Service Attacks. In Proceedings of IEEE
International Conference on Communications, ICC. IEEE, 1217–1222.

[65] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward gen-
erating a new intrusion detection dataset and intrusion traffic characterization..
In ICISSp. 108–116.

[66] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. Dc. p4: Programming the forwarding plane of a data-
center switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research. 1–8.

[67] Jared M. Smith and Max Schuchard. 2018. Routing Around Congestion: Defeating
DDoS Attacks and Adverse Network Conditions via Reactive BGP Routing. In
Proceedings of the IEEE Symposium on Security and Privacy, SP. IEEE Computer
Society, 599–617.

[68] E. Spitznagel, D. Taylor, and J. Turner. 2003. Packet classification using ex-
tended TCAMs. In 11th IEEE International Conference on Network Protocols, 2003.
Proceedings. 120–131.

[69] Robert H. Morris Sr. 1978. Counting Large Numbers of Events in Small Registers.
Commun. ACM 21, 10 (1978), 840–842.

[70] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel Waldvogel.
1998. Fast and Scalable Layer Four Switching. In Proceedings of the ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, Gerald Neufeld, Gary S. Delp, Jonathan Smith, and
Martha Steenstrup (Eds.). ACM, 191–202.

[71] Vegesna SM Srinivasavarma and Shiv Vidhyut. 2020. A TCAM-based caching
architecture framework for packet classification. ACM Transactions on Embedded
Computing Systems (TECS) 20, 1 (2020), 1–19.

[72] DE Taylor and JS Turner. 2004. ClassBench: a packet classification benchmark,
WUCSE-2004-28. Technical Report. Saint Louis: Department of Computer Science
Engineering, Washington University.

[73] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, et al. 2019.
Safely and automatically updating in-network ACL configurations with intent
language. In Proceedings of the ACM Special Interest Group on Data Communication.
214–226.

[74] Anees Ullah, Pedro Reviriego, et al. 2020. FlexTCAM: Beyond Memory Based
TCAM Emulation on FPGAs. In 2020 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN). IEEE, 110–113.

[75] Henry Wang. 2019. Algorithmic Longest Prefix Matching in Programmable
Switch. https://patents.google.com/patent/US10511532B2/en

[76] Shie-Yuan Wang, Hsien-Wen Hu, and Yi-Bing Lin. 2020. Design and Implementa-
tion of TCP-Friendly Meters in P4 Switches. IEEE/ACM Trans. Netw. 28, 4 (2020),
1885–1898.

[77] Kyu-Young Whang, Brad T. Vander Zanden, and Howard M. Taylor. 1990. A
Linear-Time Probabilistic Counting Algorithm for Database Applications. ACM
Trans. Database Syst. 15, 2 (1990), 208–229.

[78] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. 2012. NetPilot: Automating datacenter network failure
mitigation. In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication. 419–430.

[79] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, H Yang, Hongyi Liu, and Ang Chen.
2021. Bedrock: Programmable Network Support for Secure RDMA Systems. In
Proceedings of the 31th USENIX Security Symposium (USENIX Security’22). USENIX
Association.

[80] Jiarong Xing, Wenqing Wu, and Ang Chen. [n.d.]. Ripple: A Programmable,
Decentralized Link-Flooding Defense Against Adaptive Adversaries. In 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael
Bailey and Rachel Greenstadt (Eds.).

[81] Hongli Xu, Shigang Chen, Qianpiao Ma, and Liusheng Huang. 2019. Lightweight
Flow Distribution for Collaborative Traffic Measurement in Software Defined
Networks. In 2019 IEEE Conference on Computer Communications, INFOCOM 2019,
Paris, France, April 29 - May 2, 2019. IEEE, 1108–1116.

[82] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. 2005. Reducing Unwanted
Traffic in a Backbone Network. SRUTI 5 (2005), 9–15.

[83] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 561–575.

