Protecting Access Privacy of Cached Contents in
Information Centric Networks

Abedelaziz Mohaisen'
TVerisign Labs, VA, USA

Xinwen Zhang?

Abstract—In recently proposed information centric networks
(ICN), a user issues “interest” packets to retrieve contents from
network by names. Once fetched from origin servers, ‘“data”
packets are replicated and cached in all routers along routing and
forwarding paths, thus allowing further interests from other users
to be fulfilled quickly. However, the way ICN caching and interest
fulfillment work poses a great privacy risk: the time difference
between responses for an interest of cached and uncached content
can be used as an indicator to infer whether or not a near-by
user has previously requested the same content as that requested
by an adversary. This work introduces the extent to which the
problem is applicable in ICN and provides several solutions that
try to strike a balance between their cost and benefits, and raise
the bar for the adversary to apply such attack.

Index Terms—Information centric networks, privacy, side
channel attacks, caching.

I. INTRODUCTION

Information centric networks (ICNs) have been proposed
as new Internet architectures towards secure and efficient
content dissemination. In several ICNs such as content centric
network (CCN) [[17] and named data network (NDN) [33]],
contents are fetched by their names from caches deployed
in the network or from origin servers—servers that serve the
contents if they are not cached in the network. In such ICN
architectures, once a content data packet is fetched from an
origin server, it is replicated and cached in all routers along
the routing and forwarding path—starting from the router that
connects user who issues the interest to the one that connects
the origin server to the ICN—thus allowing further interests
with the same content name to be fulfilled quickly [17].
For example, when another user issues an interest in these
contents that have been previously served to a user on the
same path, the interest is fulfilled from the near-by cache.
This design choice—as advocated by many ICN designs and
architectures—is considered a great advantages in reducing
overall content retrieval latency [[17]], [33]].

However, this universal caching mechanism in ICN poses a
great privacy risk. In particular, the time difference between
data response for an interest of cached when compared to
uncached content data packet can be used as a side channel to
infer whether a near-by user has previously requested the same
content or not. The following example illustrates the problem.

A. Example of Attack on Privacy in ICN

Consider the topology in Figure [T} which depicts users Uy
and U, and a set of routers rg to ro (each with its own cache)

Max Schuchard®
®University of Minnesota, MN, USA
*Univ. of Sci. & Tech. of China, China

Haiyong Xiet* Yongdae Kim®
tHuawei Technologies, CA, USA
"KAIST, South Korea

origin server

iR

Fig. 1. Toy example of timing attack in ICN. t; = ¢ + t{. A user Uz
would be able to infer whether user U1 has accessed a content based on the
different in RTT for cached and uncached content. Notice that AP; and AP»
are access points that connect user Uy and Usz to the ICN via router 7a.

connecting both users to an origin server that holds content
with name n. Suppose that user U, is the adversary, whereas
user U; is honest. If U; issues an interest in content n that
resides behind rg, the interest traverses the path Uy — AP, —
ro — r1 — g, from which it retrieves a requested data packet
of the content. The packet is then sent back over the returning
path rg — r1 — 1o — AP; — Uj. In total, the path from
U; to the source of the content and the returning path to U;
have four-hop each. The total round trip time required for
sending the request until starting to receive data packets on
the returning path is ¢;. On the other hand, if U, is to request
the same content by its name, n, the path that the interest
would traverse is Uy — AP, — 79, and the contents would
return on the reversed path (ro — AP, — Us), which is two-
hop in each direction, and would require a time ¢». Obviously,
the time ¢; is greater than ¢,, which an adversary Us can use
to infer that user U; has accessed the content 7.

Although pinpointing U; precisely among many users who
use the same domain and are within the same geographical
proximity may require additional side information [22]], an
attack like the one described above—which finds out a 1-hop
away from a user without naming him—is still critical since it
reduces the anonymity set of that user greatly. Such scenario is
equal in value to identifying individual users when combined
with real-world inference applications to privacy. For example,
an adversary in a business intelligence attack might be more
interested in knowing what contents are being retrieved by a
competing company than by individual users working for that
company. This attack would be possible if the adversary is co-
located with that company behind an edge router, and using
the above technique.

B. Shortcomings of Simple Solutions

Simple solutions cannot prevent the problem exposed in this
attack. For example, a user can flag a content object with a

privacy value so as to enforce routers not cache data packets
in the network of that particular contents at all time, for all
subsequent interests (regardless to whether they are flagged
or not). However, since what is considered of privacy value
differs from a person to another, this implies an increased
delay in delivering the content to other benign users, thus
degrading the advantage of ICN. Also, such solution is always
vulnerable to active attacks: an adversary who wants to infer
some information about the content can do that by performing
two consecutive requests on the same name. In the first request,
and if the content is not previously flagged for privacy reasons
by other users, the requested name would result in data packets
being cached. The second request in that case will result in
cache-hit, and the content will be served to the adversary
quickly. On the other hand, if the content is previously flagged
for privacy reason by other users, the second request would
result in a delay close to the delay in the first request, from
which the adversary can infer that such content is not cached
in the network, and that another user has likely flagged such
content for privacy reasons.

Other solutions to solve the problem by intelligently decid-
ing caching based on how far a router is away from users
requesting such contents do not work in practice as well. For
example, if a router wants to decide caching based on how
far a user is away, it has to either know the user’s location
in advance or have the location provided to it at the time of
caching. The first approach requires partial knowledge of the
topology that can go easily beyond the resources available in
typical routers. The second approach is vulnerable to misuse
by an active adversary—an adversary who wants to negatively
impact the experience of other users can flag any content from
an arbitrary location so as to make it never cached in near-by
routers to end users.

