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Spectrum Bargaining: A Model for Competitive
Sharing of Unlicensed Radio Spectrum

Swastik Brahma, Member, IEEE, and Mainak Chatterjee

Abstract—In this paper, we address the problem of dynamic
channel access by a set of cognitive radio-enabled nodes, where
each node acting in a selfish manner tries to access and use as many
channels as possible, subject to interference constraints. We model
the dynamic channel access problem as a modified Rubinstein–
Ståhl bargaining game. In our model, each node (player) negoti-
ates with the other nodes in the network reduce in a distributed
manner to obtain an agreeable sharing rule of the available chan-
nels such that no two interfering nodes use the same channel.
We solve the bargaining game by finding subgame perfect Nash
equilibrium (SPNE) strategies of the game. First, we consider
finite horizon version of the bargaining game and investigate its
SPNE strategies, which allow each node to maximize its utility
against the other nodes (opponents). We then extend these results
to the infinite horizon bargaining game. Furthermore, we iden-
tify Pareto optimal equilibria of the game, which help enhance
network throughput. We conduct simulations to study how the
“self-gain” maximizing strategy of the players impact systemwide
performance.

Index Terms—Dynamic spectrum access, spectrum sharing,
interference, game theory, bargaining, finite and infinite horizon,
subgame perfect nash equilibrium (SPNE).

I. INTRODUCTION

T RADITIONALLY, radio spectrum management has fol-
lowed a ‘command-and-control’ approach- regulators like

FCC allocate spectrum to specific services under restrictive
licenses. The restrictions specify the technologies to be used
and the services to be provided, thereby constraining the ability
to make use of new technologies and the ability to redeploy the
spectrum to higher valued uses. These limitations have moti-
vated a paradigm shift from static spectrum allocation towards
a more ‘liberalized’ notion of spectrum management in which
secondary users can “borrow” idle spectrum from primary spec-
trum licensees, without causing harmful interference to the
latter- a notion commonly referred to as dynamic spectrum
access (DSA) or open spectrum access [43]. Cognitive radio
[21], empowered by Software Defined Radio (SDR) [42], is
poised to promote the efficient use of spectrum by adopting this
open spectrum approach.
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In DSA systems, spectrum in not statically allocated to the
secondary users (nodes). Each node has to compete for spec-
trum for communication purposes. Furthermore, the spectrum
that a node uses is subject to interference constraints- nodes in
close proximity interfere with each other and cannot use the
same spectrum concurrently, while well separated nodes can
reuse the same channel. Each node therefore has to use chan-
nels that are orthogonal from its interferers. If a node uses
spectrum without coordinating with the others, then it may
cause harmful interference and degrade overall spectrum usage.
Clearly, from the above discussion, it becomes important to
study the competition for spectrum among nodes in an inter-
ference aware context and investigate self-enforcing spectrum
sharing strategies of the nodes.

In this paper, we consider nodes to behave in a selfish man-
ner, i.e., the objective of each node is to maximize its utility
by accessing and using as many channels as possible from the
set of orthogonal channels not being used by any of the pri-
mary incumbents. The nodes in our model, for example, can
correspond to broadcast access points deployed by compet-
ing wireless service providers. By using more channels each
provider may intend to support more customers for maximizing
its revenue. The channels that a node selects is, however, sub-
ject to the following constraint- nodes within the interference
range of each other have to use orthogonal channels to mini-
mize interference. Thus, the nodes will have to agree upon a
sharing rule of the channels among themselves, i.e., each node
will have to decide “how many” and “which” channels to use.
In other words, the channel access problem by a set of self-
ish nodes is inherently a bargaining game, which has not been
reflected in previous works [16], [27].

The fundamental question that we address in this paper is–
how many and which channels should each node access to
maximize its gain. Specifically, we model the problem of agree-
ing upon a sharing rule of the channels among the nodes as
a Rubinstein-Ståhl [31], [36] bargaining game. In our model,
each node “bargains” with the other nodes (opponents) in the
network in a distributed manner regarding its “share” (how
many and which) of the channels. Such distributed bargaining
can be done, for example, using control channels [3]. Notice
that, until the nodes agree upon the sharing rule, none of nodes
can start data communication. Thus, “waiting” for the bargain-
ing outcome also costs the nodes. We consider this cost by
discounting future payoff of the nodes. This discounting rep-
resents the patience of the nodes in waiting for the bargaining
outcome.

We solve the bargaining game by deriving Subgame Perfect
Nash Equilbrium (SPNE) strategies of the players in the game.
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The SPNE strategies that we derive comprise a set of strate-
gies, such that, no player in no subgame can deviate from these
strategies and thereby gain from his deviation. First, we investi-
gate the finite horizon version of the game and identify its SPNE
strategies. We then extend these results to the infinite horizon
bargaining game. We propose computationally efficient algo-
rithms to find the SPNE strategies of both the finite and the
infinite horizon versions of the game. Furthermore, we identify
Pareto optimal equilibria of the game for improving spectrum
utilization. We also conduct simulations to study how the self-
gain maximizing strategy of the players affect system wide
performance.

The proposed spectrum bargaining is fundamentally different
and much more difficult than the conventional Rubinstein-
Ståhl bargaining. This is because of two primary reasons–
(i) spectrum can be spatially reused concurrently; two conflict-
ing players must not use the same channels simultaneously yet
well-separated players can, and, (ii) players can only use whole
channels, not fractional channels. We consider both constraints
while analyzing the spectrum bargaining game.

The rest of the paper is organized as follows. Section II
discusses related research in the area. Section III presents
the system model and formally defines the bargaining game.
Section IV investigates SPNE strategies in the finite horizon
version of the game. These results are extended to the infinite
horizon game in Section V. Section VI evaluates impact of the
self-gain maximizing strategies of the players on overall system
utility via simulations. Finally, Section VII concludes the paper.

II. RELATED RESEARCH

Coexistence of wireless systems that have to thrive by
competing for spectrum has been studied in [11], [16], [19],
[27], [20]. In [11], the authors consider coexistence of systems
thriving on the same band, while we consider competition
for spectrum in the more complicated scenario of an OFDM
system where nodes can use multiple orthogonal channels for
communication purposes. Moreover, the authors in [11] assume
nodes in their model to be homogeneous. However, we study
a heterogeneous environment and allow nodes to compete for
spectrum in a differential manner. In [16], the authors model
the competition among network operators who compete for
spectrum. However, their framework is limited to a scenario
where only two operators exist. In [19], the authors model the
spectrum sharing problem as congestion games. However, they
only consider the scenario where each node uses one channel.
In [27], the authors use game theory to analyze strategies of
cognitive radio nodes for accessing channels. Their solution
approach is based on regret minimization of the nodes and
uses an iterative learning algorithm using which nodes, that
interact in a repeated game, can determine the channels to use.
In contrast, we model the competition for spectrum among
the nodes by considering the fact that each node will try to
maximize its own benefit. Such modeling more aptly reflects
non-cooperative interactions. Moreover, [27] assumes nodes to
be homogeneous, unlike our model.

As far as spectrum trading is concerned, market based sce-
narios have been studied in [8], [9], [13], [34], [39], [23], [24].
In [8], a market in the form of a “bazaar” was introduced where

infrastructure-based wide area wireless services are traded in a
flexible manner and at any time scale. A general framework for
spectrum trading based on auctions is proposed in [9], where
an optimal auction mechanism called the generalized Branco’s
mechanism is introduced. Short-term secondary spectrum trad-
ing is considered in [13] where one seller and multiple buyers
trade in a spectrum market with both guaranteed contracts and
spot transactions. An economic framework was proposed in
[34] where game theory was used for the dynamic spectrum
allocation process and auctions were used for service pricing.
All these works rely on a central entity, policy enforcer, or an
auctioneer. However, in a competitive secondary spectrum mar-
ket, there might not be any such central authority which makes
the proposed bargaining model even more applicable as it is
distributed in nature.

Spectrum sharing in wireless systems with an objective of
maximizing overall system utility has been studied in [5], [6],
[7], [29], [30], [32]. Techniques based on optimizing system
utility primarily correspond to collaborative schemes among
nodes usually deployed by the same wireless service provider.
Buddhikot et al. in [5], [6], propose a spectrum access architec-
ture via a regional spectrum broker. In [7], the authors propose
a local bargaining approach for mobile ad-hoc networks, where
users affected by mobility can form bargaining groups and
adapt their spectrum assignment to approximate a new optimal
assignment, instead of recomputing spectrum assignments for
all users after each change in topology due to mobility. Their
bargaining approach takes as input a previous spectrum assign-
ment, and performs computations to adapt to recent topology
changes. Nodes in their framework bargain to optimize a pre-
defined system utility in contrast to ours where nodes bargain
to maximize individual benefits. The authors in [29] formulate
the problem of channel assignment, based on optimizing system
utility, as a variant of the graph coloring problem by mapping
channels into colors, and assigning them to users (nodes in the
conflict graph of the network). They propose both a centralized
allocation scheme, where a central server calculates an alloca-
tion assignment based on global knowledge, and a distributed
approach, where devices negotiate local channel assignments
towards a global optimization. In [30], the authors propose
using a spectrum server to schedule the transmissions of a group
of links sharing a common spectrum with an objective of opti-
mizing network throughput. They assume that the spectrum
server knows the link gains in the network. Using a linear pro-
gramming approach, the server then finds an optimal schedule
that maximizes the average sum rate subject to a minimum aver-
age rate constraint for each link. To utilize the bandwidth left
unused in cellular systems (primary system), the authors in [32]
propose the design of a secondary system in an overlay mode
over the primary system. The secondary system operates in a
non intrusive manner and does not interact with the primary cel-
lular system. They design a Medium Access Control protocol
that enables inter-operation of the primary-secondary systems.

