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a b s t r a c t

The LSQR algorithm developed by Paige and Saunders (1982) is considered one of the most efficient and
stable methods for solving large, sparse, and ill-posed linear (or linearized) systems. In seismic
tomography, the LSQR method has been widely used in solving linearized inversion problems. As the
amount of seismic observations increase and tomographic techniques advance, the size of inversion
problems can grow accordingly. Currently, a few parallel LSQR solvers are presented or available for
solving large problems on supercomputers, but the scalabilities are generally weak because of the
significant communication cost among processors. In this paper, we present the details of our
optimizations on the LSQR code for, but not limited to, seismic tomographic inversions. The optimiza-
tions we have implemented to our LSQR code include: reordering the damping matrix to reduce its band-
width for simplifying the communication pattern and reducing the amount of communication during
calculations; adopting sparse matrix storage formats for efficiently storing and partitioning matrices;
using the MPI I/O functions to parallelize the date reading and result writing processes; providing
different data partition strategies for efficiently using computational resources. A large seismic
tomographic inversion problem, the full-3D waveform tomography for Southern California, is used to
explain the details of our optimizations and examine the performance on Yellowstone supercomputer at
the NCAR-Wyoming Supercomputing Center (NWSC). The results showed that the required wall time of
our code for the same inversion problem is much less than that of the LSQR solver from the PETSc library
(Balay et al., 1997).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Seismic waves generated by natural or manmade sources and
recorded by seismometers carry important information about the
physical properties of the subsurface earth structures through
which they propagate. Seismic tomography is an imaging techni-
que that assimilates ground-motion observations collected using
seismometers to improve structural models of the Earth's interior
and it has been one of most effective means for imaging the
Earth's interior in the past few decades.

The seismic tomography problem is often formulated as an
optimization problem, in which we search for an optimal earth
structure model that minimizes an objective function defined in
terms of certain misfit measurements that quantify the discre-
pancies between the observed wave-fields and the corresponding
synthetic wave-fields predicted using a reference earth structure
model. A typical objective function that is often employed in

practice has the quadratic form

χ2ðmÞ ¼ dTC�1
d dþðm� ~mÞTC�1

m ðm� ~mÞ; ð1Þ
where d is a vector composed of individual misfit measurements,
m is a vector composed of model parameters, ~m is a vector of the
reference structure model, Cm is the a priori model covariance
matrix and Cd is the data covariance matrix. This type of objective
functions arises in the context of statistical inference based on a
Gaussian-Bayesian point of view (e.g., Tarantola, 2005). For an
individual misfit measurement dsrin, which is the n-th misfit
measurement on the i-th component seismogram generated by
source s and recorded at receiver r, the data sensitivity kernel
Km
dsrin
ð ~m; xÞ is the functional (Fréchet) derivative of this misfit

measurement with respect to the model parameters around the
reference model (Backus and Gilbert, 1968), i.e.,

δdsrin ¼
Z

dVðxÞKm
dsrin
ð ~m; xÞδmðxÞ: ð2Þ

If discretized over space x, the data sensitivity kernel Km
dsrin
ð ~m; xÞ

becomes a vector and the spatial integral in Eq. (2) can be
expressed as an inner product. The Jacobian matrix Ak is the
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matrix with each row given by the discretized data sensitivity
kernel for each individual misfit measurement. For nonlinear
least-squares problems such as the one defined in Eq. (1), the
Gauss–Newton algorithm is often an effective optimization algo-
rithm because the Jacobian matrix, which only involves the first-
order Fréchet derivative of every misfit measurement, can provide
not only the gradient of the objective function but also an
approximation of its Hessian. The exact Hessian of the objective
function in Eq. (1) is given by

H¼AT
kC

�1
d AkþC�1

m þð∇mAkÞTC�1
d d; ð3Þ

which involves the derivative of the Jacobian matrix, therefore
second-order derivatives of individual misfits. However, when d is
small and/or the individual misfits are approximately linear with
respect to model parameters (i.e., ∇mAk is small), the last term in
Eq. (3) can be neglected. Under such an approximation, if we
expand the objective function in Taylor series around the reference
model ~m, truncate the expansion to second-order and then set the
derivative of the truncated series with respect to m to zero, we
arrive at the Gauss–Newton normal equation