C. Contributions

In this work, we examine timing attacks on privacy in
the ICN caching mechanism, and propose three solutions
that come at varying levels of cost and complexity. Our
approach relies on randomly generated time paddings to
disguise responses for interests issued from users in the same
domain, thus increasing the anonymity set—set of domains
that requests potentially come from—of privacy-concerned
interest issuers. While we disclaim the novelty of the attack—
shown in other context in [22], we are the first to observe
its inherent applicability to ICN architectures and provide
solutions and mitigations. The unique contribution of this work
is as follows:

+ We demonstrate timing attacks on the universal caching
mechanism proposed in ICN designs like CCN and NDN.
For that, we make use of fine-grain per-hop timing mea-
surements of cached and uncached contents using real-
world time measurements with CCNX, a prototype imple-
mentation of the CCN [26]. We disclaim the originality
of the attack in its general form but claim its suitability
and applicability to ICN as a novel contribution.

o We propose three protocols, each with different levels of

complexity, cost, and privacy guarantees that prevent an
adversary co-located with benign users to infer whether
they have accessed certain contents or not by relying on
the timing attacks. Each and every of these protocols tries
to strike a balance between the privacy provided to legit-
imate users from potential adversary, and the overhead
added for requests performed by other legitimate users to
the privacy-related contents.

D. Organization

The organization of the rest of this paper is as follows. In
Section [[I| we review the preliminaries and terminologies used
in this paper. In Section we introduce three protocols to
solve the problem and maintain the privacy of users access,
where each protocol comes at different cost and privacy
guarantees. In Section we present our simulation results
to validate the attack and evaluate the performance of our
defense protocols. In Section[V]we highlight several discussion
points, including potential attacks and their applicability to our
protocols. Section reviews related work and Section
concludes this work and point out our future work.

II. PRELIMINARIES AND TERMINOLOGY

In this section we first review the terminologies related to
ICN architectures—with CCN and NDN in mind—in §lI-A
We then review the attack model used in this paper in
A. Terminologies and ICN Operations

In ICN, contents are fetched by their names [17]. An ICN
consists of routers, where each router has a cache, and edge
routers are connected to users and origin servers. An Interest in
ICN encapsulates a request for a content packet by its name.
An origin server is a server that originates contents to be
served in the network, thus fulfilling interests. The contents
(data packets) may or may not be cached in the network. In
the rest of this work, we use total Round Trip Time (RTT) to
denote the time from the start of sending the first interest until
the start of receiving a content packet fulfilling it (also known
in the literature as Time to First Byte; TTFB). Similarly, we
define RTT per hop. In ICN, contents are forwarded back to
a user on the same path as they are requested by that user,
thus PIT (pending interest table) at each ICN router records
which interest is not fulfilled yet. A face in ICN is the port
at which data is sent or received in a router. In our protocols
we make use of an access point (AP), which is the closest
connecting point of the user to the ICN (not to be confused
with a wireless access point). Each router maintains a set of
states to record the number of times that a privacy-sensitive
content object has been fetched by each user or face. pmode
is a flag to indicate that the privacy of a content name being
accessed need to be preserved in future access and requests.

B. Attack Model

We consider an adversary co-located with an honest user
who tries to access contents from ICN. To this end, we assume
that the adversary has the capability to perform fine-grained
time measurements to perform attacks. We also assume that

the attacker has a list of potential “names”, where he wants
to verify whether the benign user has accessed such names
or not. We do not assume any insider attacks, since such
names are easy to infer given that domain-specific names are
common among people working in that domain, and are easy
to infer. From this assumption it follows that the adversary has
no control over which path interests are sent, and cannot be
geographically distributed to perform an intersection attacks by
combining several measurements at different network locations
(cf. Section [V). Finally, for the operation of our attack, we
assume that the adversary has enough time to perform the
attack, which implies that the content caching lifetime is long
enough that the adversary would have a cache hit for contents
previously cached by the benign user’s requests.

In this paper we assume that the underlying infrastructure
used by both adversaries and benign users is honest. In
particular, a common router that holds traffic of the adversary
and the honest user cannot collude to perform an attack against
the benign user (e.g., 72 in Figure [I). On the other hand,
the adversary, if at the scale of a subdomain, may control a
router where no traffic of the benign user passes through (e.g.,
r3 could replace AP, in Figure [I). This assumption can be
further used by the adversary to enumerate in real-time what
contents are being consumed by other users in his domain, and
to help him improve the inference attack on other users within
proximity but in other domains (see for such scenario).

The attack discussed in this paper is applicable to both
CCN and NDN and to a lesser extent to other future Inter-
net architecture proposals [S]], [16]], [24]. Notice that there
have been several efforts in improving caching in ICN, and
the main motivation of such designs is performance: each
of these designs tries to improve network performance by
reducing cache-miss. While our attack might be less applicable
to these designs, they might be vulnerable to other cache-
related attacks as in [30]]. Verifying how vulnerable are these
architectures to our attack is left as a future work.

III. PROTECTION MECHANISMS

As mentioned before, simple solutions cannot prevent the
timing attacks for privacy while greatly degrade the benefits
of ICN architectures. Also, intelligent caching requires a
topology knowledge that is beyond a router’s resourcers.To
this end, we propose several solutions without requiring such
knowledge.

