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Abstract

This paper presents a target tracking framework forun-
structured crowdedscenes. Unstructured crowded scenes
are de�ned as those scenes where the motion of a crowd
appears to be random with different participants moving in
different directions over time. This means each spatial loca-
tion in such scenes supports more than one, or multi-modal,
crowd behavior. The case of tracking instructured crowded
scenes, where the crowd moves coherently in a common di-
rection, and the direction of motion does not vary over time,
was previously handled in [1]. In this work, we propose
to model various crowd behavior (or motion) modalities
at different locations of the scene by employing Correlated
Topic Model (CTM) of [16]. In our construction, words
correspond to low level quantized motion features and top-
ics correspond to crowd behaviors. It is then assumed that
motion at each location in an unstructured crowd scene is
generated by a set of behavior proportions, where behav-
iors represent distributions over low-level motion features.
This way any one location in the scene may support multi-
ple crowd behavior modalities and can be used as prior in-
formation for tracking. Our approach enables us to model
a diverse set of unstructured crowd domains, which range
from cluttered time-lapse microscopy videos of cell popula-
tions in vitro, to footage of crowded sporting events.

1. Introduction
A crowded scene can be divided into two categories:

structured and unstructured. In a structured crowded scene,
the crowd moves coherently in a common direction, and
the direction of motion does not vary over time. That
is, each spatial location of the scene supports only one
dominant crowd behavior over the video. For instance, a
video of a marathon race represents a structured crowded
scene because all athletes run along the same path, thus
generating a crowd behavior which has a �xed direction
of motion/pattern at each location of the path. Other ex-
amples of structured crowded scenes include processions,
events involving queues of people, and traf�c on a road (see

Figure1). In an unstructured crowded scene, the motion of
the crowd appears to be random, with different participants
moving in different directions at different times. That is,in
such scenes each spatial location supports more than one, or
multi-modal, crowd behavior. For instance, a video of peo-
ple walking on a zebra-crossing in opposite directions is an
example of an unstructured crowded scene because, broadly
speaking, at any point on the zebra crossing the probability
of observing a person moving from left to right is as likely
as observing a person walking from right to left (see Fig-
ure 2). Other examples of such scenes include exhibitions,
crowds in a sporting event, railway stations, airports, and
motion of biological cells (see Figure 1).

Recently Aliet al. [1] proposed an algorithm to track ob-
jects in structured crowded scenes. Their method is based
on the assumption that, in a given scene, all participants of
the crowd are behaving in a manner similar to the global
crowd behavior. Therefore, at any location in the scene,
there is only one direction of motion. This enabled them to
learn a higher level constraint or prior on the direction of
motion for tracking purposes using the novel construct of
`�oor �elds.' Given that �oor �elds could only be learned
when there is one dominant direction of motion, the results
were reported only on marathon videos. This is a major
shortcoming, as �oor �elds could not be learned for unstruc-
tured crowded scenes where each location in the scene sup-
ports multiple dominant crowd behaviors. We further ex-
plain this point with the aid of an example in which pedes-
trians are walking on a zebra-crossing (see Figure 2). In
the crossing, people walk in both directions and, therefore,
each spatial location supports two different dominant types
of motion over time which correspond to two different high
level crowd behaviors. This means the motion at each spa-
tial location of the zebra-crossing has a multi-modal repre-
sentation. This is evident from the two types of dominant
optical �ow vectors for this scene that are shown in Fig.
2(c), and the two corresponding high level crowd behaviors
learned by our algorithm that are shown in Fig. 3. In this
�gure, different slices are shown for different behaviors to
emphasize the fact that a single location in the scene can
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Figure 1. Several instances of structured and unstructuredcrowded scenes. (a) Structured, (b) Unstructured, (c) Structured, and (d) Un-
structured.

support to any number of crowd behaviors with different
probabilities.

Floor �elds in the form proposed by Aliet al. [1] will not
be able handle this situation, and therefore, their tracking al-
gorithm is not directly applicable to unstructured crowded
scenes. Since such unstructured crowd activities (airports,
exhibition halls, and stadiums) are much more common
than structured crowd activities (marathons), it is important
to develop an algorithm capable of handling multi-modality
in crowd behaviors and for using it as a high-level direction
prior for tracking.