Spectrum sharing by making nodes transmit at different
power levels for minimizing interference has been studied
in [10], [14], [15], [18], [26]. In [10], the authors consider
power allocation strategies for radios operating in unlicensed
bands. They model radio interaction as a two-player reputation
based repeated game and use genetic algorithms to explore the
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space of possible power allocation strategies. The authors in
[14] design auction mechanisms for allocating power among a
group of spread spectrum users who share the bandwidth with a
licensed user. In these auctions, the spectrum owner charges for
SINR and received power. The work in [15] considers a spec-
trum sharing problem in which each wireless transmitter can
select a single channel from a set of available channels, along
with the transmission power. In their scheme, users exchange
price signals, that indicate the negative effect of interference
at the receivers. Given this set of prices, each transmitter
chooses a channel and power level to maximize its net benefit.
The authors in [18] focus on decentralized power allocation
strategies for sharing spectrum in a multi-user environment,
where each user can communicate using multiple frequency
bands. However, their model is restricted to a scenario where
all users interfere with each other. In [26], the authors consider
adaptive cognitive radio networks and study their convergence
dynamics using Game Theory. In particular, they focus on
distributed power control algorithms and investigate how they
impact network complexity.

III. GAME FORMULATION

We first model the channel access problem as a finite horizon
Rubinstein-Ståhl bargaining game. In this model, the game is
played at most for a fixed number of stages. In Section V we
will relax the finite horizon criteria and extend the concept to
infinite horizon games. Before we begin with the finite horizon
game formulation, let us first describe the system model that we
consider.

A. System Model

We assume that N nodes (or players, denoted as P1, . . . , PN )
in a region are competing for a subset of M separate orthogonal
spectrum bands (denoted as C1, . . . , CM ) not used by primary
incumbents. The nodes, for example, can correspond to IEEE
802.22 base stations accessing spectrum to connect their sub-
scribers units, or cognitive radio based IEEE 802.11 access
points. Each node is equipped with cognitive radio and can
communicate using multiple non-contiguous channels.

We assume that each node can successfully determine the
presence of primary users on a channel and maintains a set of
channels that it can use without affecting the operations of any
primary user. Determination of the presence of primary users
can either be done via sensing [1], [37], or by using the database
recommended by FCC [22]. Interference among the nodes has
been modeled using the pair wise binary matrix model [17].
We use the following notations to represent the two system
parameters:
• Interference constraint: Let I = {In,k |In,k ∈
{0, 1}}N×N , be a N by N matrix, representing the
interference constraint among nodes,

In,k =
{

1 if node n and k conflict;
0 if node n and k do not conflict

(1)

Note that, I is the adjacency matrix representing the con-
flict graph of the network. The problem of constructing

the conflict graph has been extensively studied in litera-
ture, for example in [28], [35], [38], [41], and the refer-
ences therein. The nodes can use techniques proposed in
these earlier works to build the conflict graph.
• Channel throughput: Let C = {Cm : 1 ≤ m ≤ M} be

a M element array where Cm represents channel m.
Thus, C represents the set of available channels. We
consider a static interference environment without con-
sidering the impact of fast-scale channel fading, since all
the nodes are static. Further, we assume that all channels
are homogeneous.

The objective of each node is to acquire the maximum possi-
ble number of channels that are orthogonal from its interferers.
As mentioned earlier, this can essentially be modeled as a
bargaining problem. Thus, after determining the presence of
primary users to form the set of available channels C , we con-
sider that the nodes bargain among themselves to determine
how to share the channels, with each node behaving in a self-
ish manner. If the nodes can agree upon a sharing rule, then
they can use their agreed upon channel shares for communica-
tion purposes. Note that, depending on the primary user activity
behavior, the bargaining model can correspond to a finite or
infinite horizon game. If the primary user behavior changes
relatively slowly, (e.g., a TV station being inactive through-
out the night), the secondary nodes will have a considerably
large amount of time for bargaining at their disposal [2]– in
this case, the game tends toward having an infinite horizon. On
the other hand, if the primary user activity changes on a rela-
tively faster time scale, the secondary nodes will have relatively
lesser time to bargain- in this case, the game tends toward hav-
ing a finite horizon. In this paper, we address both the finite
and infinite horizon versions of the spectrum bargaining game
in Sections IV and V respectively.

B. Some Game Theoretic Definitions

Nash Equilibrium (NE): A NE is a set of strategies, one for
each player, such that no player has an incentive to unilaterally
change his strategy. Players are in equilibrium if no player can
do better by unilaterally changing his or her strategy.

Pareto Optimal: Pareto optimality is a measure of effi-
ciency. An outcome of a game is Pareto optimal if there is no
other outcome that makes every player at least as well off and
at least one player strictly better off. That is, a Pareto optimal
outcome cannot be improved upon without hurting at least one
player.

Backward Induction: Backward induction is an iterative
process for solving finite sequential games. First, one deter-
mines the optimal strategy of the player who makes the last
move of the game. Then, the optimal action of the next-to-last
moving player is determined taking the last player’s action as
given. This process continues backwards in time until all play-
ers’ actions have been determined. Effectively, one determines
the Nash equilibrium of each subgame of the original game.

Subgame Perfect Nash Equilibrium (SPNE): A SPNE is
an equilibrium such that players’ strategies constitute a Nash
equilibrium in every subgame of the original game. It may be
found by backward induction.



260 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

C. Finite Horizon Game Formulation

Given the conflict graph of a network, we now model the
problem of channel access by the nodes (players) as a finite
horizon bargaining game. In this game, N players (denoted as
P1, . . . , PN ) must decide how to share the M available channels
(denoted as C1, . . . , CM ) among them. The bargaining game
proceeds in “time periods” in which one player proposes a shar-
ing rule to the other players. Each of the other players can then
either ‘accept’ or ‘reject’ the shares they have been respectively
offered. The bargaining continues until a sharing rule has been
accepted by all players or until the maximum number of allow-
able periods, T (numbered 0, . . . , T − 1), has been reached
(finite horizon game).

We consider that players make their offer in a round robin
fashion. Specifically, Pi makes an offer in the following
periods,{

k N + (i − 1) i ≤ T, k ∈ [0, �(T − i)/N�]
None i > T

(2)

where, k is an integer. The set of players receiving the offer of
Pi is denoted as P−i = {Pj : 1 ≤ j ≤ N , j �= i}. When mak-
ing an offer in period t , Pi ’s strategy is denoted by (xt

i , xt
−i ),

where xt
i ⊂ C is the set of channels demanded by Pi in

period t . Also, xt
−i = {xt

j ⊂ C |1 ≤ j ≤ N , j �= i} where xt
j is

the set of channels offered to Pj ∈ P−i in period t . Further,
each player Pj ∈ P−i chooses some function f t

j : [0, |C |]→
{‘accept’,‘reject’} in period t , i.e, each Pj ∈ P−i chooses
whether to accept or reject the offer depending on the number
of channels he received, |xt

j |.
To illustrate the game, let us consider that N ≤ T 1. In peri-

ods k N (for k ∈ [0, �(T − 1)/N�]), player 1 (P1) proposes a
sharing rule (xk N

1 , xk N
−1 ) to all players (including himself). After

inspecting the offer, each player Pj ∈ P−1 can either accept
or reject the respective shares they have been offered. If all
players in P−1 accept their respective shares, the game ends.
However, if at least one player in P−1 rejects the share he has
been offered by P1 in period k N , then in period k N + 1 (for
k ∈ [0, �(T − 2)/N�]), player P2 can propose a sharing rule
(xk N+1

2 , xk N+1
−2 ) that players in P−2 can accept or reject. If all

players in P−2 accept their respective shares, the game ends.
And so on, until an offer made by Pi is accepted by all players
in P−i or until the maximum number of allowable periods, T ,
has been reached. The game outlined above is clearly a finite
horizon game of complete and perfect information.

