
Babble: Identifying Malware by Its Dialects

Aziz Mohaisen, Omar Alrawi, Andrew G. West, and Allison Mankin
Verisign Labs, Reston, VA 20190

{amohaisen | oalrawi | awest | amankin}@verisign.com

I. SUMMARY

Using runtime execution artifacts to identify whether code

is malware, and to which malware family it belongs, is an

established technique in the security domain. Traditionally,

literature has relied on explicit features derived from net-

work, file system, or registry interaction [1]. While effective,

the collection and analysis of these fine-granularity data

points makes the technique quite computationally expensive.

Moreover, the signatures/heuristics this analysis produces are

often easily circumvented by subsequent malware authors.
To this end, we propose Babble, a system that is concerned

only with the order in which high-level system events take

place. Individual events are mapped onto an alphabet and

execution traces are captured via terse concatenations of

those letters. Then, leveraging an analyst labeled corpus

of malware, n-gram document classification techniques are

applied to produce a classifier predicting malware family.

This poster describes that technique and its proof-of-concept

evaluation. This work concentrates only on network ordering

and 3 malware families are highlighted. We show the tech-

nique achieves roughly 80% accuracy in isolation and makes

non-trivial performance improvements when integrated with

a baseline classifier of non-ordered features.

II. BABBLE: THE TECHNIQUE

We begin by summarizing the Babble workflow, as visu-

alized in Fig. 1. Assume a sandboxed execution environment

is capable of producing an ordered list of interesting events

that take place during malware execution. Concentrating on

unique events in that list, one can produce a mapping of

events to an alphabet of characters (i.e., a set of grams).

With that, the trace can be rewritten as T , a string of char-

acters/grams. Then, choosing parameter n, one can produce

all adjacent strings of length n (i.e., n-grams) in T . If the

code trace is known to be part of a certain malware family,

the presence or repetition of a given n-gram might be useful

in classifying unlabeled malware in the future. Machine

learning can be used to derive these patterns/models. From

this simplified description, we now describe our practical

implementation of the technique:
Deriving interesting events: To produce an ordered list of

interesting events we use the AutoMal virtualized execution

environment [1]. While also engineered to annotate memory,

filesystem, and registry events – only network events are

expressed in a time-ordered fashion in a pcap capture. From

Artifacts to feature Features to alphabets n gram features Machine learningf

n Algorithm selection
Ground truth

Artifacts to feature
Transformation

Features to alphabets
transformation

n gram features
extraction

Machine learning
Algorithm

Raw artifacts

Labels

Figure 1. Flow diagram of Babble

AutoMal
Malware
Feed

Raw Artifacts
With timestamps Babble Malware

Labels

Figure 2. Flow diagram of Babble’s use of AutoMal artifacts

these files we identify 26 distinct network events (e.g., DNS

type A queries, outbound HTTP communication on port 80,

etc.). We plan to alter AutoMal to enable time-ordered output

of non-network events and leverage them via Babble.

Malware corpus: Our proof-of-concept evaluation of Bab-

ble utilizes three different malware families, chosen due to

their diversity of network behavior:

• ZEUS: A popular banking Trojan

• DARKNESS: Prevalent DDos botnet malware

• SRAT: Shady RAT [2], a targeted malware sample

reported by a McAfee analyst

Malware family labeling is known to be a challenging

task [3], [4]. With recent evidence of anti-virus systems

producing inaccurate labels, we instead relied on manual

analysts to verify family memberships (more details in [5]).

Tab. I shows the quantity of samples available per family.

When we train/evaluate a family in Babble we do so in

a binary fashion. For example, for “Zeus” we have 544

positive examples. We construct a balanced corpus by also

adding 544 “non-Zeus” malware examples. These negative

Table I
AVERAGE NUMBER OF EVENTS (CHARACTERS/GRAMS) PER EXECUTION

TRACE, BY MALWARE FAMILY

Family Quantity Alphabet Avg.
Zeus 1025 50.74

Darkness 544 61.47
SRAT 1130 52.74

Table II
NUMBER OF UNIQUE n-GRAMS ACTUALLY OBSERVED, BY FAMILY

1 2 3 4 5 6
Zeus 24 102 250 481 943 1690

Darkness 24 103 243 461 875 1503
SRAT 25 105 247 460 877 1536

Table III
PRECISION, RECALL, ACCURACY AND F1-SCORE FOR SELECTED N-GRAM VALUES.

