EEL 5722C
Field-Programmable Gate Array Design

Lecture 9: CAD 3: FPGA Routing (Basic)*
www.eecs.ucf.edu/~mingjie/EEL5722

Prof. Mingjie Lin

* Some slides adopted from UMN EE5301 by Kia Bazargan & NWU EECS357 lectures
Overview

• Recap + Short intro. to the 2nd lab

• FPGA Routing
 – Recap: FPGA Routing Architecture
 – FPGA Routing Problem Formulation
 • Difference from conventional VLSI routing problem
 – Maze routing algorithm
 – Congestion-based negotiated routing algorithm (VPR)
FPGA Architecture - Layout

• Island FPGAs
 – Array of functional units
 – Horizontal and vertical routing channels connecting the functional units
 – Versatile switch boxes
 – Example: Xilinx, Altera

• Row-based FPGAs
 – Like standard cell design
 – Rows of logic blocks
 – Routing channels (fixed width) between rows of logic
 – Example: Actel FPGAs
FPGA Programmable Switch Elements

• Used in connecting:
 – The I/O of functional units to the wires
 – A horizontal wire to a vertical wire
 – Two wire segments to form a longer wire segment
FPGA Routing Channels Architecture

- Note: fixed channel widths (tracks)
- Should “predict” all possible connectivity requirements when designing the FPGA chip
- Channel -> track -> segment

 - Segment length?
 - Long: carry the signal longer, less “concatenation” switches, but might waste track
 - Short: local connections, slow for longer connections
FPGA Switch Boxes

- Ideally, provide switches for all possible connections

- Trade-off:
 - Too many switches:
 - Large area
 - Complex to program
 - Too few switches:
 - Cannot route signals

One possible solution

Xilinx 4000
VLSI Routing (NOT only FPGA)

• Problem
 – Given a placement, and a fixed number of metal layers, find a valid pattern of horizontal and vertical wires that connect the terminals of the nets
 – Levels of abstraction:
 • Global routing
 • Detailed routing

• Objectives
 – Cost components:
 • Area (channel width) – min congestion in prev levels helped
 • Wire delays – timing minimization in previous levels
 • Number of layers (fewer layers \(\rightarrow\) less expensive)
 • Additional cost components: number of bends, vias
Variations of Routing Problems

- **Full-custom:**
 - No constraint on routing regions

- **Standard cell:**
 - Variable channel height?
 - Feed-through cells connect channels

- **FPGA:**
 - Fixed channel height
 - Limited switchbox connections
 - Prefabricated wire segments have different weights

Figs. [©Sherwani]
FPGA Routing

• Routing resources pre-fabricated
 – 100% routability using existing channels
 – If fail to route all nets, redo placement

• FPGA architectural issues
 – Careful balance between number of logic blocks and routing resources (100% logic area utilization?)
 – Designing flexible switchboxes and channels (conflicts with high clock speeds)

• FPGA routing algorithms
 – Graph search algorithms
 • Convert the wire segments to graph nodes, and switch elements to edges
 – Bin packing heuristics (nets as objects, tracks as bins)
 – Combination of maze routing and graph search algorithms
Global vs. Detailed Routing

• Global routing
 – Input: detailed placement, with exact terminal locations
 – Determine “channel” (routing region) for each net
 – Objective: minimize area (congestion), and timing (approximate)

• Detailed routing
 – Input: channels and approximate routing from the global routing phase
 – Determine the exact route and layers for each net
 – Objective: valid routing, minimize area (congestion), meet timing constraints
 – Additional objectives: min via, power

Figs. [©Sherwani]
Maze Router

• Lee Algorithm

• Strengths
 – Guarantee to find connection between 2 terminals if it exists
 – Guarantee minimum path

• Weaknesses
 – Discussion mainly on single-layer routing
 – Requires large memory for dense layout
 – Slow

• Applications: global routing, detailed routing
 – VLSI, FPGA, PCB routing, …
Lee Algorithm

• Find a path from S to T by “wave propagation”

• Time & space complexity for an $M \times N$ grid: $O(MN)$ (huge!)
Connecting Multi-Terminal Nets

- Connecting Multi-Terminal Nets
 - Propagate wave from the source s to the closest target
 - Mark ALL cells on the path as s
 - Propagate wave from ALL s cells to the other cells
 - Continue until all cells are reached
 - Apply heuristics to further reduce the tree cost
Fast Maze Router

• Soukup, “Fast maze router,” DAC-78.
 • Combined breadth-first and depth-first search
 – Depth-first (line) search is first directed toward target T until an obstacle or T is reached
 – Breadth-first (Lee-type) search is used to “bubble” around an obstacle if an obstacle is reached.