Payoff: The outcome of the game can correspond to two
different cases- all players agree upon a sharing rule of the
channels within T periods or they fail to do so within the allo-
cated time. Thus, to define the payoff of the players we need to
study the following two cases.
• An agreeable sharing rule is obtained within T periods: If
{xt

i |1 ≤ i ≤ N } is accepted in period t , then the payoff of
Pi is Ri = δt

i |xt
i |, where δi ∈ [0, 1] is the discount factor

of Pi (note, δt
i is δi raised to the power of t). The discount

1Assuming N ≤ T is for illustrating the game now. Our analysis holds for
all N and T

factor represents the delay cost in achieving the bargain-
ing outcome. Until the players agree upon a sharing rule,
none of the players can start communication. Thus, a
player values a channel more today than he values the
same channel in a future period. This decrease in value of
the channels represents the dissatisfaction of the players
in being unable to start communication until the agree-
able sharing rule is achieved. Also, note that, as the time
delay between two bargaining periods decreases, the play-
ers become more patient, i.e, the discount factor of the
players increases.
• An agreeable sharing rule is not obtained within T peri-

ods: This corresponds to the disagreement outcome of the
game. Clearly, if the players are unable to agree upon a
sharing rule, the payoff of each player would be zero.

D. Equilibrium Analysis

We will represent the strategy profile in period t as
{(xt

i , xt
−i ), f t

−i }, where (xt
i , xt
−i ) is the the sharing rule as pro-

posed by Pi and f t
−i = { f t

j |1 ≤ j ≤ N , j �= i}, where f t
j is the

function used by Pj ∈ P−i . If f t
j (|xt

j |) = ‘accept’ ∀ j �= i , then
each player gets his respective share as proposed in (xt

i , xt
−i ).

Otherwise all players get zero channels.
The strategy profile {(xT−1

i , xT−1
−i ), f T−1

−i } is a NE in period

T − 1 (last period) if f T−1
j (|xT−1

j |) = ‘accept’ ∀ j �= i and

there is no set |yT−1
j | such that f T−1

j (|yT−1
j |) = ‘accept’ ∀ j �=

i that leads to the existence of a set |yT−1
i | > |xT−1

i |. Here,
Pi does not have an incentive to unilaterally increase his
demand, because that would be rejected by some Pj ∈ P−i .
Also, no Pj ∈ P−i would want to reject the share offered to
him by Pi , since then he would get zero channels.

However, note that all NE’s in the last period of the game
need not be Pareto optimal. Our solution approach identifies
and uses those NE’s that are Pareto optimal to find the SPNE
strategy of the players in the first period of the game using
backward induction.

In the next section, we will study the SPNE of the finite
horizon spectrum bargaining game. We will then extend these
results for the infinite horizon version of the game in Section V.

IV. FINITE HORIZON BARGAINING GAME

We will now investigate the SPNE of the finite horizon
bargaining game (of T periods), where each player bar-
gains with the other players to agree upon a sharing rule
of the channels. Finding SPNE involves two main steps–
(1) finding equilibrium of the last period of the game, and,
(2) finding equilibrium of the previous periods using backward
induction.

A. Finding Last Period Equilibrium Strategies of the Players

According to the definition of NE in Section III-D, the fol-
lowing lemma presents the NE strategy for the players in the
last stage of the game.
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LEMMA 1. Pi offers a sharing rule (xT−1
i , xT−1

−i ), such that

|xT−1
i | is maximized over all possible interference free alloca-

tions that assign at least 1 channel to all players in P−i , and
the players in P−i accept all offers that give them at least 1
channel.

Proof: This is a NE because, no Pj ∈ P−i will have an
incentive to reject their respective shares, since doing so will
get them zero channels. Also, since Pi ’s share has been maxi-
mized, Pi will not have an incentive to demand a larger share
of channels. �

Let us now see when Pi ’s share of channels gets maxi-
mized. Let us consider players in P−i who are one hop away
from Pi , i.e., neighbors of Pi in the conflict graph. Let they be
denoted by P Nbr

−i , where P Nbr
−i = {Pj |Pj ∈ P−i and Ii, j = 1}.

Pi will obviously demand all channels not allocated to any
of his neighbors. Thus, we can write Pi ’s share of channels,
xT−1

i , as,

|xT−1
i | = M − |

⋃
Pj∈P Nbr−i

xT−1
j | (3)

Clearly, |xT−1
i | will get maximized when | ∪Pj∈P Nbr−i

xT−1
j | has

its minimum value over all possible interference free allocations
given that each player in P Nbr

−i has to be given at least one non-
interfering channel. In other words, Pi ’s share of channels is
maximized in all those sharing rules where the number of dis-
tinct channels allocated to the players in P Nbr

−i taken together
has the least value over all possible allocations.

Let P Nbr
−i = P−i\P Nbr

−i denote the players in P−i who are
more than one hop away from Pi . Since spectrum can be reused
concurrently by players more than one hop away from each
other, the channel allocation of the players in P Nbr

−i do not

directly influence xT−1
i . All that is required for Pi is to offer

the players in P Nbr
−i at least one non-interfering channel so that

his offer is accepted.
From the above discussion, it can be said that Pi ’s strategy,

(xT−1
i , xT−1

−i ), corresponds to a NE when the following two
conditions hold,

1) |⋃Pj∈P Nbr−i
xT−1

j | is minimized over all possible interfer-

ence free allocations, and,
2) Each player in P−i gets at least one non-interfering chan-

nel. This condition is to ensure that the sharing rule
offered by Pi is accepted, otherwise Pi ’s payoff will
become zero.

Notice that there can be several NE strategy profiles,
(xT−1

i , xT−1
−i ), for Pi that maximizes |xT−1

i |. However, not
all of those will be Pareto optimal. It may be possible to
improve the share of a player, xT−1

j ∈ xT−1
−i without hurting

any xT−1
k , k ∈ [1, N ] and k �= j . We need to find those NE’s

that are Pareto efficient to maximize spectrum utilization.
Algorithm 1 finds the Pareto efficient NE strategy

(xT−1
i , xT−1

−i ) of the player Pi making the offer in the last
period of the game. The algorithm does three primary tasks.

1) Find the last offerer: First we need to find the player, Pi ,
who will make the offer in the last period. Algorithm 2
does this. It takes as input N and T and returns the ID of
the player making the last offer.

Algorithm 1. Find Last Stage SPNE

Require: No. of Players, N ; Interference Constraint, I ; Set of
Available Channels, C ; Number of Periods, T

1: i ← findLastOfferer(N ,T )
2: Sort the players in P Nbr

−i in non-increasing order according
to their degree in gNbr

−i .
3: for all Pj ∈ P Nbr

−i do
4: xT−1

j = {Cm |Cm /∈⋃
I j,q=1 xT−1

q and Ck ∈⋃
I j,q=1

xT−1
q ∀k < m}

5: end for
6: xT−1

i ← {C\⋃Pj∈P Nbr−i
xT−1

j }
7: Sort the players in P Nbr

−i in non-increasing order according
to their degree in g−i .

8: for all Pj ∈ P Nbr
−i do

9: xT−1
j = {Cm |Cm /∈⋃

I j,q=1 xT−1
q and Ck ∈⋃

I j,q=1

xT−1
q ∀k < m}

10: end for
11: while true do
12: assigned← false
13: for all Pj ∈ P−i do
14: if ∃Cm : Cm /∈⋃

I j,q=1 xT−1
q and Ck ∈⋃

I j,q=1 xT−1
q

∀k < m then
15: xT−1

j = {xT−1
j

⋃
Cm}

16: assigned← true
17 end if
18: end for
19: if !assigned then
20: break
21: end if
22: end while
23: Return (xT−1

i , xT−1
−i )

Algorithm 2. findLastOfferer(N ,T )

Require: Number of players, N ; Number of Periods, T ≥ 1
1: if T ≤ N then
2: i ← T
3: else
4: if mod(T, N ) == 0 then
5: i ← N
6: else
7: i ← mod(T, N )

8: end if
9: end if

10: Return i

2) Find equilibrium strategy of Pi : In order to find Pareto
optimal NE strategy (xT−1

i , xT−1
−i ) of Pi , where |xT−1

i |
is maximized, our algorithm minimizes | ∪Pj∈P Nbr−i

xT−1
j |

such that each Pj ∈ P−i receives at least one channel and
no xT−1

j ∈ xT−1
−i can be improved without hurting any

xT−1
k , k ∈ [1, N ] and k �= j .
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First we will describe how the algorithm finds a
NE (xT−1

i , xT−1
−i ) that need not be Pareto efficient.