ðAT
kC

�1
d AkþC�1

m Þðm� ~mÞ ¼ AT
kC

�1
d d: ð4Þ

In practice, we do not need to explicitly form this equation, because
its solution can be computed by solving the linear system

C�1=2
d Ak

C�1=2
m

2
4

3
5ðm� ~mÞ ¼ C�1=2

d d
0

" #
ð5Þ

via a relaxation method. The LSQR algorithm of Paige and Saunders
(1982) is one of the most popular solvers used in seismic tomo-
graphy due to its efficiency and stability in solving large, sparse and
ill-conditioned linear systems (e.g., Nolet, 1985; Nolet, 1993). Once
Eq. (5) is solved, the structure model can be updated and the
updated model can become the new reference model for the next
iteration. This process can then be iterated until convergence.

In conventional ray-theoretic travel-time tomography, an indi-
vidual misfit measurement is determined by the difference
between the observed travel-time of a specific seismic phase and
the corresponding model-predicted travel-time computed using a
ray-tracing algorithm in the reference structure model and the
data sensitivity kernel is determined by the ray-path connecting
the source and the receiver for the selected seismic phase (e.g.,
Červený, 2005). The “finite-frequency” effect of wave-propagation
can be accounted for by combining the Born approximation with
the paraxial ray theory and the corresponding data sensitivity
kernel exhibits the counterintuitive “banana-doughnut” phenom-
ena, i.e., the sensitivity of the cross-correlation delay-time is non-
zero within a tube surrounding the ray path (i.e., the Fresnel zone)
but is zero on the ray path (Marquering et al., 1999; Dahlen et al.,
2000; Hung et al., 2000; Zhao et al., 2000). Recent advances in
parallel computing technology and numerical methods (e.g., Olsen,
1994; Graves, 1996; Bao et al., 1998; Komatitsch and Vilotte, 1998;
Komatitsch et al., 2004; Dumbser et al., 2007) have significantly
reduced the computational cost for solving acoustic and (visco)
elastic seismic wave equations in realistic 3D earth structure
models, which has opened up the possibilities for wave-
equation-based (i.e., “full-wave”) seismic tomography techniques.
The adjoint-state method, which was adopted to solve seismic
imaging problems in Bamberger et al. (1977, 1982) and later
extended to 2D acoustic (Pratt and Worthington, 1990; Pratt
et al., 1998) and 3D acoustic and elastic full-wave inversions
(e.g., Tarantola, 1984; 1988; Tromp et al., 2004), is numerically
efficient for computing the gradient of the objective function, as it

only requires one forward and one adjoint wave-propagation
simulation per seismic source. For a dataset with Ns seismic
sources, the total number of wave-propagation simulations (for-
ward and adjoint) needed for constructing the gradient is 2Ns.
Once the gradient of the objective function is available, gradient-
based optimization algorithms such as the steepest-descent and
the conjugate-gradient methods can be adopted to minimize the
objective function. However the adjoint method is not efficient for
constructing the Jacobian matrix, as it will need one forward and
one adjoint simulation to compute the data sensitivity kernel
for each misfit measurement. For realistic seismic tomography
problems involving a large number of misfit measurements,
the number of simulations and the computational cost needed to
construct the Jacobian matrix using the adjoint method is
prohibitive.

The scattering-integral (SI) method (Zhao et al., 2005), which is
physically equivalent to, but computationally different from the
adjoint method (Chen et al., 2007a), provides a computationally
viable approach for constructing the Jacobian matrix. Consider the
data sensitivity kernel of the misfit measurement dsrin with respect
to the elastic moduli cjklmðxÞ, after applying the reciprocity prin-
ciple (Aki and Richards, 2002), the data sensitivity kernel can be
expressed as (Chen et al., 2007a)

Kcjklm
dsrin

ðxÞ ¼�
Z

dt
Z

dτ JsrinðtÞ∂kGjiðx; t�τ; xrÞ∂lus
mðx; τÞ; ð6Þ

where ∂k represents the partial derivative with respect to xk, J
sr
inðtÞ

is the functional derivative of the misfit measurement with respect
to the waveform, i.e., δdsrin ¼

