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ABSTRACT
Social network-based Sybil defenses exploit the trust exhibited in
social graphs to detect Sybil nodes that disrupt an algorithmic prop-
erty (i.e., the fast mixing) in these graphs. The performance of
these defenses depends on the quality of the algorithmic property
and assuming a strong trust model in the underlying graph. While
it is natural to think of trust value associated with the social graphs,
Sybil defenses have used the social graphs without this considera-
tion. In this paper we study paramagnetic designs to tune the per-
formance of Sybil defenses by accounting for trust in social graphs
and modeling the trust as modified random walks. Our designs
are motivated by the observed relationship between the algorithmic
property required for the defenses to perform well and a hypothe-
sized trust value in the underlying graphs.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems – Distributed Applications; C.2.0 [Computer-Communication
Networks]: General – Security and Protection

General Terms
Security, Design, Algorithms, Experimentation

Keywords
Sybil Attack, Social Networks, Trust

1. INTRODUCTION
There has been a great interest in the research community for

the potential of defending against Sybil attacks using social net-
works [8]. In these defenses, peers in the network are not merely
computational entities — the human users behind them are tied to
each other to construct a social network. The social network is
then used for bootstrapping the security and detecting Sybils under
two assumptions: algorithmic and sociological. The algorithmic
assumption is the existence of a “sparse cut between the Sybil and
non-Sybil subgraphs” in the social network which implies a limited
number of attacker edges (edges between Sybil to non-Sybil). The
sociological assumption is a constraint on the trust in the underly-
ing social graph: the graph needs to have strong trust as evidenced,
for example, by face to face interaction demonstrating social nodes
knowledge of each other [10, 11]. While the first assumption has
been questioned recently in [8], where it is shown that even the
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honest subgraph may have some cuts that disrupt the algorithmic
property on which Sybil defenses are based, the trust, though being
a crucial requirement for these designs, was not considered care-
fully. Even worse, these defense [10, 11, 2, 4] — when verified
against real-world networks — have considered samples of online
social graphs, which are known to possess weaker value of trust.

Recently, we have shown that the mixing time, a concrete mea-
sure of the algorithmic property required in social networks used
for building Sybil defenses, is greater than anticipated and used in
literature [5]. We also relaxed the assumption by showing that a
faster mixing graph not necessary for these designs to work [5].
Most importantly, we have shown “variable” mixing times even for
the same sized social graphs implying that they, even algorithmi-
cally, cannot be taken equally for these designs. Also, the variable
mixing time turned out not to be arbitrary: social graphs that ex-
hibit knowledge (e.g., co-authorship) or intensive interaction (e.g.,
social blogs) are slower mixing than social graphs that require less
interaction or where edges are less meaningful (e.g., wiki-vote and
online social networks). To this end, we study designs to incorpo-
rate information on social graphs to reflect their trust value.

2. PRELIMINARIES
Network model: the social network is viewed as an undirected and
unweighted graphG = (V,E) where |V | = n, V = {v1, . . . , vn},
|E| = m, eij = (vi → vj) ∈ E if vi ∈ V is adjacent to vj ∈ V
for 1 ≤ i ≤ n and 1 ≤ j ≤ n. We refer to A = [aij ]

n×n as the
adjacency matrix where aij = 1 if eij is in E and aij = 0 other-
wise. We also refer to P = [pij ]

n×n as the transition matrix where
pij = 1

deg(vi)
if eij ∈ E and 0 otherwise, where deg(vi) is the

degree of vi which is deg(vi) =
∑n
k=1 Aik. The set of neighbors

of vi is N(vi) and |N(vi)| = deg(vi).

Simple random walks: walking randomly on G is captured by a
Markov Chain (MC), so a simple random walk of length w is a se-
quence of vertices in G beginning from vi and ending at vt using
the transition matrix P. The MC is said to be ergodic if it is irre-
ducible and aperiodic, meaning that the MC has a unique stationary
distribution π and the distribution after random walk of length w
converges to π as w → ∞. The stationary distribution of the MC
is a probability distribution invariant to the transition matrix P (i.e.,
πP = π). For this simple walk π = [πi] where πi = deg vi

2m
[5].

The mixing time of the MC parameterized by a variation distance
parameter ε is T (ε) = maxi min{t : |π − π(i)Pt|1 < ε}, where
π(i) is the initial distribution at vertex vi, Pt is the transition ma-
trix after t steps, and | · |1 is the total variation distance. The graph
is fast mixing if T (ε) = poly(logn, log 1

ε
). [10, 11] strengthen

the definition by requiring ε = Θ( 1
n

) and T (ε) = O(logn). We
recently found that ε ≈ 1/4 is sufficient, and smaller ε is unneces-



sary, for the designs [10, 11, 4] to operate for 99% admission rate.