Minimizing |⋃Pj∈P Nbr−i
xT−1

j | is equivalent to the prob-

lem of coloring the subgraph induced by the players in
P Nbr
−i with the minimum number of colors. We will use

degree ordered graph coloring for this purpose. Let the
subgraph of the conflict graph induced by the players
in P Nbr

−i be gNbr
−i (need not be connected) and the sub-

graph induced by the players in P−i be g−i . gNbr
−i is also a

subgraph of g−i . To maximize |xT−1
i |, gNbr

−i has to be col-
ored with the least possible number of colors. Note that
this is different from coloring g−i , because a minimum
color assignment of g−i does not necessarily minimize
the color assignment of gNbr

−i .
In line 2, the algorithm sorts the players in P Nbr

−i in non-
increasing order based on their degree in gNbr

−i . In lines
3 to 5, the algorithm considers each player Pj ∈ P Nbr

−i in
non-increasing order of their degree, and assigns Pj the
first channel in C that has not been assigned to any of
Pj ’s neighbors. This process essentially intends to min-
imize |⋃Pj∈P Nbr−i

xT−1
j |. After the for loop in lines 3 to

5 ends, we can thus assign Pi his maximizing share of
M − |⋃Pj∈P Nbr−i

xT−1
j | channels. This is done is line 6,

which assigns,

xT−1
i = {C\

⋃
Pj∈P Nbr−i

xT−1
j } (4)

Next, we are left with assigning a single channel to each
player in P Nbr

−i to find Pi ’s NE strategy (xT−1
i , xT−1

−i ) that
need not be Pareto optimal. To do this, the algorithm first
sorts the players in P Nbr

−i in non-increasing order accord-
ing to their degree in g−i . Then in lines 8 to 10, each
player Pj ∈ P Nbr

−i is considered in non-increasing order
of their degree and assigned a channel that has not been
assigned to any of Pj ’s neighbors.
(xT−1

i , xT−1
−i ) obtained after the for loop in lines 8 to 10

ends is a NE strategy2 for Pi even though it may not be
Pareto optimal. Since each Pj ∈ P−i receives only one
channel it may be possible to improve the share of some
players in P−i without decreasing the share of any other
player. Notice that the share of Pi cannot possibly be
improved further since it has already been optimized.

3) Find Pareto optimal NE strategy of Pi : Improvement
of Pi ’s NE strategy (xT−1

i , xT−1
−i ) obtained so far to get

a Pareto optimal NE strategy is called Pareto improve-
ment. This Pareto improvement is done by the while
loop in lines 11 through 22. At each iteration of the
while loop, the algorithm checks each player Pj ∈ P−i

to see if a channel can be added to xT−1
j . The while

loop iterates till no more channels can be assigned to
any player in P−i . Clearly, after the while loop termi-
nates, (xT−1

i , xT−1
−i ) produced will correspond to a Pareto

2|xT−1
i | has been maximized, and all players in P−i receives a channel each

– so no Pj ∈ P−i has an incentive to reject his share and also Pi does not have
an incentive to demand more channels

optimal NE strategy of Pi . Also note that the Pareto
improvements are done by trying to assign a single chan-
nel to a player Pj ∈ P−i at a time, instead of assigning all
C\{{⋃I j,q=1 xT−1

q }⋃ xT−1
j } channels to Pj at the same

time. This has been done to improve fairness.

B. Finding Equilibrium of the Previous Periods Using
Backward Induction

Let Pi be the offerer in period t and Pl (l �= i) be the offerer
in period t + 1. Given the SPNE strategy of Pl in period t + 1,
SPNE strategy of Pi in period t can be found based on the fol-
lowing fact- if a player Pj ∈ P−i gets |xt+1

j | channels in period
t + 1, then in period t , Pj will accept any offer that gives him
greater than equal to �δ j |xt+1

j |� channels. This is because xt+1
j

channels in period t + 1 is worth only δ j |xt+1
j | in period t to

Pj . Thus Pj can be “satisfied” with only δ j |xt+1
j | channels in

period t . However, since a player cannot get fractional channels,
hence �δ j |xt+1

j |� channels has to be offered to Pj in period t .
Formally, the following theorem presents the SPNE strategy in
period t .

THEOREM 1. The SPNE strategy in period t is comprised
of the following.
• SPNE strategy of Pi : For each Pj ∈ P Nbr

−i , Pi

chooses a set of channels c j ⊂ xt+1
j such that |c j | ≤

(|xt+1
j | − �δ j |xt+1

j |�) and for Cs ∈⋃
Pj∈P Nbr−i

c j it holds

that Cs /∈⋃
Pj∈P Nbr−i

x t+1
j \c j ,∀Cs ∈⋃

Pj∈P Nbr−i
c j . Also,

|⋃Pj∈P Nbr−i
c j | should be the largest such set possible

so that xt
i = {xt+1

i

⋃{⋃Pj∈P Nbr−i
c j }} is maximized. Each

Pj ∈ P Nbr
−i is offered the set of channels xt

j = xt+1
j \c j . In

other words, Pi offers at least �δ j |xt+1
j |� channels to each

Pj ∈ P Nbr
−i , taking at most |xt+1

j | − �δ j |xt+1
j |� channels

from each Pj ∈ P Nbr
−i such that xt

i is maximized over all
possible interference free allocations that allows Pi to
take at most |xt+1

j | − �δ j |xt+1
j |� from each Pj ∈ P Nbr

−i .
• SPNE strategy of Pj ∈ P−i : Each Pj ∈ P−i accepts all

offers in which they get at least �δ j |xt+1
j |� channels.

Proof: Clearly, no player will have an incentive to unilat-
erally deviate from his strategy. If Pi makes a larger demand of
channels than xt

i defined above, then some Pj ∈ P Nbr
−i has to

be given a smaller share of channels than �δ j |xt+1
j |� in period

t , and thus Pi ’s offer will be rejected. If rejected, in no subse-
quent period can Pi hope to get a share of channels which in
period t is worth more than |xt

i | 3. Also, no player Pj ∈ P−i in
period t can hope to get a share of channels in any subsequent
period which in period t is worth more than �δ j |xt+1

j |�. Thus,
the above mentioned strategy of the players comprises a SPNE
in period t . In other words, no player can deviate from his above
mentioned strategy in period t and subsequently gain from his
deviation in any sub-game starting from period t.

3Recall that if a player Pj , j ∈ [1, N ] gets the set of channels xt+2
j in period

t + 2, then in period t it is worth only δ2
j |xt+2

j | to Pj .
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Algorithm 3. Find SPNE by backward induction

Require: No. of Players, N ; Interference Constraint, I ; Set of
Available Channels, C ; Number of Periods, T

1: (xT−1
l , xT−1

−l )← Find Last Stage SPNE(N ,I ,C ,T )
2: for t = T − 2 to 0 do
3: if l = 1 then
4: i ← N
5: else
6: i ← l − 1
7: end if
8: P̂ Nbr

−i ← {φ}
9: for all Pj ∈ P Nbr

−i do
10: s ← |xt+1

j | − �δ j |xt+1
j |�

11: if s > 0 then
12: Q j ← Ps(xt+1

j )\Ps−1(xt+1
j )

13: P̂ Nbr
−i ← P̂ Nbr

−i

⋃
Pj

14: end if
15: end for
16: if P̂ Nbr

−i is null then
17: xt

i ← xt+1
i

18: xt
j ← xt+1

j ,∀Pj ∈ P−i

19: l ← i
20: continue
21: else
22: Q ←∏N

j=1 Q j : Pj ∈ P̂ Nbr
−i

23: end if
24: for r = 1 to r = |Q| do
25: index ← 1
26: S← {⋃Pj∈P Nbr−i \P̂ Nbr−i

x t+1
j }

27: for all j = 1 to j = N : Pj ∈ P̂ Nbr
−i do

28: s ← |xt+1
j | − �δ j |xt+1

j |�
29: cr

j ←index+s−1
index qr {Elements index to index+s−1

of set qr }
30: S← S

⋃{xt+1
j \cr

j \}
31: index ← index + s
32: end for
33: profit(qr )← {qr\S}
34: end for
35: Select qm ∈ Q : |profit(qm)| = maxqr∈Q;1≤r≤|Q|

(|profit(qr )|)
36: xt

i ← xt+1
i

⋃
profit(qm)

37: xt
j ← xt+1

j \profit(qm),∀Pj ∈ P̂ Nbr
−i

38: xt
j ← xt+1

j ,∀Pj ∈ P−i\P̂ Nbr
−i

39: while true do
40: assigned← false
41: for all Pj ∈ P−i do
42: if ∃Cm ∈ C : Cm /∈⋃

I j,q=1 xq and Ck ∈⋃
I j,q=1 xq

∀k < m then
43: xt

j = {xt
j

⋃
Cm}

44: assigned← true
45: end if
46: end for
47: if !assigned then
48: break
49: end if

50: end while
51: l ← i
52: end for
53: Return (x0

1 , x0
−1)

We now show the existence of the SPNE sharing rule
(xt

i , xt
−i ) in period t . Consider first the set of channels xt

j

offered to Pj ∈ P Nbr−i . Note, that xt
j ⊂ xt+1

j . Therefore, xt
j

exists. Next, note that at equilibrium, xt
i = C\⋃Pj∈P Nbr−i

x t
j .