R
JsrinðtÞδus

i ðxr ; tÞ dt, Gjiðx; t; xrÞ is the
Green's tensor for a unit impulsive force acting at the receiver
location xr and is named the “receiver Green's tensor” (RGT),
us
mðx; tÞ is the m-th component forward wave-field generated by

the seismic source s. The SI method is based on the observation
that the RGTs do not depend on the sources. If we compute and
stored them on disk, they can be re-used for constructing the data
sensitivity kernels of different seismic sources. The computational
cost for carrying out the temporal convolution and integration in
Eq. (6) is almost negligible compared to the cost for carrying out a
wave-propagation simulation. For a dataset with Nr receivers, the
total number of simulations needed to construct the Jacobian
matrix using the SI method is Nsþ3Nr for 3D elastic problems.
For acoustic and/or 2D problems, the number of simulation is even
less. For realistic seismic tomography applications the disk space
needed for storing the RGTs can be substantial but still manage-
able by adopting efficient data compression algorithms.

The SI method has been successfully applied to image the crustal
structure of the Los Angeles Basin area in Chen et al. (2007b) and
the tomographic inversion is currently being extended to Southern
California. The linear system in Eq. (5) is more than 450 times larger
in the Southern California inversion than that in the Los Angeles
Basin inversion. In Chen et al. (2007b), the LSQR code used for
solving Eq. (5) came from the PETSC library (Balay et al., 1997). But
when we try to apply the same code to our inversion in Southern
California, it does not provide satisfactory performance. In this
paper we discuss our optimization of the parallel LSQR algorithm
and demonstrate the performance of our code using one Gauss–
Newton iteration from our Southern California tomographic inver-
sion. In our Southern California inversion, we have completed 5
Gauss-Newton iterations so far. In each iteration, the updated model
from the previous iteration is used as our reference model for the
current iteration and the Jacobian matrix is re-computed for the
current iteration using the SI method. Our optimized LSQR code is
used to solve the Gauss-Newton normal equation in every iteration.
The full inversion process based on both the adjoint and the SI
method will be documented in a separate publication.
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This paper is organized as follows. In Section 1, we briefly
discussed the seismic tomography problem and introduced the
LSQR algorithm for solving the optimization problem. An overview
of full-wave tomography and the SI method used to construct the
Jacobian matrix in our inversion problem is also presented in
Section 1. In Section 2, we present the ideas of our optimizations
of the LSQR algorithm in detail. The performance analysis of our
code, performance comparisons with the LSQR solver in the PETSc
and a single iteration result of our Southern California tomo-
graphic inversion are presented in Section 3. We conclude our
optimizations of the LSQR algorithm and discuss some future
developments in the Section 4.

2. Optimization

The main steps in the LSQR algorithm (Paige and Saunders,
1982) and workflow of our implementations are summarized in
Fig. 1. In realistic seismic tomography applications, more than 90%
of the total computing time is spent on the matrix–vector multi-
plications Av in step (2a) and ATu in step (2b). Here we have
dropped the iteration index i for convenience. Our effort has been
focused on accelerating these two matrix–vector multiplications
by taking advantage of the special structure of the A matrix in
seismic tomography problems.

As shown in Eq. (5), the matrix A is composed of two sub-
matrices (Fig. 2): the Jacobian (or Fréchet) matrix Ak, which is
composed of the partial derivatives of the misfit measurements in
vector d with respect to model parameters in vector x, which
corresponds to m� ~m in Eq. (5), and the regularization matrix Ad,
which corresponds to C�1=2

m in Eq. (5) and usually contains the
identity matrix, for penalizing the norm of the solution vector,
and/or finite-difference discretization of the first- or second-order
spatial derivatives, for penalizing the spatial roughness of the
solution vector. In realistic seismic tomography applications, both
Ak and Ad are highly sparse and more than 99% of all non-zero
elements in matrix A are located in the Jacobian matrix Ak.
The regularization matrix Ad can be converted into a band matrix
form with a relatively small bandwidth (i.e., for a given row, the
number of columns between the first and the last non-zero
elements on that row) by permuting the rows and/or columns of

the matrix A. We will discuss the re-ordering algorithm for matrix
Ad in Section 2.4.

2.1. Parallel partition of matrices and vectors

On distributed-memory parallel computers, each processor
stores only a portion of the matrices and vectors in its own
memory and accesses to the portions lying on other processors
are usually implemented through inter-processor message pas-
sing, which has a higher latency than accesses to the processor's
own memory. When we partition the matrices and vectors among
a group of processors, we need to balance the computational load
on each processor while minimizing the inter-processor commu-
nication overhead.