[84] Weiwen Yu, Srinivas Sivakumar, and Derek Pao. 2019. Pseudo-TCAM: SRAM-
based architecture for packet classification in one memory access. IEEE Network-
ing Letters 1, 2 (2019), 89–92.

[85] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. 2017. DeepDefense: identifying
DDoS attack via deep learning. In 2017 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, 1–8.

[86] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. 2017. DeepDefense: Identifying
DDoS Attack via Deep Learning. In Proceedings of the 2017 IEEE International
Conference on Smart Computing. IEEE Computer Society, 1–8.

[87] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon:
Mitigating volumetric ddos attacks with programmable switches. In the 27th
Network and Distributed System Security Symposium (NDSS 2020).

[88] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang, Zhengchang Gu, and Hao
Li. 2020. APKeep: Realtime Verification for Real Networks. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20). 241–
255.

[89] Shuyuan Zhang, Franjo Ivancic, Cristian Lumezanu, Yifei Yuan, Aarti Gupta, and
Sharad Malik. 2014. An adaptable rule placement for software-defined networks.
In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE, 88–99.

[90] Jincheng Zhong and Shuhui Chen. 2021. Efficient multi-category packet classifi-
cation using TCAM. Computer Communications 169 (2021), 1–10.

A APPENDIX
A.1 Static ACL Initialization
Algorithm 1 illustrates the ACL handler’s rule handling process
for initializing static ACL rules. Detailed descriptions can be found
in section 4.3.

A.2 Utility Functions of the ACL Handler
In Algorithm 2 provides the ACL handler’s utility functions, namely
Port_Reverse() and LRME_Generation(), as follows:
1 Port_Reverse(). Port_Reverse() implements a utility function
that calculates the entire range and sets of REV flag per IP and
protocol rule. When a port rule set 𝑉 is considered, this function
first calculates the coverage (COV) of the range. For instance, if𝑉 is
<ANY,[0-20, 100-1024]>, COV of𝑉 is 20−0+1+1024−100+1 = 946,
and if𝑉 is <[0-9],[0-20, 100-1024]>, COV is 946∗10 = 9460. Then, the
function checks if the port rule contains ANY case, and compares

https://patents.google.com/patent/US10511532B2/en

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

Algorithm 1: Static ACL Initialization
1 Inputs: 𝐿 = {𝑅1, ..., 𝑅𝑛 }, 𝑅𝑖 = (𝑠𝑟𝑐𝐼𝑃 , 𝑑𝑠𝑡𝐼𝑃 , 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑑𝑠𝑡𝑃𝑜𝑟𝑡) .
2 Outputs: Shadow ACL, Data PlaneTCAM , Data PlaneSRAM
3 Initialize HashMap IP <K, C>; /* K is IP and protocol rule pair and C is coupling

field between IP and port tables */
4 Initialize LinkedHashMap PortsrcANY<K, V>, PortdstANY<K, V>, PortnoANY<K,

V>; // V is a set of port rules as a linked list
5 Initialize LinkedHashMap LRMEsrcANY<V, L>, LRMEdstANY<V, L>,

LRMEnoANY<V, L>; // L is a list of <PAI, LRME> pairs
6 /*IP and Protocol Rule Deduplication and Port ANY Handling*/
7 for each 𝑅 in 𝐿 do
8 Key← <𝑅.𝑠𝑟𝑐𝐼𝑃 , 𝑅.𝑑𝑠𝑡𝐼𝑃 , 𝑅.𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙>
9 Value← <𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑅.𝑑𝑠𝑡𝑃𝑜𝑟𝑡>

10 if Value is bothANY then IP.add(Key, “Drop”);
11 else if 𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 is ANY then PortsrcANY .add(Key, Value);
12 else if 𝑅.𝑑𝑠𝑡𝑃𝑜𝑟𝑡 is ANY then PortdstANY .add(Key, Value);
13 else PortnoANY .add(Key, Value);