A. Summary of the Protection Techniques

The first technique to address the attack, named the “vanilla”
approach, enables each user concerned about the privacy of his
access to use a privacy mode, and the edge router maintains
a state of the user, the requested content names, and the
number of times the user has requested them. When other users
request the same contents for the first time, the router generates
random delay to simulate a network delay before sends the
contents to the requester. This technique requires keeping
states: user ids, content names, and the times of requests,
which represent necessary overhead in the edge router. On the

other hand, this solution can be tuned to maintain shorter RTT
as in ICN. The detailed protocol is introduced in Section [II[-B

To reduce the overhead in the vanilla protocol but by
enabling higher granularity of privacy, we let routers only
keep states for requests coming on faces, and maintain per-face
states instead of per-user states. In our “efficient” approach,
when an interest of a cached content arrives for the first time
at a certain face, the edge router generates random delay and
serves the content so as to preserve the privacy of other users in
other domains (their requests come from different faces), who
have requested the contents before. When a face has previous
requests for the same content, the content is served to the
requester immediately. Although this technique reduces the
overhead of the first technique, it does not enable low privacy
preservation. The detailed protocol is in Section

In order to enable low granularity of the privacy and to
reduce the overhead at edge routers, we maintain the same
states of users as in the vanilla approach but in access points.
We then use these states to collaboratively indicate routers if
the target contents have been requested before by the same user
or not. In particular, when a request is issued by a user setting
behind an access point (AP), the access point maintains his
identifier, and the number of times he has previously requested
the content name. If this is for the first time, and the content is
previously marked for privacy-related query, and the request
of that content is flagged. Accordingly, the router generates
random delay as before, and then serves the content to the user
via the AP. If the content is privacy-related, and the user has
already requested the content before, the request is not flagged,
and the contents are served directly to the user. If the content is
flagged, or not flagged, but not cached, it is served according to
the original ICN protocol. This protocol maintains the privacy
of the requester from the same domain, while reducing the
states stored on the router for faces statistics, whereas all user
statistics are stored on the close by AP. The detailed protocol
is in Section =D}

Before going into the details of the protocols, we first in-
troduce the time (delay) generation procedure. The procedure
is performed by an edge router, and takes several parameters
based on the specific protocol in which it used to generate
td, the number of hops to be added as noise to prevent the
timing attack. Particularly, for a content name n € N, the total
number of hops h, RTT td,, and the time delay for the first
hop tdy (from the user to the edge router), td(n) is chosen
as follows to balance privacy and the degradation of service
as compared to fetching contents directly from the cache. For
a given n, the same value of td(n) is used for subsequent
requests.

td(n):{o h=1

2dy < td(n) < tdy h>1 M

B. The “Vanilla” Approach

The vanilla algorithm to prevent timing attacks on privacy in
ICN is described in Algorithm [I] and illustrated in Figure [2]
The main ingredient of the algorithm is a carefully chosen

Algorithm 1: The ‘“vanilla” approach to preserving the
privacy of cache access. The description makes use of the
toy example in Figure [T] and is illustrated in Figure [2]

Algorithm 2: The efficient approach to preserving the
privacy of cache access. The description makes use of the
toy example in and is illustrated in

Input: n - a content name, u - a user, ¢ - access state,
Ints = (u, n, pmode, tso)
Output: A data packet to w in a privacy-preserving manner.
1 When R receives Ints from u, it records tsi, the timestamp of

interest arrival, and computes tdo = ts; — tso as a one-hop
time delay.

2 if pmode == 0 then

3 if td(n) == 0 then

4 /I default value td(n) =0

5 R follows ICN protocol to obtain data packet Data
from the origin server;

6 R returns Data to u;

7 else

8 R follows ICN protocol to obtain data packet Data;

9 R delays td(n);

10 R returns Data to u;

11 end

12 else

13 if o(u,n) == 0 then

14 R follows the ICN protocol to obtain data packet
Data from the origin server;

15 R records tsz upon the arrival of Data, and computes:

16 tdy = tse — ts1; // RTT from R to origin server

17 h = tds/(2tdo) + 1; // expected # of hops from u
to the origin server

18 Generate td(n) according to Eq.

19 o(u,n) + +;

20 R returns retrieved Data to u;

21 else

22 ‘ R returns cached Data to u;

23 end

24 end

delay added to subsequent responses to make them similar to
the responses that fall back on the origin servers to ensure that
the contents that are sent to an adversary do not expose timing
patterns—such patterns could be used to infer if other users
have requested the same contents. For that, the protocol relies
on states stored by each edge router to name the contents that
are of privacy-value to users, the number of times the contents
are being served to each user, and the user id.

Particularly, for a user v (U; in Figure |I[), its edge router
(ro in Figure maintains o(u,n) : U x N — INT,
where U, N, and INT are the sets of users, content names,
and integers, respectively. (u,n) indicates the number of
times that user v has accessed the content name n. At the
beginning, assuming benign user U; first generates interest
Ints = (Uy,n, pmode, tsg) with pmode = 1, where tsq is the
timestamp of when the interest is issued. When 7o receives
this, it follows the ICN protocol [[17] to retrieve a data packet
Data from the origin server, and records ¢ss upon the arrival
of the first packet in response of the interest. Following Eq. [T}
ro computes expected number of hops from the user U; to the
origin server as h = td,(N)/(2tdy) + 1, and then records td,
along with (U7, n), and updates the to indicate the times that
the user has accessed the content. r5 then serves the content to

Input: n - content name, f - face id, p - access state,
Ints = (n, pmode, ts¢)
Output: A data packet to f in a privacy preserving manner.

1 When R receives Ints from an access point AP through face f,
it records ts1, the timestamp of interest arrival, and computes
tdo = ts1 — tso as a one-hop time delay.