Therefore, since xt
j exists ∀Pj ∈ P Nbr

−i , the set xt
i exists. �

Algorithm 3 finds the SPNE strategy of the offerer Pi , i ∈
[1, N ] in period t given the equilibrium strategy of the offerer
Pl , l ∈ [1, N ], l �= i in period t + 1 to finally find the SPNE
strategy (x0

1 , x0
−1) of P1 in the first period of the game. The

algorithm first invokes Algorithm 1 to find the equilibrium strat-
egy, (xT−1

l , xT−1
−l ), of offerer Pl in period T − 1 (last period)

and works in iterations of decreasing period number, using
backward induction to find the SPNE strategy of the offerer
in the respective period at each iteration. The algorithm finally
outputs the SPNE strategy (x0

1 , x0
−1) of offerer P1 in the first

period of the game. As discussed earlier, this is such a strat-
egy that no Pj ∈ P−1 can gain in any sub-game by rejecting his
respective share in x0

−1. Also P1’s share, x0
1 , is maximized so

that P1 does not have an incentive to demand a larger share of
channels. Let us now delve into the details of Algorithm 3. We
will explain how the algorithm finds the equilibrium strategy
(xt

i , xt
−i ) of offerer Pi in period t given the equilibrium strategy

(xt+1
l , xt+1

−l ) of offerer Pl (l �= i) in period t + 1. Algorithm 3
does the following tasks:

1) Find offerer Pi in period t: First the algorithm finds the
offerer Pi in period t . This is done in lines 3 to 7.

2) Find SPNE strategy for Pi in period t : Pi ’s SPNE strat-
egy in period t will correspond to Pi taking the maximum
possible number of channels from his neighbors in order
to maximize his share of channels in period t . In order
to maximize the number of channels that Pi can acquire
from his neighbors in P Nbr

−i , Pi will have to consider
all interference free allocations that allow him to take at
most |xt+1

j | − �δ j |xt+1
j |� channels from Pj ∈ P Nbr

−i and
use the one that allows Pi to take the maximum number
of channels from his neighbors. Steps 8–38 basically does
this. Let us look at these steps in more detail.
Note that, Pi can potentially take channels only from
those Pj ∈ P Nbr

−i for whom |xt+1
j | − �δ j |xt+1

j |� > 0. Let

P̂ Nbr
−i ⊂ P Nbr

−i be the set of neighbors of Pi satisfying this
criteria. The for loop in lines 9 to 15 finds the set P̂ Nbr

−i

and also generates the set Q j for each Pj ∈ P̂ Nbr
−i , where

Q j (defined as Ps(xt+1
j )\Ps−1(xt+1

j ))4 is the set of all

4Here, s denotes the number of channels that can be taken by Pi from
Pj ∈ P Nbr−i (which is computed in Line 10). Ps (xt+1

j ) and Ps−1(xt+1
j ) denote

the set of all subsets of xt+1
j of cardinality less than equal to s and s − 1, respec-

tively. Note, this implies that Ps (xt+1
j )\Ps−1(xt+1

j ) is the set of all subsets of

xt+1
j of cardinality s (which is computed in Line 12).
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subsets of xt+1
j with cardinality |xt+1

j | − �δ j |xt+1
j |�. Note

that, it is possible that the set P̂ Nbr
−i is null. In this case

Pi cannot take channels from any of his neighbors. Thus,
the SPNE strategy for Pi will be to demand the set of
channels, xt

i = xt+1
i , and offer each Pj ∈ P−i the set of

channels xt
j = xt+1

j . The case of P̂ Nbr
−i being null is taken

care of in lines 16 to 20 at the end of which the algorithm
continues onto the next iteration to find the strategy of the
offerer in period t − 1.
For the case when P̂ Nbr

−i is not null, we define set Q as
the cartesian product of all Q j for Pj ∈ P̂ Nbr

−i . Thus, ele-
ment qr ∈ Q, r ∈ [1, |Q|], is a set of channels that Pi

can acquire from his neighbors in P̂ Nbr
−i taken together,

taking |xt+1
j | − �δ j |xt+1

j |� channels from neighbor Pj ∈
P̂ Nbr
−i . Set Q has all such combination of channels that

Pi can take from his neighbors in P̂ Nbr
−i . Notice that

in line 22, the cartesian product of all Q j for Pj ∈
P̂ Nbr
−i considers the Q j ’s in ascending order of their sub-

scripts. According to our definition of Q and rules of
cartesian product, if Pj is the lowest numbered player
in P̂ Nbr

−i
5, then the first |xt+1

j | − �δ j |xt+1
j |� channels of

qr ∈ Q belong to Pj ∈ P̂ Nbr
−i . Likewise, if Pk is the

second lowest numbered player in P̂ Nbr
−i then the next

|xt+1
k | − �δk |xt+1

k |� channels belong to Pk ∈ P̂ Nbr
−i . And

so on. Let cr
j ⊂ qr be the set of channels belonging to

Pj ∈ P̂ Nbr
−i . Notice that Pi can use a channel Ck ∈ qr , iff

Ck /∈ {⋃Pj∈P̂ Nbr−i
{xt+1

j \cr
j }}

⋃{⋃Pj∈P Nbr−i \P̂ Nbr−i
x t+1

j }.
In other words, Pi can use a channel Ck ∈ qr if and only if
no Pj ∈ P̂ Nbr

−i has Ck after the set of channels cr
j has been

taken from Pj and neither does any Pj ∈ P Nbr
−i \P̂ Nbr

−i
have the channel Ck . Let profit(qr ) ⊂ qr be the set of
channels that Pi can use from among the channels in qr .
Thus,

profit(qr ) = qr\{{
⋃

Pj∈P̂ Nbr−i

{xt+1
j \cr

j }}
⋃
{
⋃

Pj∈P Nbr−i \P̂ Nbr−i

x t+1
j }} (5)

where, cr
j ⊂ qr is the set of channels belonging to Pj ∈

P̂ Nbr
−i . The for loop in lines 24 to 34 finds the set

profit(qr ) ⊂ qr for qr ∈ Q,∀r ∈ [1, |Q|]. Trying to max-
imize the number of channels Pi can acquire from his
neighbors, Pi will choose set qm ∈ Q, m ∈ [1, |Q|] such
that,

|profit(qm)| = maxqr∈Q;1≤r≤|Q|(|profit(qr )|) (6)

and take the set of channels profit(qm) from his neighbors.
Thus, in period t , Pi ’s share of channels will be (line 36),

xt
i ← xt+1

i

⋃
profit(qm) (7)

5Let Q1 = {{C1, C2}, {C3, C4}} and Q2 = {{C3, C5}, {C6, C7}}. Then
Q=Q1 × Q2 = {{C1, C2, C3, C5}, {C1, C2, C6, C7}, {C3, C4, C3, C5}, {C3,

C4, C6, C7}}. For any q ∈ Q, the first two elements of q belong to Q1 and the
next two elements belong to Q2. Also we define Q to be Q1 × Q2 and not
Q2 × Q1

Also, clearly in period t , each Pj ∈ P̂ Nbr
−i will be left with

the set of channels {xt+1
j \profit(qm)}. Since each Pj ∈

P̂ Nbr
−i will have at least �δ j |xt+1

j |� channels6 in period t ,
no Pj will have an incentive to reject his share of (line
37),

xt
j ← xt+1

j \profit(qm), ∀Pj ∈ P̂ Nbr
−i (8)

All other players, i.e., Pj ∈ P−i\P̂ Nbr
−i

7, can have the
same share of channels in period t as they had in period
t + 1, and thus no Pj will not have an incentive to reject
their share of (line 38),

xt
j ← xt+1

j ; ∀Pj ∈ P−i\P̂ Nbr−i (9)

The strategy (xt
i , xt−i ) obtained for Pi is a SPNE strat-

egy for Pi in period t . Clearly, no Pj ∈ P−i can gain
in any sub-game (play after period t) by rejecting their
respective shares in xt

−i . Also, Pi cannot make a “suc-
cessful” demand of a larger share of channels than xt

i ,
since the number of channels that Pi can take from his
neighbors has been optimized over all possible inter-
ference free allocations that allows Pi to take at most
|xt+1

j | − �δ j |xt+1
j |� channels from Pj ∈ P Nbr

−i . However,
(xt

i , xt
−i ) strategy for Pi obtained so far may not be Pareto

optimal. It may be possible to improve the share of some
players in P−i without decreasing the share of any player.
We deal with this next.

3) Find Pareto optimal SPNE strategy for Pi : Pareto
improvement of Pi ’s SPNE strategy, (xt

i , xt
−i ), obtained

so far to obtain a Pareto optimal strategy for Pi is done
by the while loop in steps 39 through 50. At each itera-
tion of the while loop, the algorithm checks each player
Pj ∈ P−i to see if a channel can be added to xt

j . The while
loop iterates till no more channels can be assigned to any
player in P−i . Clearly, after the while loop terminates,
(xt

i , xt
−i ) produced will correspond to a Pareto optimal

SPNE strategy for Pi in period t .

When Algorithm 3 terminates, it finds a SPNE strategy,
(x0

1 , x0
−1), for P1 in the first period, such that P1 cannot make

a larger demand of channels than x0
1 that will be accepted by

all players in P−1. If rejected, P1 cannot hope to get a share of
channels in any subsequent period which in period 0 is worth
more than |x0

1 |. Also, no player in P−1 can hope to get a share
of channels in any subsequent period which in period 0 is worth
more than his respective share in x0

−1. Thus, the players in P−1

does not have an incentive to reject their share in x0
−1. Formally,

the correctness of Algorithm 3 in finding a SPNE can be proved
by showing that the following invariant is true for all iterations–
“At iteration t , (xt

i , xt
−i ) is the SPNE of period t”. This can

be shown as follows. Given the SPNE (xt+1
i , xt+1

−i ) of period

6qr ∈ Q has been computed taking |xt+1
j | − �δ j |xt+1

j |� from Pj ∈ P̂ Nbr−i .