Fig. 1. (a) Main steps in the LSQR algorithm (Paige and Saunders, 1982) and (b) workflow of our implementations. In the workflow, the scale( ) and norm( ) functions
represent the scalar-vector multiplication and vector normalization operations.

Fig. 2. An illustration of the damped least-squares problem of seismic tomographic
inversions. The matrix A is composed by the kernel matrix Ak and the damping
matrix Ad, the elements in vector δm are the model perturbations and the elements
in the vector d that correspond to the kernel matrix are measurements and that
correspond to the damping matrix are all zeros.
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In our implementation, each processor owns a range of
columns of the Jacobian matrix Ak (Fig. 3a). Suppose the Jacobian
matrix Ak has Mk rows and N columns, and then processor p owns
the sub-matrix

Ap
k ¼ Akð1 : Mk; c

p
b : cpe Þ;1rcpbrcperN ð7Þ

and the beginning and ending column indices for processor p, cpb
and cpe , are selected based on load-balanced considerations
(Section 2.5) for different processors.

Suppose the regularization matrix Ad has Md rows. On each
processor, we keep two sub-matrices of Ad. One sub-matrix Ap

d is
composed of a subset of the rows of Ad (Fig. 3a),

Ap
d ¼ Adðrpb : rpe ;1 : NÞ;1rrpbrrperMd ð8Þ

and the beginning and ending row indices rpb and rpe are deter-
mined by the bandwidth of the re-ordered regularization matrix
Ad and the column indices cpb andcpe . The other sub-matrix A′pd is

composed of a subset of the columns of Ad (Fig. 3b),

A′pd ¼ Adð1 : Md; c
p
b : cpe Þ: ð9Þ

Since Ad is highly sparse, both Ap
d and A′pd are highly sparse too.

The procedure for selecting appropriate values for cpb, c
p
e , r

p
b and rpe

in a load-balanced way is described in Section 2.5.
As for the vectors involved in the two matrix–vector multi-

plications, we introduce two new vectors u′¼ Av and v′¼ATu.
The vector u can be computed from u′ through step (2a) in Fig. 1a
and the vector v can be computed from v′ through step (2b) in
Fig. 1a. Processor p owns a portion of the v vector,

vp ¼ vðcpb : cpe Þ; ð10Þ

and also the same portion of the v′ vector. The u′ vector has
MkþMd elements, the sub-vector u′k is composed of the first Mk

elements of u′ and the sub-vector u′d is composed of the next Md

elements of u′ (Fig. 3a). Each processor has a duplicated copy of
the entire u′k vector and a portion of the u′d vector,

u′pd ¼ u′dðrpb : rpe Þ: ð11Þ

For vector u, the sub-vector containing the first Mk elements is
denoted as uk, and each processor owns a separate copy of the
entire uk. The sub-vector containing the next Md elements is
denoted as ud and is partitioned in the same way as the u′d vector.

2.2. Inter-processor communication overhead

The inter-processor communication overhead can be estimated
based on the data partition scheme introduced in the previous
section. The matrix–vector multiplication Av (Fig. 3a) can be
separated into two steps: the matrix–vector multiplication Akv,
which generates the vector u′k, and the matrix–vector multi-
plication Adv, which generates the vector u′d. Suppose the total
number of processors used in the calculation is Np, since each
processor owns only a subset of the columns of Ak, using the index
notation we have,

u′k ¼Akv¼ ∑
N

j ¼ 1
Akði; jÞvðjÞ ¼ ∑

Np

p ¼ 1
∑
cpe

j ¼ cp
b

Ap
kði; jÞvpðjÞ

2
4

3
5;

for i¼ 1;2; :::;Mk; p¼ 1;2; :::;Np: ð12Þ
The term in the square bracket can be computed on each processor
without any inter-processor communication and the resulting
vector on each processor has Mk elements. The summation over
processor index p requires a gather operation to the master
processor. If we estimate the communication overhead using the
number of “point-to-point” data transfers multiplied with the
amount of the data being transferred, the gather operation
introduces a communication cost proportional toðNp�1ÞMk. Since
each processor requires a separate copy of the entire u′k, we need
to broadcast the u′k computed on the master processor to all other
processors, which introduces a communication cost proportional
to ðNp�1ÞMk. The total amount of inter-processor communication
overhead for the matrix–vector multiplication Akv is therefore
proportional to around 2ðNp�1ÞMk.