To overcome the problem of tracking in unstructured
crowded scenes, we develop a tracking algorithm that uses
Correlated Topic Model (CTM) [16] to capture different
overlapping and non-overlapping crowd behaviors in the
scene. In our construction, words correspond to low level
quantized motion features and topics correspond to crowd
behaviors. We used CTM as it provides an elegant way
to handle multi-modality of crowd behavior as each loca-
tion can have a certain probability of belonging to certain
crowd behavior (or topic). In addition, it models interac-
tions among topics (or crowd behaviors) which is also de-
sirable, as explained later, for the types of scene that we
are handling. Note that, we will use terms 'crowd behav-
ior', 'behavior' and 'topic' interchangeably throughout the
paper.

For illustration and understanding purposes we show

(a) (b)

Figure 2. (Frames from a video showing pedestrians crossingthe
road, and the corresponding optical �ow vectors generated by the
motion of the crowd. Different colors of optical �ow vectorsrep-
resent two dominant motions of the crowd in this scene. The cor-
responding two crowd behaviors learned from these optical �ow
vectors are shown in Fig. 3.

Crowd Behavior 1

Crowd Behavior  2

Figure 3. The top two crowd behaviors corresponding to a cross-
walk scene capture the multiple behavior modes of pedestrians
walking from opposing sides of the street. Behavior 1 captures the
dynamics of pedestrians which walk towards the rightmost end of
the crosswalk, whereas behavior 2 captures the typical movement
of pedestrians which walk towards the leftmost end of the street.

crowd behaviors learned for a typical busy crosswalk sce-
nario in Figure 2. Our model is able to capture different
behavior modalities at speci�c locations in the scene. This
can be observed in Figure 3, where we overlay the two most
common crowd behaviors learned by our framework. By
observing the colors (which represent directions of motion)
in each of the crowd behaviors, it can be seen that one of the
behaviors corresponds to pedestrians which walk towards
the rightmost end of the crosswalk, whereas the other be-
havior corresponds to pedestrians walking in the opposing
direction.

Also note that, in Figure 3 learned crowd behaviors are
not spatially mutually exclusive. Therefore, multiple behav-
iors can occur at different spatial locations in the scene with
certain probabilities. Each of these behaviors can then be in-
corporated as high level information which can aid tracking
individuals in this class of scenes. The main contributions
of our work are: 1) Extending the idea of using high-level
knowledge for tracking in crowds by learning representa-
tions of unstructured and multi-modal crowd behavior; 2)
Using CTM to solve an existing problem in a crowd track-
ing framework.



2. Related Work

Tracking is one of the highly researched areas in the �eld
of computer vision. Most tracking algorithms proposed
over the years focus on the general problem of tracking,
without speci�cally addressing the challenges of a crowded
scene. In this section, we review the tracking methodolo-
gies that are speci�cally designed for crowded situations.
The readers interested in a detailed review of the state of
the art in tracking are referred to a recent survey by Yilmaz
et al. [7].

An interesting body of work tries to track sparse crowds
of ants [4] and people [8], hockey players [6], crowds of
densely packed people [5, 11, 12], a dense �ock of bats
[2], and biological cells [3]. In their work, Brostowet al.
[8] tracked and clustered feature points over time and used
them to generate a separate trajectory for each individual.
In [4], Khanet al. employed a Markov chain Monte Carlo
based particle �lter to deal with interactions among targets
in a crowded scenario. They used the intuitive notion that in
a crowded situation the behaviors of targets are in�uenced
by the proximity and/or behavior of other targets. Caiet al.
[6] proposed a mutli-target tracking algorithm for tracking
hockey players in a video. In [11, 12], Linet al. advocated a
different paradigm for tracking groups of people by treating
them as a near-regular texture (NRT). Recently, Betkeet al.
[2] proposed an algorithm to track a dense crowd of bats in
thermal imagery. They combined multiple techniques such
as multi-target track initiation, recursive Bayesian tracking,
clutter modeling, event analysis, and multiple hypotheses
�ltering for this purpose. Tracking of multiple interacting
and crowded objects has been attempted in the area of bio-
logical cell tracking as well. For instance, Liet al. [3] have
recently developed an algorithm for tracking thousands of
cells in phase contrast time-lapse microscopy images. An-
other approach for tracking in crowded scenes using selec-
tive visual attention is proposed by Yanget al. [13]. Most
tracking algorithms described so far only use low-level im-
age information for tracking purposes. Surprisingly, little
has been done in exploiting high-level cues for human de-
tection and tracking in complex crowded situations. One
of the few works on this topic is that of Antoniniet al.
[14], which used discrete choice models (DCM) [15] as mo-
tion priors to predict human motion patterns and fused this
model in a visual tracker for improved performance. The
other work that used high-level motion priors for tracking is
by Ali et al. [1] which we already described in the previous
section.