Thus, each Pj ∈ P̂ Nbr−i will have at least �δ j |xt+1
j |� channels in the share

offered to them in period t .
7Note that this includes neighbors of Pi from whom Pi could not take any

channels (P Nbr−i \P̂ Nbr−i ), as well as players who are more than a hop away from

Pi (P Nbr−i )
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Algorithm 4. Find SPNE strategy of offerer Pi in period t

1: S← {φ}
2: for all Cm ∈ C : Cm /∈ ∪Pj∈P Nbr−i \P̂ Nbr−i

x t+1
j do

3: s ←∑
Pj∈P̂ Nbr−i

|Cm ∩ xt+1
j |

4: if s > 0 then
5: S← S ∪ Cs

m
6: end if
7: end for
8: Sort the channels in S in non-decreasing order according to

their superscripts in S.
9: Mark all Pj ∈ P̂ Nbr

−i as available.

10: r j ← |xt+1
j | − �δ j |xt+1

j |� ∀Pj ∈ P̂ Nbr
−i

11: xt
j ← {xt+1

j } ∀ j ∈ [1, N ]
12: for all Cm ∈ S do
13: if all Pj ∈ P̂ Nbr

−i for which |xt
j ∩ Cm | = 1 is marked

available then
14: r j ← r j − 1 ∀Pj ∈ P̂ Nbr

−i : |xt
j ∩ Cm | = 1

15: xt
j ← xt

j\Cm ∀Pj ∈ P̂ Nbr
−i : |xt

j ∩ Cm | = 1
16: xt

i ← xt
i ∪ Cm

17: Mark all Pj ∈ P̂ Nbr
−i as unavailable for which r j = 0.

18: end if
19: end for

t + 1, iteration t finds the channel share (xt
i , xt
−i ), such that, xt

i
has the maximum share of channels that the offerer Pi can keep
while offering at least �δ j |xt+1

j |� channels to every Pj ∈ P−i .
Therefore, based on Theorem 1, (xt

i , xt
−i ) is the SPNE of period

t of the game, implying that the invariant is preserved. When
the iterations terminate at t = 0, (x0

i , x0−i ) is the SPNE spec-
trum share at period 0 of the game, which, by definition, is the
SPNE share of the spectrum bargaining game.

1) A more efficient implementation: Though Algorithm 3
lays down the basic idea of finding SPNE strategies of the spec-
trum bargaining game using backward induction, it checks all
combinations of channels that allow an offerer Pi in period t to
take |xt+1

j | − �δ j |xt+1
j |� channels from neighbor Pj ∈ P̂ Nbr−i .

To do away with checking all such combinations, Algorithm 4
presents a more computationally efficient procedure for finding
the SPNE strategy of offerer Pi in period t (that need not be
Pareto optimal).

The critical task is to find the maximum set of channels
that offerer Pi can acquire in period t . Recall that, Pi can
potentially take channels only from those Pj ∈ P Nbr

−i for whom

|xt+1
j | − �δ j |xt+1

j |� > 0 (denoted as P̂ Nbr
−i ). Keeping this in

mind, Algorithm 4 finds the maximum set of channels that Pi

can take from this neighbors. The basic idea of the algorithm
is to sort the channels that the players in P̂ Nbr

−i has (in period
t + 1) in ascending order based on the number of players that
possess each channel. The algorithm then considers taking each
channel in this ascending order, ensuring that no more than
|xt+1

j | − �δ j |xt+1
j |� channels is taken from each Pj ∈ P̂ Nbr−i .

Notice that the strategy (xt
i , xt
−i ) found by Algorithm 4 for

offerer Pi in period t need not yield a Pareto optimal equilib-
rium. It may be possible to improve the share of some players in

Fig. 1. Pareto optimal SPNE of the respective offerer in different periods.

P−i without decreasing the share of any player. The Pareto opti-
mal SPNE strategy of Pi can be found by a while loop similar
to the one in lines 39 to 50 of Algorithm 3.

It can be easily verified that the worst case complexity of
finding the SPNE strategy of offerer Pi in period t is O(M2 D),
where D is the highest degree of a node in the conflict graph.

C. An Illustrative Example

Figure 1 shows an example of how to find the SPNE strategy
(x0

1 , x0
−1) of P1 in the first period of the game. We consider a

network of 6 nodes. The graphs in Figure 1 depict the conflict
graph of the network. The number of channels available, M ,
has been assumed to be 5. Each node has a discount factor of
0.5. The game is played for 6 periods. The channels assigned to
the nodes in each period has been shown in brackets beside the
node.

Figure 1(a) shows the pareto optimal NE strategy of P6 in
the last period of the game as obtained by using Algorithm
1. The offerer in this period is P6. First, a NE strategy of P6
in the last stage (which need not be pareto optimal) is found
using lines 2 to 10 of the algorithm. In lines 2 to 6, P6 col-
ors his neighbors (P2 and P3) with the least possible number
of colors (channels) and keeps rest of the channels for himself
(thereby maximizing his share). In lines 7 to 10, the players in
(P Nbr
−6 ) (i.e, P1, P4 and P5) are given a channel each by graph

coloring them. This is done by considering P1, P4 and P5 in
non-increasing order of their degree in the subgraph induced by
P1, P2, P3, P4 and P5. Thus, P1 is considered first8 and gets
C2, next P5 gets C3 and finally P4 gets channel C1. Clearly,
the channel assignment obtained so far corresponds to a NE
strategy of P1 in the last stage, but one that may not be pareto

8We consider that, if two nodes have the same degree then the lower
numbered node is considered first
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optimal, since the shares of some players (P1, P4 and P5) can
be improved without hurting the share of any other player.

The pareto optimal NE strategy of P6 is obtained using lines
11 to 22 of Algorithm 1. This is done by considering the players
in P−6 and checking to see if more channels can be assigned to
the player. In the first iteration of the while loop, P1 receives
C4, P2 and P3 does not get any more channels, P4 gets C3
and P5 gets C5. In the second iteration of the while loop only
P4 gets C5. The channel assignment obtained now is shown in
Figure 1(a), and corresponds to the pareto optimal NE strategy
of P6 in the last stage of the game.

We will exemplify the concept of finding the SPNE strat-
egy of an offerer Pi in period t from the SPNE strategy of
offerer Pl (l �= i) in period t + 1 (refer Algorithm 4) by show-
ing how to find the SPNE strategy of the offerer P3 in period
2 from the SPNE strategy of P4 in period 3. Note that P Nbr

−3 ={P1, P5, P6}. The four channels that P6 has in period 3 is equiv-
alent to having �4× 0.5� = 2 channels in period 2. Thus, P3
can potentially take 2 channels from P6. Similarly, the 3 chan-
nels that P5 has in period 3 is equivalent to having �3× 0.5� =
2 channels in period 2. Thus, P3 can potentially take 1 channel
from P5. However, P3 will not be able to take any channel from
P1, since the latter has only one channel in the previous period.
In fact, this also implies that P3 will not be able to take chan-
nel 4 (due to interference constraints). Thus P̂ Nbr

−3 = {P6, P5}.
Now, Algorithm 4 will sort the channels that P3 can potentially
take from this neighbors in P̂ Nbr

−3 in ascending order based on
the number of players in P̂ Nbr

−3 that possess each channel (line
8 Algorithm 4). This yields the set S = {C2, C3, C5}. First, C2
is considered. Since the channel is possessed by both players
P5 and P6 and a channel can be taken from both the players,
P3 takes channel C2 from P5 and P6. Next, channel C3 is con-
sidered, which is also possessed by both players P5 and P6.
However, since no more channels can now be taken from P5,
P3 cannot take C3. Similarly, C5 cannot be taken also. Thus, P3
only takes C2 from both P5 and P6, making x2

3 = {1, 2}. It can
be easily seen that the maximum number of channels that P3
can acquire from his neighbors is indeed 1.

The channel assignment obtained so far is a SPNE strategy
for P3 in period 2. However, it may not be pareto optimal. To
obtain the pareto optimal SPNE strategy of P3, a while loop
of the form discussed earlier can be used which would assign
C2 to P2. The channel assignment obtained subsequently would
correspond to the pareto optimal SPNE strategy of P3 in period
2 of the game. This is shown in Figure 1(d).

Following the same line of reasoning, we finally obtain the
SPNE strategy (x0

1 , x0
−1) of P1 in the first period of the game.

This strategy of P1 is shown in Figure 1(f).