Measuring the mixing time [5]: while the mixing time of G can
be brute-force computed according to its definition, Sinclair’s re-
sult [6] can be used for bounding it. Let P be the transition matrix
of G with ergodic random walk, and λi for 1 ≤ i ≤ n be the
eigenvalues of P. If we label them in decreasing order, 1 = λ1 >
λ2 ≥ · · · ≥ λn−1 ≥ λn > −1 holds. We define the second largest
eigenvalue µ as µ = max (|λ2|, |λn−1|). Then, the mixing time

T (ε) is bounded by µ
2(1−µ) log( 1

2ε
) ≤ T (ε) ≤ log(n)+log( 1

ε
)

1−µ .
Social network based sybil defenses: Sybil defenses based on so-
cial networks exploit the trust exhibited in the social graphs. There
has been a constant effort in this direction as reported in SybilGuard
[11], SybilLimit [10], SybilInfer [2], SumUp [7], as well as appli-
cations to DHT in Whānau [4]. In principle, the quality of these
defenses depends on the quality of the algorithmic property of the
underlying graph. For a nice exposition some of these designs, see
the recent work of Viswanath et al. in [8].

3. DESIGNS TO ACCOUNT FOR TRUST
Most defenses in literature uses the uniform random walk in sec-

tion 2. In this section, we introduce several designs of modified
random walks that consider a “trust“ parameter between nodes that
influences the random walk. In all of the proposed modified ran-
dom walks, the purpose is to assign “trust-driven” weights and thus
deviating from uniform. We do this by either capturing the ran-
dom walk in the originator or current node, as the case of origina-
tor biased random walk and lazy random walk respectively, or by
biasing the random walk probability at each node, as the case of in-
teraction and similarity-based weights assignment over edges, or a
combination of them. The intuition behind the different assignment
mechanisms are similar in essence but motivated by different obser-
vations. For the lazy and originator-biased random walk the main
intuition is that nodes tend to trust “their own selves” and other
nodes within their community (up to some distance) more than
others. On the other hand, interaction and similarity-based trust
assignments try to weigh the natural social aspect of trust levels.
Given the motivation for these designs, we now formalize them by
deriving P and π required for characterizing walks over the graph
they are applied on. We omit the details for lack of space.
Lazy random walks: lazy random walks accommodate for the trust
exhibited in the social graph by assuming the parameter α used for
characterizing this trust level. With the lazy random walk, each
node along the path decides to capture the walk with probability α
or to follow the simple random walk with 1− α at each time step.
The transition matrix is then defined as P′ = αI + (1−α)P. The
stationary distribution of this walk is same like the simple walk in
section 2. In particular, since P′ = αI+ (1−α)P, by multiplying
both sides by π, we get πP′ = π(αI + (1− α)P) = απI + (1−
α)πP = απ + π − απ = π.

Originator-biased random walks: The originator-biased random
walk considers the bias introduced by the random walk initiator
not to be fooled by Sybil nodes in a social graph that lacks quality
of trust. At each time step, each node decides to direct the random
walk back towards the node that initiates the random walk, i.e.,
node vr , with a fixed probability α or follow the original simple
random walk by uniformly selecting among its neighbors with the
total remaining probability 1 − α. The transition probability that
captures the movement of the random walk, initiated by a random
node vr , and moving from node vi to node vj is defined as pij =
1−α

deg(vi)
if vj ∈ N(vi), pij = α if vj = vr , or 0 otherwise. For

the α and Ar with all-zero but the rth row, which is 1’s, P′ for the
random walk originated from vr is given as P′ = αAr+(1−α)P.

Since the “stationary distribution” is not unique among all initial
distributions, it’s called the “bounding distribution" and given for
vr as π = [πi]

1×n where πi = (1 − α)deg(vi)
2m

if vi ∈ V \ {vr}
and πi = α + deg(vi)

2m
if vi = vr . It’s then easy to show that

the bounding distribution is a valid probability distribution since
α+ deg(vr)

2m
+

∑
vi∈V/{vr}(1− α)deg(vi)

2m
= 1.

Similarity-biased random walks: The similarity between nodes in
social networks is used for measuring the strength of social ties and
predicting future interactions [1]. For two nodes vi and vj with sets
of neighbors N(vi) and N(vj), respectively, the similarity is de-
fined as the set of nodes common to both of vi and vj normalized by
all their neighbors and expressed as: S(vi, vj) =

N(vi)∩N(vj)

N(vi)∪N(vj)
. For

vi,vj ∈ A corresponding to the adjacency entries of vi and vj , the
cosine similarity measure is used to capture the similarity definition
above, given as S(vi, vj) =

vi·vj
|vi|2|vj |2

where | · |2 is the L2-Norm.
To avoid disconnected graphs resulting from edge cases, we aug-
ment the similarity definition by adding 1 each time to the denomi-
nator to account for the edge between the nodes. Also, we compute
the similarity for adjacent nodes only by computing S, the similar-
ity matrix, as S = [sij ] where sij = S(vi, vj) if vj ∈ N(vi) and 0
otherwise. The transition matrix P of a random walk defined using
the similarity is given as P = D−1S where D is a diagonal ma-
trix with diagonal elements being the row norm of S. Accordingly,
the stationary distribution of random walks on G according to P is
π = [πi]

1×n where πi = (
∑n
z=1 siz)(

∑n
j=1

∑n
k=1 sjk)−1.