2 if n is not in R’s cache then

3 R follows the ICN protocol to obtain data packet Data
from the origin server;

4 R records ts2 upon the arrival of Data, and computes:

5 tdg = tse — tsi; // RTT from R to origin server

6 h = tds/(2tdo) + 1; // expected # of hops from [to
the origin server

7 Generate td(n) according to Eq.

8 o(f,n) ++;

9 R returns Data to AP via f;

10 else

1 if o(f,n) == 0 then

12 R generates td(n) as in Eq.

13 R delays td(n).

14 R returns Data to the AP via f;

15 end

16 end

U1. When another interest for n is issued by user Us, who is a
potential attacker, the router ry acts in response to this interest
as follows: If Us has previously requested n, ry responses
directly and serves contents from the cache. Else r, applies
the random delay and returns Data to Us.

C. An Efficient Approach

While the vanilla algorithm preserves the privacy of user’s
access history from attackers in the same domain, it consumes
significant resources in edge routers, especially when threats
from different domains are concerned, where each domain may
have large number of users. In order reduce the states stored in
each router, a more efficient way is to maintain per-face state
instead of per-user ones. The main observation made here is
that interests from different (sub-)domains traverse different
faces at an edge router, while interests coming from same (sub-
)domain would traverse the same face. Accordingly, per-face

@ Cache contents
ry U,
=3 ecord td,, td, Interest(N

a Cache contents %

Interest(N, pmode)
Record N, tsy, U;_ID

@ @ Interest(N, pmode)

@ (atry)
Generate d

serve contents to U2
upon d’s expiration.

Fig. 2. An illustration of the protocols in Algorithm EHE State updates as
well as repeated steps (at 1 and rp) are omitted for brevity. Notice that r3
and r4 are the access points of both users in Figure |I|

states are stored and maintained in each router, and decisions
to preserve privacy are made upon those states.

Algorithm [2| shows the protocol for an edge router. Unlike
the protocol in Algorithm [I} each router stores o : F' x N —
INT, where F is the set of faces. o(f, n) indicates the number
of times that content name 7 has been requested from face f.
The protocol can be illustrated in Figure 2| where router 7o,
for example, keeps track of the faces connecting it to other
routers and access points (e.g., rs and r4), and the times each
face has requested content names that have been previously
marked as privacy-related contents. After that, ro follows the
protocol by adding random delays when fulfilling interests that
could potential thwart the privacy of other users’ access.

D. Low Granularity Approach

The main shortcoming of the approach described in
is that it does not enable lower granularity of the preserved
privacy—which is especially required when both the adver-
sary and honest users us the same AP—unlike the protocol
described in To enable lower granularity in the protocol
described in we maintain several states in the router,
which result high overhead that can be misused, whereas
the protocol in reduces this overhead at the cost of
reduced granularity. We propose a new algorithm in Algo-
rithm [3] aiming to maintain the advantage of both protocols,
by maintaining and distributing these states concerning access
patterns of individual users at the APs, which usually are
located closer to but not controlled by end users.

The main idea of the protocol is to distribute state ¢(u,n)
on the AP associated with users generating such requests, and
to store the face state o(f,n) in the router. Decisions for
access privacy are made at the router with the help of the AP.
When the AP receives a request from the user, it checks if the
user requested the content before. If not, the pmode value is
discarded (to eliminate possible cheating attack about pmode),
and the AP forwards the request to the router. Otherwise, the
AP directly sends the interest to the router. Upon receiving
the interest from a given face, the router initially looks if the
content is in the cache or not. If not, it retrieves the content
from the origin server and serves it to the requesting user
through that face; otherwise, the router checks the face state
o(f,m): if it is zero, which implies that no user on that face
has requested the content, the router returns the content after
a delay td(n) expires; otherwise, it looks at the flag generated
by the AP: if it is true, which means that the user has already
requested the content before, the router fulfills the interest
immediately; otherwise, the interest is fulfilled after a delay
td(n) is expired.

IV. RESULTS AND ANALYSIS

To understand the potential of the attack proposed in this
work in reality and how our designs impact the performance
of ICN, we perform several measurements on the CCNXx
prototype [26] using simulation setting. To derive an accurate
representation of real-world timing scenarios, we feed the
simulator with topologies and per-hop RTT traces driven from

Algorithm 3: Low granularity approach to preserving the
privacy of cache access. The protocol uses the toy example
in Figure
Input: n - content name, f - face id, w - user id, g - access
state, Ints = (n, pmode, tso, flag = false)
Output: Returns data packet to w in a privacy preserving
manner.

1 w issues interest Ints with pmode enabled for n. u records tso
and associate it with that request. u sends the request to AP
that connects w to the ICN.

2 When the AP receives Ints:

3 if p(u,n) == 0 then

AP discards the pmode tag and flags Ints with
flag = true;
AP forwards Ints to router R;
else
| AP forwards Ints to router R;

end

Upon receiving Ints from face f, the router R:

10 if n is not in R’s cache then

11 R follows the ICN protocol to retrieve the contents from

the origin server and serve them to u.

12 else

13 if o(f,n) == 0 then

14 | R generates td(n) with Eq.

15 else

16 if flag == true then

17 | R fulfills the interest from cache

18 else

19

20

21

'S

E-I- I B

R generates delay td(n) as in Eq.
R delays response by td(n);
R returns cached content n;

22 end

23 end

24 R delays td(n);

25 R returns Data to face f;
26 end

the current Internet. We do so using traceroute [27] to request
several websites as shown in the details below.

A. Settings and Timing Data-sets

Our main measurements are based on CCNx, which
is an open source system that implements the basic op-
erations of CCN. CCNx implements both the communi-
cation operations—i.e., specifying naming and data con-
ventions of communications exchanged between consumers
and publishers—and security operations (using OpenSSL)-
signature generation and verification for data packets.