14 /*Repeat lines 15-21 for PortdstANY and PortnoANY*/
15 PortsrcANY<V, K>← Port_Rule_Deduplication(PortsrcANY<K, V>)
16 for each V in PortsrcANY do
17 REV_flag← Port_Reverse(V); /*Port Rule Reversing*/
18 LRMEsrcANY[V]← LRME_generation(V, REV_flag); /* see Algorithm 2 in

Appendix for details. */
19 for each K in PortsrcANY[V] do
20 LRM-ID← PortsrcANY .indexOf(V);
21 IP.add(K, LRM-ID, REV_flag);

22 Shadow ACL, Data PlaneTCAM ← IP
23 Shadow ACL, Data PlaneSRAM ← LRMEsrcANY , LRMEdstANY , LRMEnoANY
24 Shadow ACL← PortsrcANY , PortdstANY , PortnoANY

COV to the constant 215 or 231 in each case. If COV is greater than
the constant, the REV_flag is true. Otherwise, REV_flag is false and
the function returns the value.
2 LRME_Generation(). LRME_Generation() implements a utility
function that generates the corresponding LRMEs depending on
the port range and REV flag. If REV flag is “true”, the range is set in
a reversed manner (line 13). Then, PAIs of each port range rule in
𝑉 are calculated by 32 port aggregation (lines 14∼15). If the range
rule is (ANY, 3-94), the LRME for range (ANY, 3-31), (ANY, 32-63),
(ANY, 64-94) need to be generated. To generate LRME for (ANY, 32-
63), the function simply sets LRME to 232 − 1, which is 1111· · · 111
in binary representation. When PAI is the start or the end of the
PAI of the ranges, the function shifts 232 − 1 to generate LRMEs
(lines 17∼20). For example, 1111· · · 1000 and 0111· · · 1111 will be
generated for ranges (ANY, 3-31) and (ANY, 64-94), respectively. At
the end of the process, the function adds PAI and LRME pair to the
LRME list and returns the list.

A.3 Details of Dynamic ACL Management
In the following, we describe the details of the dynamic ACL man-
agement functionality, which consists of the dynamic insertion and
dynamic deletion, respectively.
1 Dynamic insertion. As described in section 4.3, PortCatcher’s
control plane module, Shadow ACL, stores the intermediate data
(i.e., IP, port, and LRME entries) while processing and deploying
static ACL rules. To insert a new ACL rule on the fly (i.e., dynamic
insertion), the ACL handler first loads the shadow ACL to retrieve
the information of the deployed IP and port entries, as shown
in Figure 6. Then, suppose that the new rule matches an IP and
protocol entry where the action is “Drop”. In that case, the function

Algorithm 2: ACL Handler: Utility Functions
1 Inputs: V← <𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑅.𝑑𝑠𝑡𝑃𝑜𝑟𝑡>
2 /*Set Rev flag*/
3 Def Port_Reverse(V):
4 COV = calculate_coverage(V);
5 if 𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 is ANY or 𝑅.𝑑𝑠𝑡𝑃𝑜𝑟𝑡 is ANY then
6 if COV > 215 then REV_flag = true; else REV_flag = false;

7 else
8 if COV > 231 then REV_flag = true; else REV_flag = false;

9 return REV_flag;

10 /*LRM(E) generation*/
11 Initialize List LRME_List <LRME, PAI>;
12 Def LRME_Generation(V, REV_flag):
13 if REV_flag = true then V← Subtract([0,216-1], V); /* Subtract(A,B)

returns A-B for set A, B. */
14 for each R in V do
15 for each PAI in range(R.start/32, R.end/32) do
16 LRME← 232-1;
17 if PAI == (R.start/32) then
18 LRME← LRME & ((232-1) << R.start % 32);

19 if PAI == (R.end/32) then
20 LRME← LRME & ((232-1) >> (31 - R.end % 32));

21 LRME_List.append(PAI, LRME);

22 return LRME_List;

skips the rule insertion (line 8 in Algorithm 3) since the new rule
has been covered by an existing rule, which discards all packets
regardless of port rules. Otherwise, the ACL handler updates the
shadowACLwith the new rule, which can be divided into four cases
according to the port ANY settings in the source and destination
port rule pair.