A different partition scheme for Ak that has been used in some
previous studies (e.g. Balay et al., 1997; Huang et al., 2012; Liu
et al., 2006) is to partition Ak along rows, i.e., each processor owns
a subset of the rows of Ak. For such a partition scheme, the
communication overhead for the matrix–vector multiplication Akv
is dependent upon how the vector v is partitioned. In realistic
seismic tomography applications, the vector v is usually dense and
the length of v, which is N, is so large that it is impractical for each
processor to store a separate copy of the entire v vector in its own

Fig. 3. Illustrations of matrix and vector partitions for four processors and the ideas
of the matrix–vector multiplication of (a) Av¼u′ and (b) ATu¼v′. The elements that
need to be stored in the second processor are in gray and the elements in u′k (or uk)
that each processor has a duplicate is in black. During the matrix–vector multi-
plications of A2

dv and A′2du, communication among processors are required for
completing the operations. The required communication volume from other
processors is in strip-pattern.
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memory. If the v vector is partitioned evenly among all processors,
i.e., each processor owns N/Np elements of v, the communication
cost for the matrix–vector multiplication Akv is proportional to
aroundðNp�1ÞN. For most seismic tomography problems, the
linear system is highly under-determined, which means NcMk.
For the full-wave seismic tomography problem analyzed in this
study, N is about 300 times larger than Mk. Considering the
communication overhead for our column-based partition scheme,
which is proportional to 2ðNp�1ÞMk, for such highly under-
determined linear systems, a column based partition schemes
may significantly reduce inter-processor communication overhead
for the matrix–vector multiplication Akv.

The inter-processor communication overhead for the matrix–
vector multiplication Adv depends upon the bandwidth of the
matrix Ad. For processor p, suppose the first non-zero element on
row rpb is located at column cp0 and the last non-zero element on
row rpe is located at column cp1, then we need to transfer the sub-
vectors vðcp0 : cpbÞ and vðcpe : cp1Þ from other processors to processor p
in order for processor p to complete the calculation of u′pd (Fig. 3a).
If cp0 ¼ cpb and cpe ¼ cp1 (i.e., the bandwidth of Ad is one), there is no
communication between processor p and other processors. In
order to reduce the inter-processor communication overhead for
the matrix–vector multiplication Adv, we need to minimize the
bandwidth of the matrix Ad. In Section 2.4 we show a simple
algorithm for reducing the bandwidth of Ad by permuting the rows
of Ad. Suppose the sub-vectors vðcp0 : cpbÞ and vðcpe : cp1Þ are distrib-
uted among P different processors. Depending upon the dimension
of the linear system and the bandwidth of the re-ordered Ad, P can
be quite large. However, in practice because the band itself is also
highly sparse and we do not need to transfer the elements in v
whose corresponding multiplicands in the band are zeros, the
number of processors actually involved in the communication
with processor p is usually much less than P. And since the non-
zero pattern of Ad does not change through the LSQR iterations,
the processors that need to communicate with processor p, as well
as the elements in v that need to be transferred, can all be
identified and registered into a memory buffer prior to the first
iteration (Fig. 1b).

The matrix–vector multiplication ATu can be separated into
two components (Fig. 3b). Using the index notation, we have

v′ðjÞ ¼ ∑
Mk þMd

i ¼ 1
Aði; jÞuðiÞ ¼ ∑

Mk

i ¼ 1
Akði; jÞukðiÞþ ∑

Md

i ¼ 1
Adði; jÞudðiÞ;

for j¼ 1;2; :::;N: ð13Þ
On processor p, we have

v′pðjÞ ¼ ∑
Mk

i ¼ 1
Ap
kði; jÞukðiÞþ ∑

Md

i ¼ 1
A′pdði; jÞudðiÞ; for j¼ cpb; c

p
bþ1; :::; cpe :

ð14Þ
Since each processor owns a separate copy of the entire uk vector,
there is no inter-processor communication in computing the first
term on the right-hand-side. Suppose the first non-zero element
of Ad on column cpb is located at row rp0 and the last non-zero
element of Ad on column cpe is located at row rp1, in order to
compute the second term on the right-hand-side, we need to
transfer udðrp0 : rpbÞ and udðrpe : rp1Þ from other processors to proces-
sor p. By reducing the bandwidth of the regularization matrix Ad

we can also reduce the inter-processor communication cost for the
matrix–vector multiplication ATu.