• Time and space complexities: $O(MN)$, but 10–50 times faster than Lee’s algorithm.

• Find a path between S and T, but may not be the shortest!
Pathfinder negotiated congestion algorithm

• Initially routes each net by the shortest path, regardless of any overuse of wiring segments or logic block pins
• One iteration of the router consists of sequentially ripping-up and re-routing (by the lowest cost path found) every net in the circuit
• Cost of using a routing resource is a function of the current overuse of that resource and any overuse that occurred in prior routing iterations
• Gradually increasing the cost of oversubscribed routing resources, the algorithm forces nets with alternative routes to avoid using oversubscribed resources, leaving only the net that most needs a given resource behind.
VPR Improvement

(a) Expansion reaches a sink

(b) Traditional method: restart wavefront

(c) VPR method: maintain wavefront and expand around new wire
Verilog Tip of the Day: 3

- How to make your circuits run faster?
 - Example: FIR filter

```verilog
module fir(
  output [7:0] Y,
  input [7:0] A, B, C, X,
  input clk,
  input validsample);
  reg [7:0] X1, X2, Y;

  always @(posedge clk)
    if (validsample) begin
      X1 <= X;
      X2 <= X1;
      Y <= A* X + B* X1 + C* X2;
    end
  endmodule
```
Verilog Tip of the Day: 3 (cont.)
Verilog Tip of the Day: 3 (cont.)

module fir(
 output [7:0] Y,
 input [7:0] A, B, C, X,
 input clk,
 input validsample);
reg [7:0] X1, X2, Y;
reg [7:0] prod1, prod2, prod3;

always @ (posedge clk) begin
 if (validsample) begin
 X1 <= X;
 X2 <= X1;
 prod1 <= A * X;
 prod2 <= B * X1;
 prod3 <= C * X2;
 end
 Y <= prod1 + prod2 + prod3;
end
endmodule
Verilog Tip of the Day: 3 (cont.)

Adding register layers improves timing by dividing the critical path into two paths of smaller delay.
Final issues

• Good suggestions:
 – HDL/Verilog tip
 – Optional exercises for study

• Come by my office hours (right after class)

• Any questions or concerns?
Multiple Terminal Nets: Steiner Tree

- **Steiner tree (aka Rectilinear Steiner Tree – RST):**
 - A tree connecting multiple terminals
 - Original points: “demand points” – set D
 - Added points: “Steiner points” – set S
 - Edges horizontal or vertical only

- **Steiner Minimum Tree (SMT)**
 - Similar to minimum spanning tree (MST)
 - But finding SMT is NP-complete
 - Many good heuristics introduced to find SMT

- **Algorithm**
 - Find MST
 - Pass horizontal and vertical lines from each terminal to get the Hannan grid (optimal solution is on this grid)
 - Convert each edge of the MST to an L-shaped route on Hannan grid (add a Steiner point at the corner of L)
Steiner Tree

- Hannan grid reduces solution space (smaller grid)
 - For min length RST, Steiner points always on Hannan grid
- Convert MST to rectilinear paths
 - Length bounded by 1.5 times optimal SMT length
- Use alternate “L” routes to find the minimum tree

MSP (length=11) Steiner tree (len=13)
Steiner Tree Routing

- Can apply different costs to different regions (or horizontal/vertical preference)
- Order of the nets
 - Sequential
 - Use # of terminals, criticality, etc. to determine order
 - Parallel
 - Divide the chip into large regions, perform the routing in parallel
- Key to popularity
 - Fast (not theoretically, but practically)
 - Bounded solution quality
- Shortcomings
 - Difficult to predict or avoid congestion