In contrast to above mentioned body of work, our
method addresses the problem of tracking in high density
crowds by learning high level direction priors forunstruc-
tured crowded scenes. To the best of our knowledge, this
has not been attempted before.

3. Unstructured Crowded Scene Model

In this work, our goal is to develop a framework for mod-
eling the dynamics of crowded and complex scenes. In gen-
eral, an effective crowded scene model will need to be ca-
pable of both capturing the correlation amongst different
patterns of behavior as well as allowing for the multi-modal
nature of crowded scenes over time. The importance of cor-
relation among themes can be explained as follows. At an
intersection of roads, the presence of pedestrians walking
from one end of the crosswalk to the other will likely coin-
cide with a crowd behavior which corresponds to pedestri-
ans crossing from the opposite side of the crosswalk. That
is these two behaviors are correlated. On the other hand,
in the presence of a behavior which corresponds to vehi-
cle traf�c, it is not likely that we will observe pedestrians
walking across the scene.

In this work, we model the given crowd scene using Cor-
related Topic Model (CTM) which is adopted from the text
processing literature. CTM offers an elegant framework
within which multi-modality of crowd behaviors and corre-
lations among them can be handled. Another bene�t of us-
ing topic Models like CTM is that they enables us to bypass
the need for object detection within this class of crowded
scenes in favor of direct processing on low level �ow vec-
tors and at the same time allow us to connect these low level
features with high level crowd behaviors. It is pertinent to
mention here that we are interested in capturing the interre-
lationships between different behaviors in the scene as well,
therefore it may not be appropriate to rely on topic models
based on Latent Dirichlet Allocation (LDA) [17] to model
scene dynamics [20]. This is due to the fact that these mod-
els assume a near independence of topics (or behaviors). On
the other hand, CTM addresses this limitation by introduc-
ing a logistic normal prior of topics instead of the Dirichlet
prior and by using the covariance matrix of the variables
in the logistic normal model to capture correlations among
topics (or crowd behaviors).

The elements of CTM and their conditional dependen-
cies are depicted in the graphical model shown in Figure 4.
In this �gure, shaded variables represent the observed vari-
ables (motion words), while the unshaded variables repre-
sent the latent variables. Edges encode the conditional de-
pendencies of the generative process. In the following sec-
tion we detail the terminology of this graphical model and
describe how it enables us to capture the multi-modal nature
of a crowded scene.

3.1. Notation and Terminology Overview

In this section, we explain various terminologies and
demonstrate the mapping between original CTM model and
our scenario. The only observable random variable that
we consider is the low-level motion featurex, which cor-
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Figure 4.Graphical model used for modeling various crowd behaviors
and correlation between them.

responds to a quantized optical �ow vector and location.
A video is represented byN such low-level visual features
(motion words)X = f x1; x2; : : : ; xN g wherexn is thenth
motion word in the sequence, de�ned by a displacement and
location in the scene(u; v; x; y). The number of words in
the i th video is represented byN I . The crowd behavior
� is a distribution over the vocabulary of motion words of
sizeV . It represents a point on aV � 1 simplex. A model
with K crowd behaviors is represented by a matrix� of size
K � V , where thei th row represents a distribution of the
i th crowd behavior over the vocabulary. Each motion word
x is associated with a crowd behaviorz drawn from one of
the K crowd behaviors. The behavior assignmentzi;n is
associated with thenth motion word andith sequence.

In our model, the notion of document is generated by di-
viding each video sequence is into short clips (documents),
and then each clip is associated with a set of crowd behavior
proportions� i , which represents a point onK � 1 simplex.
� i represents the probability with which motion words are
drawn from each behavior. It is obtained by mapping the be-
havior probability vector� to a simplex as� = exp ( � )P

i exp ( � i ) ,
and thus obtaining a multinomial parameter.

3.2. Generative Process

Our model assumes that theN motion words from a
video sequence (short clip)i arise from the following gen-
erative process:

� Randomly draw ak� dimensional vector� v p(� j
� ; � ) that determines the distribution of intermedi-
ate spatio-temporal crowd behaviors. Here,� is a
parametrization of the multinomial distribution (� =
log( � i

� K
)) that captures the covariance among these be-

haviors, while� and� are the mean and covariance of
the normal distribution.