V. INFINITE HORIZON BARGAINING GAME

In this section, we consider the scenario where the spec-
trum bargaining game has an infinite horizon, i.e., players can
go on bargaining until all players can agree on a sharing rule
of the channels. To study the infinite horizon game, we will
first extend the definition of the finite horizon game defined in
Section III. Specifically, in the infinite horizon game, each Pi

for i ∈ [1, N ] makes an offer in periods k N + (i − 1) where

Algorithm 5. Find Infinite Horizon SPNE

Require: Number of players, N ; Interference Constraint, I ; Set
of Available Channels, C ; Number of Periods, T ;

1: (x0
1 , x0
−1)

T−1
j ← {φ},∀ j ∈ [1, N ]

2: while true do
3: (x0

1 , x0
−1)

T ← Find SPNE by B.I(N ,I ,C ,T )

4: if |(x0
1 , x0
−1)

T
j | = |(x0

1 , x0
−1)

T−1
j |,∀ j ∈ [1, N ] then

5: break
6: else
7: T ← T + 1
8: end if
9: end while

10: Return (x0
1 , x0
−1)

T

k ∈ {0, 1, 2, . . .}. We will denote the SPNE strategy of P1 in
the first period of a T period finite horizon game as (x0

1 , x0
−1)

T .
Also, let (x0

1 , x0
−1)

T
j denote set x0

j in (x0
1 , x0
−1)

T for j ∈ [1, N ].

Recall that (x0
1 , x0
−1) = (x0

1 , {x0
2 , x0

3 , . . . , x0
N }).

Our solution of the infinite horizon game is based on the fol-
lowing fact- for the finite horizon game, there exists a period
T such that the number of channels each player receives in
the SPNE strategy of P1, (x0

1 , x0
−1)

T , of a T period game, is
equal to the number of channels each player receives in the
SPNE strategy of P1, (x0

1 , x0
−1)

T ′ , in a T ′ period game, for
all T ′ > T . In other words, ∃T such that for all T ′ > T we
have |(x0

1 , x0
−1)

T ′
j | = |(x0

1 , x0
−1)

T
j |,∀ j ∈ [1, N ]. We will show

this via simulations in Figures 2(a) and 2(b). Figure 2(a) shows
the SPNE strategy (x0

1 , x0
−1)

T of a 6 player finite horizon
game with varying number of periods, T . The conflict graph
has been randomly generated. The number of channels avail-
able, M , has been taken to be 8 and the discount factor of
all players is 0.7. As can be clearly seen from the figure, for
T > 6, |(x0

1 , x0
−1)

T
j | = |(x0

1 , x0
−1)

6
j |,∀ j ∈ [1, N ]. For the game

in Figure 2(b), the number of players have been taken to be
12. The conflict graph again has been randomly generated. The
number of channels available, M , has been taken to be 15, and
the discount factor of all players is 0.75. As can be seen from
Figure 2(b), the SPNE spectrum shares of the players converge
for games having 15 periods or more. Thus, based on the above
discussion, to find the SPNE strategy, (x0

1 , x0
−1)
∞, of the infi-

nite horizon game, we simply need to find the SPNE strategy,
(x0

1 , x0
−1)

T , of a finite horizon game of T periods, such that for

all T ′ > T we have |(x0
1 , x0
−1)

T ′
j | = |(x0

1 , x0
−1)

T
j |,∀ j ∈ [1, N ].

Based on this, Algorithm 5, gives the procedure that P1 will
invoke to find his SPNE strategy, (x0

1 , x0
−1)
∞, in the infinite

horizon game.

A. Discussions

1) Value of T , the Starting Period: Algorithm 5 finds the
SPNE of P1 in the first period, starting from a T period game,
until it finds a T ′ period game, such that, |(x0

1 , x0
−1)

T ′
j | =

|(x0
1 , x0
−1)

T ′−1
j |,∀ j ∈ [1, N ]. The algorithm then outputs the

SPNE of P1 in the infinite horizon game as (x0
1 , x0
−1)

T ′ . The
period T ′ at which the SPNE strategy of P1 converges depends
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Fig. 2. Pareto optimal SPNE of games with varying parameters.

on several factors– the number of players, N ; the number of
available channels, M ; and the average discount factor of the
players, δ. More precisely, we have,

T ′ ∝ N

M · (1− δ)
(10)

Thus, T ′ – (i) increases as the number of player increases,
(ii) decreases as more channels become available and
(iii) increases as the discount factor of the players increases,
i.e., as the players become more patient in waiting for the bar-
gaining outcome. This trend can be verified from Figure 2(a)
and Figure 2(b). Note that, for the game in Figure 2(a) the
ratio on the R.H.S of (10) is lesser than that of the game in
Figure 2(b). Note also that the game in Figure 2(a) converges
earlier than the one in Figure 2(b). This corroborates (10).
Therefore, based on the above discussion, to minimize the num-
ber of iterations required by Algorithm 5 to find T ′, T should
be made proportional to N

M ·(1−δ)
.

2) How Long do Players Negotiate?: It is worth emphasiz-
ing here that the players do not actually “play” the bargaining

game over time periods to reach consensus. Specifically, the
perspective adopted in the paper is the following- if the players
were to play the spectrum bargaining game, then considering
players to be selfish and rational, the outcome of the game
would correspond to the SPNE solution presented in the paper.
The SPNE solution itself (i.e., the equilibrium spectrum shares)
can be computed by the players using Algorithm 3 (for the finite
horizon case) or Algorithm 5 (for the infinite horizon case) in
the very first period of the game, which implies that the bar-
gaining always terminates in the first period. Furthermore, the
players are also guaranteed to abide by the equilibrium strate-
gies they obtain using the algorithms (in the first period), since
by definition, the spectrum shares obtained would constitute a
SPNE of the bargaining game from which there is no profitable
deviation.

3) Equilibrium Coordination Among Players: Note that the
spectrum bargaining game, in general, can have multiple equi-
libria. The question then becomes how would the players
coordinate to an equilibrium. Such coordination can be attained
practically by various techniques [12], such as, in specific,
by having policies in a game (see, for example, the concept
of focal-point introduced in [33] for equilibrium coordination
among players), and, in general, by leveraging information
structures available to players. For example, note that, for
a given graph coloring procedure (used in deriving players’
strategies) and a technique to find the pareto optimal point,
an unique equilibrium exists (in the last period as well as for
the SPNE of the overall game). Therefore, by having a policy
on the use of optimization techniques among players to derive
their equilibrium strategies, coordination among players can be
achieved.

4) Last Mover Advantage: One might suspect that our
spectrum bargaining game may exhibit a “last mover advan-
tage”, where a player making an offer in the last period may
have an advantage over a player who gets to make an offer
earlier. This effect diminishes as T increases, and vanishes in
the infinite horizon case [4], [12]. Note that, in our spectrum
bargaining game, the last mover advantage, and, in general,
ordering of the players, practically will have a minimal impact.
This is because the length of each bargaining period will be
very short (in the order of time taken to exchange messages
among nodes) allowing players to be able to afford a reasonable
number of bargaining periods.

VI. SIMULATION RESULTS

In this section, we conduct simulations to study how the
“self-gain” maximizing strategy of the players impact system
wide performance. For simulations, we assume a noiseless,
immobile radio network. The conflict graph, which represents
interference constraints of the network, has been randomly gen-
erated with various graph densities. Also, in our simulations we
assume that all players have an equal discount factor.

A. System Utility

If {xt
i |1 ≤ i ≤ N } is accepted in period t , then we can define

system utilities in terms of the payoffs of the players as follows.
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• Sum Utility: This considers the total system utility
regardless of fairness.

Usum =
N∑

i=1

Ri =
N∑

i=1

δt
i |xt

i | (11)

• Minimum Utility: This considers the utility of the player
with the least payoff.

Umin = min1≤i≤NRi = min1≤i≤N δt
i |xt

i | (12)

• Proportional Fairness based Utility [25]:

U f air =
N∑

i=1

log(Ri ) =
N∑

i=1

log(δt
i |xt

i |) (13)

To make it comparable to Umin and Usum , we modify the
fairness utility to:

U f air =
(

N∏
i=1

Ri

)1/N

=
(

N∏
i=1

δt
i |xt

i |
)1/N

(14)

Now, Algorithm 5 finds the infinite horizon SPNE strategy
of P1 in the first period (t = 0) of the game, which all rational
players in P−1 will accept. Thus, the payoff of Pi (i ∈ [1, N ])
will be Ri = δ0

i |x0
i | = |x0

i |. Based on this we simplify the
metrics defined above as follows.
• U f air : We use proportional fairness based system utility

as defined in (14). Based on the above argument U f air

becomes,

U f air = 1/N

√√√√ N∏
i=1

δ0
i |x0

i | = 1/N

√√√√ N∏
i=1

|x0
i | (15)

Notice that, U f air = 0 if there is any |x0
i | = 0, i ∈ [1, N ].