(1) if the new ACL rule has both layer-4 ports as ANY (i.e.,
bothANY), the ACL handler inserts the IP and protocol rule
into the IP table with the action as “Drop” (line 15). Subse-
quently, all the new IP and protocol rule-related port table
data and corresponding LRME table data will be eliminated
from Shadow ACL (lines 10∼14).

(2) if the source port of the new rule is ANY, it further checks if
any range rules exist for the same IP and protocol rule and
deletes matched intermediate data (line 18∼20). The ACL
handler then processes and insert the new rule into port and
LRME tables for data plane deployment (line 21∼23)

(3) and (4) the last two cases are similar to the second case but
deal with different ANY settings in the port rule (line 24).

2 Dynamic deletion. This is a process to remove the expired or
redundant ACL rules in the data plane. As in the dynamic insertion,
the ACL handler first loads the shadow ACL and then deletes the
rule from the IP table if its port rule is bothANY (line 26). Otherwise,
if the deletion request is for a rule with source port ANY, it also
checks whether the IP and protocol have bothANY port rules in
the IP table (line 28). If matched, the existing IP and protocol entry
will be updated (i.e., deleted and reinserted) after re-processing
the IP and protocol entry’s coupling field and the port rule related
intermediate data in port and LRME tables (lines 29-34). We note
that this process is essential since an IP and protocol entry may
have one more port rule. Therefore, the requested port rule should
be excluded from the previous port rule set associated with the IP
and protocol entry (line 40). Particularly, to exclude the requested

A Scalable and Dynamic ACL System for In-Network Defense CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Algorithm 3: Dynamic ACL Management
1 Inputs: 𝑅 = (𝑠𝑟𝑐𝐼𝑃 , 𝑑𝑠𝑡𝐼𝑃 , 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑑𝑠𝑡𝑃𝑜𝑟𝑡) , Shadow ACL

2 HashMap IP <K, C>← Shadow ACL

3 LinkedHashMap PortsrcANY<V, K>, PortdstANY<V, K>, PortnoANY<V, K>←
Shadow ACL

4 LinkedHashMap LRMEsrcANY<V, L>, LRMEdstANY<V, L>, LRMEnoANY<V, L>
← Shadow ACL

5 Key← < 𝑅.𝑠𝑟𝑐𝐼𝑃 , 𝑅.𝑑𝑠𝑡𝐼𝑃 , 𝑅.𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 >

6 Value← < 𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 , 𝑅.𝑑𝑠𝑡𝑃𝑜𝑟𝑡 >

7 /*Dynamic insertion*/
8 if IP[Key] == "Drop" then continue;
9 else if Value is bothANY then
10 Repeat lines 11-14 for Port_dstANY and Port_noANY
11 if Key ∈ PortsrcANY then
12 V← PortsrcANY .getKeyOf(Key);
13 PortsrcANY .delete(V, Key);
14 LRMEsrcANY .detete(V);

15 IP.add(Key, “Drop”);

16 else if 𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 is ANY then
17 V← PortsrcANY .getKeyOf(Key);
18 if V.size() > 0 then
19 PortsrcANY .delete(V, Key);
20 LRMEsrcANY .detete(V);

21 V← V ∪ Value;
22 PortsrcANY .add(V, Key);
23 LRMEsrcANY[V]← LRME_generation(V);

24 Repeat lines 16-23 for dstANY and noANY
25 /*Dynamic deletion*/
26 if Value is bothANY then IP.del(Key);
27 else if 𝑅.𝑠𝑟𝑐𝑃𝑜𝑟𝑡 is ANY then
28 if IP[Key] == "Drop" then
29 IP.del(Key);
30 V← Subtract([0,216-1], Value);
31 PortsrcANY .add(V, Key);
32 REV_flag← Port_Reverse(V);
33 LRMEsrcANY[V]← LRME_generation(V, REV_flag);
34 IP.add(K, LRM-ID, REV_flag);