� For each motion wordxn in the sequence

– Choose a behaviorzn v Mult( exp ( � )P
i exp ( � i ) ). zn

is a K -dimensional unit vector wherezk
n = 1

indicates that thekth behavior is selected.

– Choose a low-level motion featurexn v p(xn j
zn ; � ), where� is distribution over the vocabu-
lary of motion words.

In order to perform parameter estimation for our model,
we use a collection of training video sequences and adopted

the variational expectation maximization (EM) algorithm
proposed in [16]. We refer reader to this reference for fur-
ther details on the parameter estimation algorithm.

4. Tracking Framework

In this section we describe implementation details of var-
ious steps involved in our tracking framework.

4.1. Scene Codebook

Given a video of a speci�c scene, we uniformly divide it
along the temporal domain into non-overlappingshort clips.
In our framework, each of these video clips is treated as a
document. For each clip in our dataset, we compute optical
�ow as our low-level features. All moving pixels in each
video sequence are quantized according to a codebook in
the following manner: Each moving pixel has two features
which correspond to its position and its direction of motion
respectively. Position is quantized by dividing a scene into
a grid with cells which are10� 10 pixels in size. The mo-
tion of a moving pixel is quantized into four directions of
motion. Therefore, for a scene which is digitized to a size
of 320� 240the size of the codebook is32 � 24 � 4, and
thus each detected moving pixel is assigned to a word from
the codebook based on rough position and motion direction.

The size of the codebook depends on the granularity
of the spatial and motion direction quantization, a choice
which represents a balance between the descriptive capa-
bility and complexity of the model. We found that increas-
ing the size of the codebook resulted in diminishing returns.
Therefore, for all of our experiments we maintain the quan-
tization described above.

In the next section we describe how we formulate track-
ing in complex scenes by incorporating the high-level in-
formation about a scene, which is captured by estimating
parameters of CTM described previously.

4.2. Formulation

Let the observed measurements ofm objects in the scene
at time instancei be given by
 = f ! 1

i ; ! 2
i ; :::; ! m

i g, and let
the predicted states of the previously observeds objects be
given by� = f � 1

i ; � 2
i ; :::; � m

i g. In the proposed work, the
analysis is performed on a feature space which consists of
a pair of 2-D locations of the centroid of object before and
after transition, and time taken to execute the transition.

For each object observed at time instancei � 1, we obtain
the next tracker position as a weighted mean of the next
observation and the tracker prediction by incorporating the
learned high-level scene dynamics as weights. Speci�cally,
the state of the tracker at time instancei given all previous
tracks is given by:



j = iX
p(x ! k

j
j� ; �; � )! k

i + p(x � k
l
j� ; �; � )� k

l (1)

wherex ! k
j

corresponds to motion word of the displacement
which commences at the location given by the tracker at
i � 1 and the current observation(! k

j ). Similarly, xk
� l

is
the codebook entry (motion word) that corresponds to the
displacement vector from the previous tracker position to
the current tracker prediction(� k

l ).
This approach results in the assignment of larger weights

for tracks which are made up of transitions which are more
likely given the learned crowd behaviors. The �rst term in
equation 1 weights the displacements of the observations
based on the learned crowd behaviors, whereas the second
term weights the displacements predicted by the tracker.
These weights help establish correspondences such that the
probability of an object's track is maximized based on the
typical behavior modalities observed in the scene.

4.3. Experiments and Results

4.3.1 Datasets

In this work our data consists of crowded and complex
video sequences which contain many interactions amongst
agents. We explore different crowd domains, which range
from cluttered time-lapse microscopy videos of cell popu-
lations in vitro to footage of crowded sporting events. In
each of these domains objects move in complex patterns,
such that any one location in the scene may host multiple
modalities of motion direction at different times throughout
the scene.

4.3.2 Tracking Human Crowds

A �rst round of experiments was geared towards assessing
the performance of the proposed crowd model in improving
tracking in the presence of large crowds of humans. The
�rst scene we considered can be seen in Figure 8-a. It con-
sists of a crowded baseball bleachers scene in which fans
move in complex patterns across the frame. By inspect-
ing the top behaviors which are learned from the model,
we observe that fans typically move in bidirectional aisles
which either move up and down the bleachers or laterally
across the aisles. Therefore, most locations in the scene host
different behavior modes throughout different times in the
scene. Unlike models which assume that participants of the
crowd behave in a consistent global manner, here we learn
the complex patterns of motion and incorporate this high-
level information directly into our tracking framework.