2.3. Data structures for matrices

Both the Jacobian matrix Ak and the regularization matrix Ad

are sparse matrices. The sparseness of the Jacobian matrix Ak

depends both upon the spatial density of the seismic sources and

receivers used in the tomography and upon the particular techni-
que used for computing the partial (Fréchet) derivatives of the
misfit measurements with respect to the model parameters. In
general, for a given seismic source and receiver distribution, Ak is
sparser for ray-theoretical tomography than for finite-frequency or
full-wave tomography. For the full-wave tomography analyzed in
this study, Ak has a fill-in ratio of around 3% and Ad has a fill-in
ratio of about 8.2e-6%.

Two of the most widely used data structures for representing
sparse matrices are the compressed-sparse-column (CSC) and the
compressed-sparse-row (CSR) formats (e.g. Bai et al., 2000).
On each processor, the Jacobian sub-matrix Ap

k is represented
using the CSC format, the regularization sub-matrix Ap

d is repre-
sented using the CSR format and the regularization sub-matrix A′pd
is represented using the CSC format. Efficient algorithms for
matrix–vector multiplications based on both CSC and CSR formats
have been developed previously (e.g. Bai et al., 2000).

The benefit of the specific choice of the data structure for each
matrix is two-folded: first, it simplifies the procedure for deter-
mining the optimal values for cpb , c

p
e , r

p
b and rpe for each processor;

second, it improves the overall throughput when loading the
matrices from the disk and partitioning them to the memory of
each processor. The procedure for determining cpb, c

p
e , r

p
b and rpe is

discussed in Section 2.5. Once the optimal values for cpb , c
p
e , r

p
b and

rpe are determined, the memory on each processor for storing each
sub-matrix in the chosen data format is allocated. On the disk, the
entire Jacobian matrix Ak is stored in a single binary file in the CSC
format. We keep two copies of the entire regularization matrix Ad

on the disk, one is stored in the CSR format and the other is stored
in the CSC format. Both files are binary. The values for cpb, c

p
e , r

p
b and

rpe can be translated into position pointers and offset values in
those binary files and those position pointers and offset values are
then used in calling parallel-I/O subroutines, which are the MPI-I/
O subroutines in our implementation. The process of reading the
data from the disk, partitioning the data among all processors and
converting the data into the right format that can be used for
subsequent calculations is completed in a single step.

Using the Jacobian matrix Ak as an example, since it is stored in
CSC format, its binary file on the disk is composed of 3 one-
dimensional arrays, val, row_ind and col_ptr, where val is an array
of the non-zero values in Ak, row_ind is the row indices corre-
sponding to the non-zero values in val and col_ptr stores the
indices of the elements in val which start a new column of Ak. For
processor p, the sub-matrix Ap

k is represented using 3 one-
dimensional arrays in the memory, val_p, row_ind_p and
col_ptr_p. The starting position in the binary file for reading in
the val and row_ind arrays for the Ap

k sub-matrix can be deter-
mined from col_ptr(cpb) and the offset of the reading operation can
be determined from col_ptr(cpe )-col_ptr(c

p
b)þ1. The sub-arrays read

from the val and row_ind arrays on disk fill up the corresponding
CSC arrays for representing the sub-matrix Ap

k in the memory of
processor p, i.e.,

val_p¼ valðcol_ptrðcpbÞ : col_ptrðc
p
e ÞÞ;

row_ind_p¼ row_indðcol_ptrðcpbÞ : col_ptrðcpe ÞÞ:

The indices in the column-pointer array needs to be adjusted
and we have

col_ptr_p¼ col_ptrðcpb : cpe Þ–col_ptrðcpbÞþ1:

A similar approach is also applied to process the two binary
files for storing the regularization matrix Ad. In particular, the sub-
matrix Ap

d is extracted from the binary file with the CSR format and
the sub-matrix A′pd is extracted from the binary file with the CSC
format.
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For the full-wave tomography problem analyzed in this study,
the size of the binary file for storing the Jacobian matrix Ak is
around 2.1 TB. On the IBM iDataPlex (code named Yellowstone) at
the NCAR-Wyoming Supercomputing Center (NWSC), we were able to
achieve a sustained I/O rate of 40–50 GB/s. The number of processors
used in our experiments ranged from 4000 to 12,000. The theoretical
peak I/O rate on the Yellowstone system is around 90 GB/s.