Thus, this metric will also help capture whether any node
gets starved of channels.
• Umean : We use mean utility instead of sum utility (11)

in our simulations, so that all three utilities are within the
same scale,

Umean = 1

N

N∑
i=1

Ri = 1

N

N∑
i=1

δ0
i |x0

i | =
1

N

N∑
i=1

|x0
i | (16)

• Umin : We use minimum utility as defined in
Equation (12). Umin becomes,

Umin = min1≤i≤NRi = min1≤i≤N |xt
i | (17)

B. Impact of the number of channels (M)

Figure 3 shows how the three utilities vary with the number
of available channels, M . We consider a 8 node (player) net-
work, with each player having a discount factor of 0.7.
Figure 3(a) shows how U f air varies with M . As can be seen
from the figure, proportional fairness increases with the number

Fig. 3. System Utility with varying number of available channels

of available channels. The graph also shows the impact of graph
density on U f air . For a given M (and N ), U f air decreases as
graph density increases. Increasing graph density creates addi-
tional interference constraints. Thus, the average vertex degree
in the conflict graph increases and each node tends to get lesser
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number of channels. Therefore, U f air scales inversely with
graph density.

Figure 3(b) shows the average number of channels received
by the nodes. As M increases, Umean increases. Also, as graph
density increases, for a given M and N , Umean decreases due
to the increase in average vertex degree. Figure 3(c) shows the
minimum number of channels received by a node (Umin) as M
increases. Umin increases as more channels become available.
Since, Umin never falls below 1, no node is ever “starved” in the
solution produced by our bargaining approach. This can also be
noted from Figure 3(a). Moreover, the minimum value of Umin

is 1 because we have considered that a player has to be offered
at least 1 channel to make him accept an offer in the last period
(Section IV). Generally speaking, our bargaining framework
can be tailored to provide application specific minimum level
of QoS.

C. Impact of the Number of Secondary Users (N)

Figure 4 shows how the three utilities degrade with increas-
ing number of secondary nodes, N . The conflict graphs has
been randomly generated with a graph density of 0.5. The
discount factor of all players is 0.8. Figure 4(a) shows how pro-
portional fairness based system utility, U f air , vary with N . As
N increases, U f air decreases. This is because, as N increases
(for a given graph density), more interference constraints are
produced, thereby increasing average vertex degree in the con-
flict graph. As average vertex degree increases, and M remains
fixed, each node tends to get lesser number of channels. Thus,
U f air is inversely proportional to the number of secondary
users, N . As expected, for a given N and graph density, when
more channels become available, U f air increases.

Figure 4(b) plots the mean number of channels received by
a node, Umean , with varying number of secondary users, N .
Umean degrades with increasing N , due to the increase in aver-
age vertex degree in the conflict graph. As M increases, for a
given N and graph density, each node on an average gets more
channels. Note that, the rate of decrease of Umean reduces with
increasing N , i.e., Umean tends to saturate around a minimum
value for large N . This behavior can be more pronouncedly
seen when the number of channels available is 10.

Figure 4(c) shows how the minimum number of channels
received by any node, Umin , degrades with increasing N . As
can be seen, Umin never falls below 1 (because of similar rea-
sons explained for Figure 3(c)) regardless of the number of
secondary users.

D. Impact of the Conflict Graph

In our bargaining model, we consider that the conflict graph
is a given input. The conflict graph [17] itself can be based
on either a distance-based criterion (i.e., the protocol model)
or from signal strength values generated from RF propagation
models (i.e., the physical model). The graph structure itself may
depend not only the model used to generate the graph, but also
on the parameters used in a specific model (such as, the specific
SINR threshold used in the physical model and transmission
power of nodes). For example, if the conflict graph is built

Fig. 4. System Utility with varying number of secondary users.

using the physical model, more stringent SINR requirements
will yield denser conflict graphs. Note that, the equilibrium
bargaining solution may vary with the structure of the con-
flict graph. However, the algorithms presented in the paper will
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work correctly (and yield the equilibrium bargaining solution)
corresponding to the given conflict graph regardless of the
model and parameters used to build the conflict graph.

We will now study how conflict graph density (which reflects
various system parameters as mentioned above) affect spectrum
sharing by the secondary users by studying the three system
utilities. Figure 5 shows how the three utilities degrade as con-
flict graph density increases. The number of channels available,
M , was set to 15 and the discount factor of all players in 0.8.
From Figure 5(a) it can be clearly seen that U f air degrades
with increasing graph density for a fixed number of secondary
users, N . This is again because the average vertex degree of
the conflict graph increases with increasing graph density. For
a given graph density, as N decreases, average vertex degree
decreases, and thus U f air increases for fixed M . Note that,
when graph density is 1, we have a complete graph on N ver-
tices, i.e, all nodes are within the interference range of each
other. In this case, when N is 15, all nodes get a channel each
(recall M = 15) and thus U f air becomes 1.

Figure 5(b) plots Umean with varying graph density. As can
be seen, Umean decreases with increasing graph density due to
the increase in average vertex degree. Again, when N is 15 with
a graph density of 1, Umean becomes 1. Figure 5(c) shows the
degradation of Umin with increasing graph density.

Note that the spectrum reusing capability of the network
deteriorates more rapidly with increasing conflict graph den-
sity for a fixed number of secondaries than it degrades with
increasing number of secondary users for a fixed graph density.
This can be clearly seen from the graphs of U f air and Umean in
Figure 4 and Figure 5.

E. Impact of Discount Factor

In Figure 6, the y-axis corresponds to the number of periods,
T , of a finite horizon bargaining game of N players at which
Algorithm 5 finds |(x0

1 , x0
−1)

T
j | = |(x0

1 , x0
−1)

T−1
j |,∀ j ∈ [1, N ],

i.e., the period T at which the SPNE strategy of P1 converges,
thus corresponding to his strategy in the infinite horizon game,
(x0

1 , x0
−1)
∞. The x-axis corresponds to varying discount fac-

tor, δ, of the players. Conflict graph density has been taken
to be 0.6 and the number of channels available, M , is 14. As
can be seen from the figure, T scales inversely with 1− δ.
This is because, as the discount factor of the players increases,
the players become more patient in waiting for the bargain-
ing outcome. When δ is 1, the players can wait infinitely long
for the bargaining outcome. Moreover, it can also be noted
that T increases as the ratio of N : M increases. This can be
clearly seen, since, T for any given discount factor is least for
N
M = 10

14 , increases when N
M = 20

14 and highest when N
M = 40

14 .
These observations corroborate (10).

F. Price of Anarchy

We will now compare the solution of our proposed spec-
trum bargaining game (in which players seek to optimize their
own utilities) with a channel allocation mechanism which seeks
to optimize the overall system utility. Such an analysis will
illustrate the price-of-anarchy [12] of the spectrum bargaining

Fig. 5. System Utility with varying conflict graph density.

game, which measures how the overall system utility degrades
due to selfish behavior of its agents. Specifically, we will study
how system utility is affected by two different approaches–
(i) our spectrum bargaining approach where users want to
maximize their individual utilities, and (ii) graph multi-coloring
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Fig. 6. Convergence period T of first period offerer’s SPNE strategy with
varying discount factor of players.

Fig. 7. Price of Anarchy

approach (GMC) which seeks to maximize overall system
utility.

For completeness, we will briefly review the GMC approach.
In [29], [40], the authors have shown that by mapping each
channel into a color, the problem of channel allocation to max-
imize system utility can be modeled as a graph multi-coloring
(GMC) problem. In a GMC problem, the objective is to color
each vertex of the graph using a number of colors from a set
of available colors (analogous to the set of available channels
C in our bargaining model), and find the color assignment that
maximizes the sum of the number of colors assigned to all the
vertices, i.e., the sum utility. The coloring is constrained by the
fact that if an edge exists between any two distinct vertices, they
can’t be colored with the same color. Efficient algorithms for
channel allocating via the GMC approach have been proposed
by the authors in [40] based on which we implement the GMC
based channel allocation scheme.

Figure 7 shows how Usum varies with the number of sec-
ondary users for our bargaining based solution approach and
the GMC scheme (referred to as graph coloring in Figure 7).
The conflict graph has been randomly generated with a graph
density of 0.5. The discount factor of all players is 0.8. As can

be seen from the figure, the Usum is slightly larger when graph
coloring is used. This is because the GMC approach explicitly
seeks to maximize the sum utility of the overall network, while
in the bargaining approach, players seek to maximize their own
utilities (which need not maximize the overall utility). Notice,
however, that the difference between the system utilities
achieved by the two approaches is not much, implying that
our bargaining based spectrum sharing approach maximizes
individual utilities while achieving reasonably good system
wide utility.

VII. CONCLUSIONS

This paper models the problem of dynamic spectrum access
by a set of cognitive radio enabled nodes as a bargaining game
where the nodes bargain among themselves in a distributed
manner to agree upon a sharing rule of the channels. First, the
paper explores the finite horizon version of the bargaining game
and presents computationally efficient algorithms to find the
Pareto optimal SPNE strategy of the player making the offer
in the first period of the game. This is a strategy, such that,
neither can the player making the offer increase his utility by
making any other offer, nor can the players receiving the offer
gain in any subsequent period by rejecting this offer. Next, we
extend the results from the finite horizon game to find the Pareto
optimal SPNE strategies of the infinite horizon game. Finally,
using simulations we study the how the selfish strategies of the
players affect system wide performance.
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