A set of trajectories generated by our tracking algorithm
is shown in Figure 8-b. Quantitative analysis of the track-
ing was performed by generating ground-truth trajectories
for 60 fans, which were selected randomly from the set of

(a)

(b)

(c)

(d)

Figure 5. Tracking humans in unstructured crowded scenes. (a) The
learned behavior modes for a crowded student union scene. (b) A sub-
set of the tracks generated by our framework. (c) The learnedbehavior
modes for a tailgating scene. (d) Tracking results.

all moving fans. The ground-truth was generated by manu-
ally tracking the centroid of each selected fan. The average
tracking error obtained using the proposed model was 35
pixels, whereas an average error of 57 pixels was observed
when tracking using a Kalman tracker (Figure 6-a).

The second scene we consider is a crowded student
union. As can be seen in Figure 5-a, there are multiple pat-
terns of behavior observed over time. We observe a collec-
tion of patterns which correspond to students entering and
exiting the building through the same entrance. We also see
multiple modes of behavior in the center of the scene, where
students avoid stepping over the university logo (which is



blurred in the image). It can also be seen that the frame-
work learns the different patterns of behavior observed at
the winding stairwell, in which people ascend and descend
at any given moment throughout the video sequence. A sub-
set of the tracks generated by our framework can also be
seen in Figure 5-b. We manually annotated 50 tracks and
used them to compute mean tracking errors (in pixels) of
the automatic tracking, which was found to be 17 pixels on
average (Figure 6-b).

Another set of experiments in tracking human crowds
was centered around a crowded football tailgating event
which is depicted in Figure 5-c. In this scene we see how the
learned behavior modes correspond to the unmarked lanes
of pedestrian traf�c across the lawn as well as the struc-
tured lanes of vehicle traf�c. The ability to learn multiple
modes of behavior is particularly important in regions of the
scene that typically contain multiple patterns of motion as
opposed to a single global behavior. This is the case within
the lawn area of this scene, where there are no marked paths,
and therefore fans tend to walk in more than one pattern.
The quantitative analysis of the tailgating scene was based
on 80 trajectories which were manually ground-truthed. At
each frame we compare ground-truth centroids with the cur-
rent tracks generated by our framework. Over the 1040
frames we report a mean tracking error of 39 pixels (Fig-
ure 6-c).

4.3.3 Tracking Cell Populations

A second round of experiments focused on automated track-
ing of crowded cell populations in vitro recorded using
phase-contrast time-lapse microscopy. In these experiments
we utilized three video sequences of human MG-63 os-
teosarcoma cells recorded by an 8-bit CCD camera on a
Zeiss IM35 microscope. The sequences last for 43.5 hours
with a frame interval of 15 minutes, corresponding to 180
frames/sequence. The frame dimensions are400� 400pix-
els with a resolution of 3.9� m/pixel at 5:1 magni�cation.

As can be seen in Figure 9-b, cells in these videos move
in complex patterns throughout the scene, such that at any
given location in the scene different behaviors are observed
over time. Further complicating the tracking process is the
large number of cells per video. The cell population in each
of the sequences is in the range of 350-750 cells per frame.
Finally, the appearance of individual cells within video se-
quences contains very little intra-class variation, proving it
dif�cult to rely on appearance as a means of tracking.

Given that each cell population video sequence contains
different motion dynamics, each video is considered to be a
separate scene. Therefore, we learn the probabilistic crowd
model described in Section 3 for each video and perform
tracking in batch mode on the same sequence.

In order to assess the effectiveness of the proposed ap-

proach, we compare tracking results obtained using our
tracking framework with tracks obtained using a Kalman
tracker. We also assess the effectiveness of explicitly
capturing the correlation amongst behaviors by replacing
the logistic normal distribution in our probabilistic crowd
model with a Dirichlet distribution, therefore resembling
the popular Latent Dirichlet Allocation (LDA)[17].
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Figure 7.(a) The mean distances between the manually and the automati-
cally tracked trajectories. (b) The percentages of cells successfully tracked.