n-grams 1 4 8

Algorithms P R A F1 P R A F1 P R A F1

Z
eu

s KNN 80.79 79.68 81.48 79.97 79.07 83.90 82.25 81.35 78.29 78.17 79.64 78.09

SVM 67.41 82.67 72.69 73.92 75.96 80.47 78.67 77.84 80.41 82.87 82.45 81.50

Decision Trees 80.14 80.90 81.74 80.42 81.13 81.82 82.67 81.35 80.82 82.82 83.02 81.77

D
ar

k
. KNN 76.22 73.13 76.08 74.56 80.40 71.52 77.70 75.57 71.38 69.58 71.65 70.20

SVM 76.82 32.38 62.24 45.05 78.18 71.32 76.45 74.35 76.62 76.36 77.22 76.27

Decision Trees 80.45 72.56 78.20 76.07 81.75 72.89 79.04 76.93 80.50 68.37 76.39 73.59

S
R

A
T KNN 81.38 76.78 82.78 78.45 83.87 81.83 85.51 81.95 83.99 74.28 82.93 78.16

SVM 76.88 65.43 75.88 69.55 83.70 82.94 86.23 83.03 85.68 80.86 86.33 82.71

Decision Trees 85.16 81.11 86.44 82.60 88.28 81.65 88.01 84.45 86.13 78.92 85.54 81.85

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

P
re

ci
si

on

●

●
● ●

●

● ●
●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

R
ec

al
l

●
●

● ●

●
●

● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

A
cc

ur
ac

y

●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

F
−

1
S

co
re ●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

Figure 3. Precision, recall, accuracy, and F1-score for “Zeus” ordered classification atop a baseline classifier of filesystem features.

instances are not drawn from the other two test families, but

a random larger set consisting of many malware families.

Computing n-grams: For a selected n it is straightforward

to produce trace substrings in a sliding window fashion.

Table II shows the number of unique n-grams actually

observed. While there are 266 possible 6-grams, only 1690

(0.0005%) are actually observed for the Zeus malware fam-

ily. A bag-of-words representation is extremely sparse and

this hints at the underlying relationship/dependency between

certain network actions.

Machine learning and metrics: We chose to evaluate

three different machine learning algorithms, SVM, KNN,

and Decision Trees. 10-fold cross validation is used to

produce standard information-recall metrics such as recall,

precision, accuracy, and F-score. Recall each class has a

binary classifier and operates over a balanced corpus of

instances. All metrics are previously studied, and the reader

may refer to [5] for details.

III. RESULTS AND DISCUSSION

We now assess the performance of our preliminary Babble

implementation from multiple perspectives:

Results in isolation: Tab. III shows performance for selected

values (n=1,4,8) across all families and algorithms. To make

sweeping generalizations across all families, Decision Tree

classifiers tended to perform best with an average accuracy

of ≈80%. Although the transition from n = 1 to n = 4
tended to produce noticeable performance increases, the per-

formance ramifications of the next increase was more mixed.

Between families we observe that “Darkness” malware

performed most poorly overall, while “SRAT” performance

fluctuated wildly based on the algorithm applied.

Atop a baseline classifier: While it is clear that Babble is

able to independently predict malware family with reason-

able accuracy, it is also desirable to see if it can contribute

when paired with a baseline classifier. Fig. 3 shows this

result, where the baseline classifier consists primarily of

filesystem features. Compared to results presented in Tab. III

and [1] we observe ordered features are capturing indepen-

dent portions of the problem space and making non-trivial

improvements to overall accuracy and other metrics.
Discussion: Leveraging ordered network features has proven

itself moderately effective at predicting malware family. It

is important to emphasize that network features represent

a fraction of the time-dependent signals we would like to

explore after better orchestrating our virtualized sandbox.
We also speculate that because we are aggregating high-

level events that it may prove difficult for attackers to obfus-

cate around our detection scheme. Of course, we also have

advantage in that we are the first to explore this classification

strategy and attackers have not yet had the opportunity to

do this for the malware samples in our corpora.

REFERENCES

[1] A. Mohaisen and O. Alrawi, “Unveiling Zeus: Automated
classification of malware samples,” in WWW (Companion
Volume), 2013, pp. 829–832.

[2] D. Alperovitch, “Revealed: Operation Shady RAT,” 2011,
mcAfee Report.

[3] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of Internet
malware,” in RAID, 2007.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and
E. Kirda, “Scalable, behavior-based malware clustering,” in
NDSS, 2009.

[5] A. Mohaisen, O. Alrawi, and M. Larson, “AMAL: High-
fidelity, behavior-based automated malware analysis and clas-
sification,” Verisign Labs, Tech. Rep., 2013.