35 else if Key ∈ PortsrcANY then
36 IP.del(Key);
37 V← PortsrcANY .getKeyOf(Key);
38 PortsrcANY .delete(V, Key);
39 LRME_deletion(V);
40 V← Subtract(V, Value);
41 PortsrcANY .add(V, Key);
42 REV_flag← Port_Reverse(V);
43 LRMEsrcANY[V]← LRME_generation(V, REV_flag);
44 IP.add(K, LRM-ID, REV_flag);

45 Repeat lines 27-44 for dstANY and noANY

port rule, ACL handler subtracts the requested port from the previ-
ous port rule set associated with the IP and protocol rule (line 30)
and updates the port and LRME tables accordingly (line 31∼33). A
similar process will be repeated for the case of srcANY, dstANY,
and noANY port rule deletion requests (lines 27-44).

A.4 Scalability with Attack Traffic-driven ACL
Figure 13(a) and (b) illustrate the number of the required entries and
the consumedmemory (KB) for the CIC DoS 2017 dataset [35]. In (a),
and since PortCatcher stores only distinct IP and protocol entries in
TCAM, it (at 12K) achieves better performance than ALPM (at 36K).
In terms of the number of SRAM entries, PortCatcher requires 40K
entries with our optimized design, while ALPM requires 217K en-
tries using the range-to-prefix approach. Accordingly, PortCatcher

(a) The # of entries (b) Memory (KB)

Figure 13: The performance of PortCatcher and ALPM in
terms of the scalability for the realistic CICDoS 2017 dataset.
(a) and (b) depict the number of required entries and the con-
sumed memory respectively.

consumes 106 KB and 363 KB in TCAM and SRAM, respectively,
whereas ALPM consumes 464 KB and 851 KB, as illustrated in (b). In
the control plane, PortCatcher requires 470 KB and ALPM requires
4.71 GB for the trie data structure. Consequently, we confirmed that
PortCatcher could mitigate the malicious traffic with less TCAM
and SRAM space than ALPM for the same dataset.

A.5 Data Plane Implementation
We built a prototype of PortCatcher in a programmable switch [58].
The data plane modules are implemented in P4 language [22] us-
ing Barefoot SDE 9.0.0 [58]. In total, 338 lines of code (LoC) are
added to the baseline switch, where 268 LoC are added for defining
the match-action functions and 70 LoC are added for the func-
tion execution. The control plane module was implemented in Bfrt
Python [31]. Port aggregation indexing is realized using bit slicing.
The data communication between stages was implemented using
user-defined metadata.

The code snippet below shows the data plane implementation de-
tails, including the match-action table definitions and the algorithm.
The IP table performs a ternary matching of three tuples of a packet,
namely src-IP, dst-IP, and Proto (lines 3∼7). If matched, two pre-
defined actions may be performed: drop and get_coupling_info()
(line 8). The action is assigned for each TCAM entry in the ACL rule
encoding stage. If a packet hits an entry that has Both ANY ports,
the action field is drop and the action is performed immediately.
The drop action is realized by setting ig_dprsr_md.drop_ctl as 1.
Otherwise, if the packet hits non-bothANY rules, the entry’s action
is get_coupling_info(), thus the coupling field, user-defined data
LRM-ID[] and REV[], are retrieved from the SRAM (line 12). These
user-defined data is pre-set in reserved SRAMwhile setting the IP ta-
ble entries. To read these data in packet processing pipeline, all data
is recorded into the user metadata of the data plane (line 13∼18).

In SRAM, three hash tables are reserved to perform the port
matching for each of the non-Both ANY rules (lines 22∼31). Port-
Catcher uses LRM-ID and PAI pair as a table lookup key, where
the LRM-ID is retrieved from the user metadata and the two PAIs
for port pair are the 11-bit MSB of the packet’s port numbers
(lines 23∼27). If the ports of the packet hit a table entry, the get_
LRME() action is performed to store the corresponding LRMEs
into user metadata (line 34∼35). The complete ACL matching flow
is demonstrated in lines 39∼56.