Because no ICN architecture or design has been widely
deployed yet, we lack any real-world traces of RTTs for
content retrieval networks. However, designs like CCN suggest
operating CCN on top of IP, making today’s IP timings
relevant for experiments. To this end, we instrument the CCNx
simulator with real-world per-hop round trip delays when
issuing interests from within our campus (connected directly
to the Internet backbone) to reach each of the Alexa top-100
sites [2]. We use traceroute to obtain per-hop RTT delay to
each of these sites—each of these sites is an origin server.

We notice that traceroute has several limitations that prevent

direct use of its measurements in our study. First, as the hop
count increases, there is no guarantee to have larger RTT than
previous RTT for smaller hop count. Second, path to origin
servers may change at any time, making two measurements
for the same route greatly different. Last, traceroute provides
cumulative RTT as the hop count increases, but not the per-
hop time delay needed in our study. To address the first issue,
we run many traceroute requests at different times of the day
to account for different network conditions (which is the main
reason that raises this issue), and record different readings
for a fixed path to the requested site. Then, for each hop we
consider the median RTT among all RTTs given for that hop.
We observe that as we increase the number of measurements
of the traceroute for the same site we get ordered set of
(median) readings: the closer to destination the hop count is,
the larger the RTT. To address the second issue of traceroute,
we only consider the path that is most popular in the returned
traceroute results, and discard all other paths. Once both issues
are addressed, we compute the per-hop delay RT'T; as:

— {RTT; - i>1

i=1’

RTT!
RTT!

where RTT! is the i-th returned record by traceroute for the
given site. A CDF of the per-hop RTT on the path to each
of these origin servers is shown in Figure [3] with per-hop
RTT values ranging from as low as parts of a millisecond to
more than a hundred of milliseconds. Complementary CDF
for smaller range of RTT (RT'T; < 1) is shown as a small
graph within the CDF in Figure [3] (70% of the hops’ RTT
in all per-hop measurements are less 1 ms). Notice that the
per-hop RTT are smaller than expected on the Internet, which
might be due to that two hops are in the same router, same
datacenter, or same CDN. However, the results in this study
are less significantly affected by other than the total RTT
(used for deriving td(n)) and the first hop delay (used for
validating the attack). In the future, we will consider other less
popular sites, where some of these issues can be eliminated,
and request them from different geographical locations (e.g.,
using PlanetLab nodes) to diversify the measurements.

We feed the per-hop RTT to a dummy CCNx topology
corresponding to the toy example in Figure [I] for each of
the hop counts and the per-hop RTT to request these sites.
That is, in each case we control the number of hops between
router o and r; in Figure |1| to correspond to the number of
hops returned by traceroute for the given site. We then add the
delay incurred over that hop as measured by traceroute using
the method explained earlier.

Because the hop count to reach different sites varies from
one site to another, we limit our attention to 24 sites that
had exactly 16 returned valid hops in traceroute to unify our
analysis and discussion in this section. We only limit our
attention to those sites where traceroute returned 16 unmasked
hops and discard timed-out hops, if any. A boxplot of the
normalized per-hop RTT (defined as RTT;/ max{RTT}} for
1 <k < h and h is the hop-count, where RTT; is the i-th

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 |

CDF

' """ 0 """" 0. 2 04 06 08"""'1”"
0.0

0 20 40 60 80 100 120

Time in millisecond (per hop)

140

Fig. 3. An empirical CDF of the per-hop round trip delay for all hops of
Alexa’s top 100 sites using traceroute. Notice that 70% of the per-hop RTTs
are less than 1 millisecond.

© d o 56 5 o5 005 00000005 oo 0 o o 0 o o
c
k=]
5 o
2 o
B
5 o |
o O ' -
£ 1 T Lt :
- X4 |
2 o |
N .
©
M D U D DD D U D
S
1 13 15 17 19 21 23
Site (index)
Fig. 4. Boxplot for the (normalized) distribution of per-hop RTT for each

of the sites used in our study (indexed)—the boxplot plots the 1st, 2nd, and
3rd quartiles as well as the minimum, maximum, and outliers.

hop—notice that RTT; = 2tdy in our protocols) for each of
the 24 sites is shown in Figure [4] Finally, we define the RTT
up to each hop as the sum of the per-hop RTT normalized by
the total RTT to the origin server. This is, RT"T}, is defined as

k
RTT} = Z RTT;/RTT,
i=1
where RTT), = 2tdy + td, is the total RTT up to the origin
server, and RT'T; is the the i-th hop RTT. Notice that RT'T}, is
returned by traceroute for each k, and can be used immediately
in this study. A boxplot of the RTT up to each hop (1 to 16;
until reaching the origin server) as a ratio of the total RTT to
the origin server is shown in Figure [5]

B. Results

In this subsection we introduce the results of this study. We
mainly verify how accurately an adversary can validate the
attack and the overhead of our protocols in terms of added
delay to the responses of benign users.