2.4. Re-ordering of the regularization matrix

The structure of the regularization matrix Ad is determined by
the spatial discretization of the solution function δm(x) and the
regularization operator D. On a rectangular domain discretized
using a uniform Cartesian grid, after a simple row-based re-
ordering (Fig. 4), finite-difference approximations to the spatial

Fig. 4. (a) In the left-hand-side, the original damping matrix, the identity and Laplacian operations, is generated by 7 nested-loops. In the right-hand-side, we reorder the
damping matrix by using one nested-loops and conditional statements. (b) The patterns of original damping matrix and (c) our re-ordered damping matrix used in our
Southern California full-3D waveform tomographic inversion. (d) The first 35 rows of the re-ordered damping matrix. The gray squares represent non-zero elements.
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derivatives result in a banded regularization matrix Ad and the
band itself is also highly sparse.

Consider a rectangular domain discretized into nx, ny, and nz
grid points in the x, y and z directions respectively. The three-
dimensional grid index (ix,iy,iz), where ix¼1,2,…,nx; iy¼1,2,…,ny
and iz¼1,2,…,nz, can be mapped into a one-dimensional index l
using a simple formula,

l¼ ixþðiy�1Þnxþðiz�1Þnxny: ð15Þ
The three-dimensional solution function δm(x) and the Fréchet
kernel for each misfit measurement k(x) are all discretized and
mapped into one-dimensional arrays using Eq. (15).

For the regularization operator D, we consider the identity
operator I and the finite-difference approximation to the Laplacian
operator, which involves 6 s-order partial derivatives,
∂2=∂x2; ∂2=∂y2; ∂2=∂z2; ∂2=∂x∂y; ∂2=∂x∂z; ∂2=∂y∂z. These partial deri-
vatives can be approximated using a central finite-difference
scheme. Considering Eq. (15), the finite-difference approximation
for each of the partial derivatives can be generated using a nested-
loop (Fig. 4a) and the regularization matrix Ad can be obtained by
concatenating the finite-difference approximations to each of the
partial derivatives and the identity matrix (Fig. 4b). However, the
regularization matrix generated using this straightforward
approach has a bandwidth that is unnecessarily large. The band-
width of Ad can be reduced significantly by combining the 7
nested-loops for generating the identity matrix and the finite-
difference approximations to the 6 partial derivatives into one
nested-loop (Fig. 4a). The resulting regularization matrix Ad is
shown in Fig. 4c. The band itself is also highly sparse (Fig. 4d). The
interval between the first and the last diagonal is around 2
(nxþnx�ny).

The bandwidth of the regularization matrix Ad can be reduced
even further by employing more sophisticated re-ordering algo-
rithms (e.g., Cuthill and McKee, 1969; Gibbs et al., 1976; Rosen,
1968), which may involve permutations in both rows and columns.
Since the values in vector d that correspond the damping matrix
are all zeros, the row permutation on damping matrix does not
cause any additional changes. However, applying column permu-
tation to damping matrix requires correspondingly reordering to
the kernel matrix and solution vector and therefore introduces
significant overhead. Considering the overhead involved in such
re-ordering algorithms, at the current stage we prefer the row
permutation algorithm as shown in Fig. 4.

2.5. Load balancing

To improve the overall performance of our code, we need to
balance the amount of data stored on each processor (i.e., memory
balance) and the number of calculations performed by each
processor (i.e., computation balance) while minimizing the
amount of inter-processor communication overhead.