PortCatcher ’s logic can be implemented in network hardware
that is equipped with TCAM and SRAM. FPGA-based network

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Changhun Jung† , Sian Kim† , Rhongho Jang, David Mohaisen, and DaeHun Nyang

cards (NetFPGA) [6, 7] are the most relevant hardware in this
case. PortCatcher ’s major computation (LRM generation) occurs
in the switch’s control plane with a general-purpose CPU, which
is available in NetFPGA. PortCatcher’s data plane logic is also im-
plemented under strict constraints to fit a switch ASIC’s pipeline
design, whereas NetFPGA’s logic design is more flexible.

1 //STAGE-1: TCAM IP-PROTO-MATCHING & ACTIONS

2 table ip_proto {

3 key = {

4 hdr.ipv4.src_addr : ternary;

5 hdr.ipv4.dst_addr : ternary;

6 hdr.ipv4.protocol : ternary;

7 }

8 actions = { //Drop or get_coupling_info()}

9 }

10

11 //Actions

12 get_coupling_info(bit<16> LRM-ID[], bit<1> REV[]){

13 meta.lrm_id_src_any = LRM-ID[0];

14 meta.lrm_id_dst_any = LRM-ID[1];

15 meta.lrm_id_no_any = LRM-ID[2];

16 meta.rev_src_any = REV[0];

17 meta.rev_dst_any = REV[1];

18 meta.rev_no_any = REV[2];

19 }

20

21 //STAGE-2: SRAM PORT-MATCHING & ACTIONS

22 table port_no_any {

23 key = {

24 meta.lrm_id_no_any : exact;

25 meta.l4_lookup.word_1[15:5] : exact;

26 meta.l4_lookup.word_2[15:5] : exact;

27 }

28 actions = { get_LRME();}

29 }

30 table port_src_any {...}

31 table port_dst_any {...}

32 //Action

33 get_LRME(bit<32> src_LRME, bit<32> dst_LRME) {

34 meta.srcLRME = src_LRME;

35 meta.dstLRME = dst_LRME;

36 }

37

38 //PortCatcher: Complete ACL matching flow

39 if(ip_proto.apply().hit){

40 if(ig_dprsr_md.drop_ctl != 1)

41 //not a Both Any port rule

42 if(port_no_any.apply().hit){

43 srcLRME_port_matching.apply();

44 dstLRME_port_matching.apply();

45 if(meta.srcLRME_port_matched

46 && meta.dstLRME_port_matched

47 && meta.rev_src_any == 1){

48 drop();

49 }else if(meta.rev_src_any == 0){

50 drop();

51 }

52 }

53 if(port_src_any.apply().hit){...}

54 if(port_dst_any.apply().hit){...}

55 }

56 }

Code Snippet : Match-action tables and logic.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges of in-network ACL
	2.2 Trade-off: Scalability vs. Latency
	2.3 Our Approach

	3 Port Range Matching in Hash Table
	3.1 Bitmap Representation of Port Ranges
	3.2 LRM: Range Representation for Hash Table

	4 PortCatcher: System Design
	4.1 System Overview
	4.2 Data Plane Modules
	4.3 Control Plane Module: ACL Handler

	5 Evaluation
	5.1 Testbed and Dataset
	5.2 Analysis of PortCatcher's Efficiency
	5.3 System Performance with Static ACL
	5.4 Attack Traffic Blocking with Dynamic ACL
	5.5 Used Resource and Matching Speed

	6 Related Works
	7 Conclusion
	References
	A APPENDIX
	A.1 Static ACL Initialization
	A.2 Utility Functions of the ACL Handler
	A.3 Details of Dynamic ACL Management
	A.4 Scalability with Attack Traffic-driven ACL
	A.5 Data Plane Implementation