1) Attack validation: First, we examine whether an adver-
sary co-located one-hop away from a legitimate user is able
to exploit the timing attack explained earlier to infer whether
some contents are being retrieved by that user or not. We
note that as per the ICN caching policy in CCN, contents are

S — -
[o ol
2 L@
— © | i
8 o b
=) | o=
L ©
£ o °
=
5] B
s <4
i T
S~ o L |
= L
- I
- o
X O | e e e

© T T T T T T T T T T T T T T 1

V1 V3 V5 V7 V9 V11 V13 V15

Hop count

Fig. 5. A boxplot of the RTT (up to the given hop count) as a ratio of the
total RTT (up to the origin server of the site) for 24 sites in Alexa’s top 100,
with 16 hops to each site.

replicated and cached at each hop, thus future requests are
fulfilled immediately from the closest router to the user. From
Figure [5] we observe that an adversary who is co-located with
the user who has requested these sites benefit from the caching,
and would ideally reduce the total RTT for fulfilling a request
by a cache hit at the first hop by around 98% for the most
conservative sites (and more than 99% for the median site).
Even when a cache-miss happens, an RTT by a cache hit at
the sixth hop away from the user, for example, would be 40
times at average (and about 25 times at worst) less than the
RTT when retrieving contents directly from the origin server—
although this scenario may not breach the privacy of user
access patterns since a 6-hop network has a large anonymity
set. By feeding the timing profiles in Figure f] in CCNx we
observe that the network latency is the dominating part of
the RTT in CCN, and other ICN-related delay is negligible.
From that, we conclude that an adversary that relies only on
the timing information can easily and successfully infer that
the contents are being cached in a near-by router due to their
access be a potentially co-located user with him.

2) How defenses impact the performance: Now we look at
how our protocols impact the performance of the ICN. One
critical parameter for our designs is td(n), which corresponds
to the number of hops d that an edge router estimates and
according to which he generates noise and uses it to ful-
fill pending interests issued by end users while maintaining
privacy of prior requests. This parameter is generated and
used in the three different protocols proposed in this work.
Given that we have access to the per-hop delays (as shown
in §IV-A), we use d < h directly to compute ¢d(n) instead
of the approximation in Eq. [I] To understand the impact of
different values of d we define the maintained RTT gain metric
as the difference between the gain in RTT due to caching for
subsequent interest fulfillments (when contents are cached 1-
hop away from the requesting host) and the the incurred delay
due to the added noise in our protocols at a given d. This main-
tained gain is especially significant to benign users requesting
the contents in the future. By observing that the first hop’s
RTT is negligible (as in Figure 5], we consider the maintained
RTT gain (normalized) as 1 — (td(n)/td,) =~ 1 — RTT}. We
compute this quantity for the min, max, mean, and median
RTT; of the different sites, for different d values.

1.0

0.8

0.6

0.4

Maintained RTT gain

0.2

0.0

2 4 6 8 10 12 14 16

d (privacy parameter)

Fig. 6. Maintained RTT gain for different values of the privacy parameter d.
Notice that the average (and more than 50% of sites, i.e., the median) of the
maintained gain in RTT is 80% even when d is 50% of its maximum value.

Even when the router has the capability to record a per-hop
RTT and add a given number of hops as noise—not an estimate
as described in the protocols, the overhead as additional time
delay added to the RTT of fulfilling requests to users still
maintains the benefits of ICN as shown in Figure [6] For
example, when d = 6 (which is one-third of the hop count to
the origin server thus providing high anonymity set), a request
to an average site would be fulfilled about 40 times faster
than retrieving contents from the origin server (0.975 gain).
Even for the site with the longest RTT, it would be 25 times
(0.96 gain) faster than getting contents from the origin server.
Even when d increases the results are not affected greatly: for
d = 7, the mean, median, and max gain are 0.965, 0.97, 0.75,
respectively. Similarly, for d = 8, we obtain 0.7, 0.633, and
0.62, respectively. However, as d reaches a value that makes
the path traverse the core congested network with high TTL,
this result degrades greatly: the performance worsen to reach
an average gain of 0.5 at d = 11. As before, RTT is dominated
by network latencies, whereas CCNx delays are negligible,
supporting our claim that our designs maintain ICN’s gain in
RTT, and that the performance is tunable depending on the
desirable privacy guarantees to provide to users.

3) How different network conditions affect the performance:
Both of the previous sections make conclusions that are
network-dependent. Accordingly, we perform similar requests
from another commercial campus network that is separated
from the Internet backbone by several hops, where several
middle boxes are used for security purpose (the average total
RTT has increased in these measurements by 300%). In these
measurements we observe that the first hop would at average
constitute 1% of the overall RTT, making the attack easily
applicable, and the maintained gain for d = 6 in sites that
have 16 returned hops by traceroute is 0.88 at average (8
times faster than retrieving contents from the origin server).
We further make similar measurements by performing those
requests from a residential network, and find a similar RTT
for the first hop, although the gain for d = 6 for similar set
of sites is about 0.92 at average.

4) Overhead evaluation: Evaluating the overhead at the
routers and APs would depends greatly on how often contents
are flagged as privacy related. Since we assume that a user
who uses the pmode with requests is trusted, the overhead
is a good estimate of real privacy needs. Misuses that try to
exploit that and generate excessive overhead on routers can
be penalized by feedbacks from other users. We notice that
the last protocol, which outperforms all others, have limited
overhead on routers. Also, we emphasize that there is no
overhead on the network, since the delay generated would not
affect the location of contents in the cache, but the time at
which an interest is fulfilled.

V. DISCUSSION

Our protocols make use of certain assumptions to enable
the privacy of user access patterns in ICN. One of such
assumptions is that users are willing to give up part of ICN
(e.g., CCN and NDN) gains for their privacy improvement.
With that in mind, and using our measurements showing that
d = 6 in our protocols would still maintain more than 97%
of the gains in CCN performance, our simulation shows and
supports our protocol’s usability. Particularly, we claim even
d < 6 is large enough to provide a good anonymity set and
to pronounce the timing attack ineffective.