In a �rst set of experiments on this dataset our tracking
process was compared to that achieved by a human opera-
tor. This comparison was based on 120 cell trajectories for
which manual tracks are available as groundtruth. For each
cell trajectory we computed the average distance (in pixels)
at each time step between the manually annotated cell lo-
cations and those computed by the algorithm. Figure 7-a
shows the distribution of these distances (means and stan-
dard errors computed on the trajectories analyzed) accord-
ing to time. It can be observed that a slight and progressive
increase in distance occurs as the experiment progresses in
time and probably results from error accumulation. The
�nal mean distance obtained using the proposed method
was 14.67, considerably less than the one obtained using
the Kalman tracker and the LDA-based probabilistic crowd
model. In fact, the mean error is near to the average radius
of cells during mitosis, indicating that the location errors are
small compared to the size of the cells. Figure 7-b displays
the percentages of cells successfully tracked by the algo-
rithm according to time. Although we observed that some-
times the algorithm loses and then recovers a cell, to sim-



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

Track Number

A
vg

. E
rr

or
 (

in
 p

ix
el

s)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Track Number

A
vg

. E
rr

or
 (

in
 p

ix
el

s)

(a) (b)

Kalman Tracker Our Method

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

Track Number

A
vg

. E
rr

or
 (

in
 p

ix
el

s)

(c)

Kalman Tracker Our Method

Kalman Tracker Our Method

Figure 6.Comparison of the tracking error of our method against the Kalman tracker for the baseball sequence (a), crowded studentunion sequence (b),
and the tailgating sequence (c).

(a) (b)
Figure 8.Distribution of low-level motion features of the top four behaviors of a scene (a). The model captures the typical scene dynamics, i.e. aisles of
traf�c and walkways (b). We incorporate high-level scene information to improve tracking.

Table 1.Cell Tracking Accuracy Comparison

Sequence Li et al[18] Our method
A 86.4% 84.2%
B 91.2% 89.0%
C 88.2% 79.1%

plify this evaluation a cell was considered de�nitively “lost”
by the tracking algorithm the �rst time that the distance be-
tween the groundtruth and automatic centroid locations ex-
ceeded a given threshold value (in our experiments we used
30 pixels). As expected, the percentages of lost cells in-
creased with time. However, there is a signi�cant difference
in the �nal percentage of valid tracks between the proposed
tracking framework and the comparison methods. This sig-
ni�cant difference in performance can be attributed to the
way in which the proposed model is capturing both the cor-
relation amongst local motion as well as the multi-modality
of displacements at different locations in the scene. As can

be seen in Figure 7, the probabilistic crowd model is able
to capture the multi-modality of local displacements in the
scene. The top behaviors in the scene cover typical behavior
of cells. Any given location in the scene may be included in
different behaviors, each of which may capture a displace-
ment mode of cells, a task which cannot be accomplished
with crowd models which assume that all participants be-
have in a manner similar to a global crowd behavior.

A possible explanation for these “crowd behavior” pat-
terns that have been learned for the MG-63 osteosarcoma
cells can be found in Wang et al's work [19], in which they
�nd that the character of cell motility is different in Sar-
coma and chondrosarcoma cells. In the former, cells move
over each other, and the direction of motility is not linear as
has been learned in our model. Instead, according to [19] it
appears that this class of cell motility is guided by collagen
�bers in association with vessels.

Finally, for this dataset we compare our cell tracking re-



(a) (b)
Figure 9.(a) The top behaviors learned by the model. Each distribution over behaviors may capture different cell motion modalities for a given location in
the scene. (b) Tracking results for the �rst thirty frames.

sults with the current state-of-the-art [18], a domain-speci�c
tracking method which incorporates cell detection as well
as cell division recognition to perform tracking in this spe-
ci�c domain. As can be seen in Table 1 (where we depict
the percentage of valid tracks for each video in the dataset),
despite the fact that we do not exploit domain-speci�c infor-
mation (i.e cell and mitosis detection), our general approach
is comparable to the best results on this dataset.

5. Conclusion

We have presented a framework for tracking individual
targets in high density unstructured crowded scenes, a class
of crowded scenes where the motion of the crowd at any
given location is multi-modal over time. To this end we
adopted the Correlated Topic Model (CTM) in which each
scene is associated with a set of behavior proportions, where
behaviors represent distributions over low-level motion fea-
tures. Unlike some existing formulations, our model is ca-
pable of capturing both the correlation amongst different
patterns of behavior as well as allowing for the multi-modal
nature of unstructured crowded scenes. In order to test our
approach we performed experiments on a range of unstruc-
tured crowd domains, from cluttered time-lapse microscopy
videos of cell populations in vitro to videos of sporting
events. In each of these domains we found that explicitly
modeling the interrelationships between different behaviors
in the scene allowed us to improve tracking predictions.
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