Interaction-biased random walks: recently, the interaction between
nodes has been observed as one measure for determining the strength
of social links between social actors especially in online social
networks [9]. In its simple form, the interaction model captures
activities between the different nodes in the graph (e.g., the post-
ing between different users in the Facebook) and assigns weights,
which translates into high trust value, to nodes that have higher in-
teraction and lower weights to nodes with less interaction. Let B
be the raw interaction measurements and D be a diagonal matrix
with diagonal elements being the row norm of B, the transition
matrix P of the random walk based on interaction is computed as
P = D−1B and, similar to the similarity-biased walks, the station-
ary distribution derived from the interaction matrix is π = [πi]

1×n

where πi = (
∑n
i=1 biz)(

∑n
j=1

∑n
k=1 bjk)−1.

Mixed random walks: it is intuitive and natural to consider a hybrid
design that constitutes more than one of the aforementioned ran-
dom walks. In particular, the interaction and similarity-based mod-
els “rank” different nodes differently and “locally” assign weights
to them. Though this limits the mixing time of social graphs as we
will see later, it does not provide nodes any authority on the ran-
dom walk once they are a “past state”. On the other hand, benefits
of these models are shortcomings for the lazy and originator-biased
models. It’s hence technically promising and intuitively sound to
consider combinations of these designs.

Table 1: Social graphs and their properties
Dataset n/average degree/µ Dataset n/average degree/µ

Physics 1 4.2K /3.23/ 0.998133 Youtube 1.1M /2.63 / 0.997972
Wiki-vote 7.1K /14.256/0.899418 Livejournal B 1M / 27.56/ 0.999695
Slashdot 2 77.4K/7.06/0.987531 Livejournal A 1M /26.15 / 0.999387
Slashdot 1 82.2K/7.09/ 0.987531 Facebook B 1M /15.81 / 0.992020
Facebook 63.4K/12.87/ 0.998133 Facebook A 1M /20.35/ 0.982477
Physics 2 11.2K /10.50/0.998221 DBLP 615K /1.88/ 0.997494
Physics 3 8.6K/2.87/0.996879 Enron 33.7K /5.37/ 0.996473

4. RESULTS AND BRIEF DISCUSSION
We first measure the mixing time of the social graphs used in

this study — in Table 1 — using the definition of the mixing time
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(b) Livejournal
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(c) Facebook A
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(d) Livejournal A

Figure 3: Preliminary measurements of modified random walks’ impact on the mixing time — (a) and (b) are for originator-biased
while (c) and (d) are for lazy random walks.
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(a) Large datasets
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(b) Small/meduim datasets

Figure 1: The average mixing time of a sample of 1000 ini-
tial distributions in each graph in Table 1 using the sampling
method for computing the mixing time by its definition over P.
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(a) Facebook A
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(b) Livejournal

Figure 2: The mixing time of the different graphs when using
simple vs. lazy, originator, and similarity-biased walks.

in section 2, highlighting the variability of the algorithmic property
and relating that to graph nature (see datasets below for details).
We follow this by examining the impact of adapting the different
trust characterization methods on the mixing time. In all measure-
ments we examine the mixing time and quantifying the impact of
degraded mixing time on the actual performance of each defense
become a secondary issue. We leave this part to the complete work.

Social graphs — datasets: the datasets used in our experimenta-
tion are in Table 1. These datasets are carefully selected so to fea-
ture (hypothetically) different models of knowledge of the social
actors among each other in the social graph. These graphs are cat-
egorized into: (1) Social graphs of networks that exhibit concrete
knowledge between social actors and are good for the trust assump-
tions of the Sybil defenses — e.g., co-authorship datasets, such as
physics co-authorships and DBLP which are shown to be slower
mixing (see Figure 1). (2) Graphs of networks that may not require
face-to-face knowledge but require the effort of interaction. — e.g.,
Youtube, Livejournal, and Enron, which are shown for slow mix-
ing. (3) Datasets that may not require prior knowledge between the
social actors and are known for exhibiting less strict social model
such as those of the online social networks (e.g., Facebook).

Implication of the pragmatic designs on the mixing time: we im-
plement three of the proposed designs: lazy, originator, and simi-
larity biased random walks and examine their impact on the mixing
time of social graphs in Table 1. For feasibility reasons, we sam-
ple only 10K nodes, using the breadth-first search algorithm, from
each graph larger than 10K. The results are shown in Figure 2 and
Figure 3. We observe that, while they bound the mixing time of
the different social graphs, the originator-biased random walk is
too sensitive even to a small α. For instance, as shown in Figure
2(a), ε ≈ 1/4 is realizable at w = 6 (for 99% admission of non-
Sybil nodes) with the simple random walk, w = 17 for both lazy
and originator-biased random walk. However, this is realized with
α = 0.5 in the lazy against α = 0.05 in the originator-biased walk.
Conclusion: we propose several designs to capture the trust value
of social graphs in social networks used for Sybil defenses. Our
designs filter weak trust links and successfully bound the mixing
time which controls the number of accepted nodes using the Sybil
defenses to account for variable trust. Our designs provide de-
fense designers parameters to model trust and pragmatically eval-
uate Sybil defenses based on the “real value” of social networks.
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