Another assumption we make is that both the adversary and
the benign user are residing behind the same router, and are
1-hop away from each other. On the other hand, if both users
are 2-hops away, the adversary will still be able to infer some
information about the co-location of the benign user who has
requested the contents. We address this issue in two ways.
First, given that the first few hops (as shown in Figure 3]
have small RTTs, the adversary has to have a very sensitive
measurements capability at the microsecond level to be able to
tell if the user is 2, 3, or 4 hops away). Second, we believe that
even in current networks which have many subscribers to the
same routing infrastructure, 2-hop away users could likely be
hidden in a large enough anonymity set. This makes it hard for
the adversary to pinpoint a smaller set of users who could be
potentially the requesters of the contents. Finally, although at
the cost of additional overhead, one can extend our protocols
to address this shortcoming.

An explicit assumption we make is that the adversary cannot
collude with routers. However, two users acting as adversaries
may collude with each other and try to bypass our defenses.
For example, each of the colluding malicious users could issue
an interest for a certain content, and compare their timings
to infer whether the content has been cached (and that the
router is generating noise as delay) or not. We notice that such
collusion, while in principle is applicable to the first protocol,
is not applicable to both the second and third protocol. As both
requests have to go through the same face, they will both be
considered as if they are from the same entity, regardless to
the users who issued them (lines 13 and 14 in Algorithm [3]
and lines 7 and 9 and 11 to 14 in Algorithm [2).

A closely related attack is what we coin as the “intersection
attack”, in which two geographically distributed attackers

collude to infer if a content is cached or not. For example,
suppose that one node that belongs to the attacker obtains a
delay that tells the content is cached 3 hops away from that
node. Another node that also belongs to the attacker which is
3 hops away tries to simultaneously requests the same content,
and obtains the same delay, from which both colluding nodes
will know that the content cannot be cached three hops away
from each of them at the same time. However, in order for this
attack to work, the attackers need to: 1) be geographically
distributed, and 2) know in advance the path on which the
interests of benign users have reached origin servers. While
the first requirement would violate one of our attacker model
assumptions, we believe that the second requirement would
require collusion of the underlying infrastructure (routers) or
much larger number of attackers to make a good estimate
of the path. Even though the attack is possible in theory,
our defenses and privacy protection mechanisms raise the bar
greatly for such adversaries in practice.

VI. RELATED WORK

There have been several directions of work in the liter-
ature related to the work we present in this paper. These
work are information centric networking architectures, caching
mechanisms, and security evaluation and analysis of these
mechanisms and architectures. To the best of our knowledge,
our work is the first to address the timing attack by exploiting
caching mechanisms in ICN.

Other architectures that date prior to the introduction of
CCN [17] and NDN [33]] include TRIAD [15]] (the work that
pioneered the concept of ICN), ROFL [§], and DONA [21]].
Other recent architectures include XIA [3]], [16], CONET [11]],
DACON [20], and SCION [35] (where the latter mainly
addresses routing). Some of these architectures do not specify
how caching is implemented whereas others do. For the latter
type of architectures, we will look forward to extend our work
in the future by examining if they are vulnerable to the attack
introduced in this paper. For details, we direct the reader to
a survey on some of these architectures and a comparison
between them in [1]].

Caching has enjoyed a cornerstone position in the ICN
research community, since it is one of the main features that
ICN advocate as an advantage over the current Internet. The
main motivation of such caching algorithms introduced in the
literature is performance, rather than privacy. Most of schemes
introduced in the literature for caching aim to reduce the RTT
and improve users experience by maximization of cache hit
and minimization of cache-miss. Prior literature on caching in
ICN include the work in [9], [10], [19], [23], [25[, [29], [31]

A critique of caching mechanisms, as suggested in CCN and
NDN—as well as other issues worth investigation to enable
ICN architectures—is introduced in [|13]]

Security and privacy of ICN have been discussed in several
recent works. In [32], secure naming system has been pro-
posed. Named-based trust and security protection mechanisms
are introduced in [34]. Different naming conventions in ICN
architectures and their security features are discussed in [[12].

A privacy-preserving contents retrieval in ICN (that assumes
the origin server is dishonest) is proposed in [[6]. A diverse
array of security mechanisms for ICN is introduced in [18].
A closely related architecture that makes accountability as a
first-order property, named AIP, is introduced in [4] (which
shares similarities with the naming in [7[]. Arguments for ICN
and future Internet design in general are in [[14]], [28]

VII. CONCLUDING REMARKS

In this paper we have introduced an attack on content
access privacy that is applicable to several information centric
network (ICN) architectures, including the CCN and NDN.
We show that an adversary with the capability to perform
timing measurements can infer whether contents have been
fetched by other users by exploiting the universal caching
mechanism deployed in such architecture. We verify such
attack theoretically and empirically using real-world per-hop
time measurements.

To withstand such attack, we introduce three protocols, each
of which comes at varying cost and benefits to the network. In
these protocols, we make use of carefully chosen time delay
to responses given by routers to fulfill requests by users. The
delay is chosen to strike a balance between the amount of
privacy provided to users—which is determined by the delay
added to increase a number of virtual hops away from the user
requesting privacy-related contents, the overhead on routers,
and the degradation of service to benign users.

One limiting factor of our attack is the cache update pattern
in real-world edge routers, for which we do not have any
real-world measurements. In the future, we will look at how
different caching policies and cache flushing patterns (and the
time associated with that) would affect the effectiveness of
both the attack and the defenses we provide in this work.
In another future work, we will look at how other caching
algorithms [9], [10], [19], [31]], which are tailored specifically
to improve the cache hit in ICN architectures, are prone to the
attack we proposed in this work, and will look for defenses
to mitigate it, if applicable.

REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. IEEE Comm Mag., 2012.

[2] Alexa. Top 500 sites. http://www.alexa.com/topsites, July 2012.

[3] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu,
A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste.
Xia: an architecture for an evolvable and trustworthy internet. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 2:1-2:6, New York, NY, USA, 2011. ACM.

[4] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable internet protocol (AIP). In Proceedings of
the ACM SIGCOMM, 2008.

[5] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. Freedman, A. Haeberlen, Z. Ives, et al. Nebula-a future internet that
supports trustworthy cloud computing. White Paper, 2010.

[6] S. Arianfar, T. Koponen, B. Raghavan, and S. Shenker. On preserving
privacy in content-oriented networks. In Proceedings of the ACM
SIGCOMM ICN, pages 19-24, 2011.

[71 H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,
I. Stoica, and M. Walfish. A layered naming architecture for the internet.
In Proceedings of ACM SIGCOMM, pages 343-352, 2004.

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]
[27]
(28]

[29]

M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica.
Rofl: routing on flat labels. In Proc. of ACM SIGCOMM, 2006.

W. Chai, D. He, I. Psaras, and G. Pavlou. Cache “less for more” in
information-centric networks. NETWORKING 2012, pages 2740, 2012.
K. Cho, M. Lee, K. Park, T. Kwon, Y. Choi, and S. Pack. Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks. In Proceedings of IEEE INFOCOM Workshops,
pages 316-321, 2012.

A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini. Conet: a
content centric inter-networking architecture. In Proceedings of ACM
SIGCOMM ICN, ICN 11, New York, NY, USA, 2011. ACM.

A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker.
Naming in content-oriented architectures. In Proceedings of ACM
SIGCOMM ICN, pages 1-6, 2011.

A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox. Information-centric networking: seeing the forest for the
trees. In Proceedings of ACM HotNets, 2011.

A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox. Intelligent design enables architectural evolution. In
Proceedings of ACM HotNets, 2011.

M. Gritter and D. R. Cheriton. An architecture for content routing
support in the internet. In USITS, pages 37—48. USENIX, 2001.

D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan,
W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste. Xia: efficient support for evolvable internetworking. In
Proceedings of USENIX NSDI, 2012.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. Braynard. Networking named content. In Proceedings of ACM
CoNEXT, pages 1-12, 2009.

J. Jeong, T. T. Kwon, and Y. Choi. Host-oblivious security for content-
based networks. In Proceedings of ACM CFI, pages 35-40, 2010.

K. Katsaros, G. Xylomenos, and G. Polyzos. A hybrid overlay multicast
and caching scheme for information-centric networking. In Proceedings
of IEEE INFOCOM, 2010.

D. Ko, K. Cho, M. Lee, H. Kim, T. T. Kwon, and Y. Choi. Decentralized
and autonomous content overlay networking (dacon) with wifi access
points. In Proceedings of ACM CFI, pages 18-24, 2010.

T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. SIGCOMM CCR, 37(4), 2007.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of ACM CCS, pages 199-212, 2009.

S. Salsano, A. Detti, M. Cancellieri, M. Pomposini, and N. Blefari-
Melazzi. Transport-layer issues in information centric networks. In
ACM SIGCOMM ICN, 2012.

I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. Mobilityfirst
future internet architecture project. In Proc. of ACM AINTEC, 2011.
S. Singh. A trust based approach for secure access control in information
centric network. Int’l J. of Info and Network Security, 1(2), 2012.

The CCNx Project. CCNx. https://www.ccnx.org/, July 2012.
Traceroute. Traceroute. http://www.traceroute.org/, July 2012.

D. Trossen, M. Sarela, and K. Sollins. Arguments for an information-
centric internetworking architecture. ACM CCR, 40(2), 2010.

G. Tyson, N. Sastry, I. Rimac, R. Cuevas, and A. Mauthe. A survey
of mobility in information-centric networks: challenges and research
directions. In Proceedings of ACM MobiHoc Workshops, 2012.

M. Wihlisch, T. C. Schmidt, and M. Vahlenkamp. Backscatter from
the data plane — threats to stability and security in information-centric
networking. CoRR, abs/1205.4778, 2012.

Y. Wang, K. Lee, B. Venkataraman, R. Shamanna, I. Rhee, and S. Yang.
Advertising cached contents in the control plane: Necessity and feasi-
bility. In Proceedings of IEEE INFOCOM Workshops, 2012.

W. Wong and P. Nikander. Secure naming in information-centric
networks. In Proceedings of ACM ReARCH, pages 12:1-12:6, 2010.
L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al. Named data
networking (ndn) project. Technical report, PARC, 2010.

X. Zhang, K. Chang, H. Xiong, Y. Wen, G. Shi, and G. Wang.
Towards name-based trust and security for content-centric network. In
Proceedings of the IEEE ICNP, pages 1-6, 2011.

X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen. Scion: Scalability, control, and isolation on next-generation
networks. In Proc. of IEEE S&P, pages 212-227, 2011.

http://www.alexa.com/topsites
https://www.ccnx.org/
http://www.traceroute.org/

	Introduction
	Example of Attack on Privacy in ICN
	Shortcomings of Simple Solutions
	Contributions
	Organization

	Preliminaries and Terminology
	Terminologies and ICN Operations
	Attack Model

	Protection Mechanisms
	Summary of the Protection Techniques
	The ``Vanilla'' Approach
	An Efficient Approach
	Low Granularity Approach

	Results and Analysis
	Settings and Timing Data-sets
	Results
	Attack validation
	How defenses impact the performance
	How different network conditions affect the performance
	Overhead evaluation

	Discussion
	Related Work
	Concluding Remarks
	References