In practical seismic tomography applications, depending upon the
spatial distributions of the seismic sources and the seismic receivers,
the number of non-zero elements in the Jacobian matrix Ak can vary
significantly from row to row and from column to column. In general,
the number of non-zero elements is fewer for misfit measurements
made at shorter source-receiver paths (i.e., rows in Ak) and also fewer
for regions (i.e., columns in Ak) crossed by fewer source-receiver
paths. A direct result of such a highly uneven distribution of non-zero
elements in the Jacobian matrix Ak is that a straightforward even
partition of Ak based on either the number of rows or the number of
columns will result in a highly unbalanced memory utilization across
all processors (Huang et al., 2013). For the full-wave tomography
analyzed in this study, Fig. 5a shows the distribution of the number
of non-zero elements of Ak on each processor based on an even
partition of all the columns among 4000 processors. Since the

matrix–vector multiplication operations Av and ATu on each proces-
sor are mainly determined by the number of non-zero elements of Ak

on each processor, such a highly unbalanced distribution of non-zero
elements also results in an unbalanced distribution of computational
load among all processors.

A partition scheme that can produce a more balanced memory
utilization pattern is based on the number of non-zero elements in
Ak and Ad. Suppose the total number of non-zero elements in Ak is
Nk and the total number of non-zero elements in Ad is Nd, on each
processor we would like to store around Nk/Np non-zero elements
of Ak and around Nd/Np non-zero elements of Ad. Since we are
storing both Ap

d and A′pd on each processor, on average we need
about 2Nd/Np memory units for the regularization matrix on each
processor. Each processor also stores an entire copy of uk, which
has Mk elements, a portion of ud, which has Md elements in total,
and a portion of v, which has N elements in total. The vectors u′
and v′ can share the same memory allocations with u and v
respectively. To ensure a balanced utilization of the memory, the
preferred number of non-zero elements for all matrices and
vectors on each processor should be around

Ne ¼ ðNkþ2NdþMdþNÞ=NpþMk: ð16Þ
We start our partition process by assigning columns of Ak to the
first processor one by one. For the first processor, c1b ¼ 1. Since Ak is
stored in the CSC format, the number of non-zero elements of Ak

assigned to the first processor can be easily counted as we keep
assigning more columns to the first processor. On the c1b-th column
of the re-ordered Ad matrix there are a number of non-zero
elements. We set r1b to be the median of the row numbers of
those non-zero elements (Fig. 3). As we increase the number of
columns of Ak assigned to the first processor one by one, we also
increase the number of rows of Ad assigned to the first processor
one by one. When we assign the c-th column of Ak to the first
processor, we also assign the r-th row of Ad to the first processor
and r is chosen to be the median of the row numbers of the non-
zero elements on the c-th column of Ad. Since Ad is stored in the
CSR format, the number of non-zero elements of Ad assigned to the
first processor can also be easily counted. The elements in ud and v
are also assigned to the first processor one by one as we increase c
and r. When the total number of non-zero elements assigned to
the first processor N1

e exceeds q1Ne, where q1 is a user-specified
parameter, we stop assigning non-zero elements to the first
processor and start to assign the rest of the matrices and vectors
to the second processor. The column number c1e is set to the
current c value and the row number r1e is set to the current r value
(Fig. 3). For the second processor, c2b ¼ c1e þ1 and r2b ¼ r1e þ1. This
process continues until all the non-zero elements in the matrices
and vectors are assigned. For the full-wave tomography analyzed
in this study, when q1 ¼ 1 we obtain a perfectly balanced memory
utilization pattern (Fig. 5c). However, the number of columns of Ak

and also the number of rows of Ad assigned to each processor can
vary significantly from processor to processor (Fig. 5d).

If processor p has more columns of Ak than other processors, it
is likely that processor p also owns more rows of A′d and Ad, since
rpb and rpe are determined from cpb and cpe . As shown on Fig. 3,
a direct consequence of owning more rows of A′d and Ad is that
processor p needs to gather more elements of the vectors u and v
from other processors when computing the matrix–vector multi-
plications A′du and Adv. For the particular structure of the
regularization matrix as shown in Fig. 2, processor p needs to
gather more elements of vectors whose corresponding multi-
plicands are in the second and the third diagonals of the regular-
ization matrix and those elements of u and v are usually located
on many different processors. Since all processors need to be
synchronized before initiating the calculation in step (2b) (Fig. 1),
the inter-processor communication overhead caused by a few
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processors who have many more columns of Ak than other
processors may delay the progress of the whole calculation. To
avoid such a problem, when assigning the columns of Ak to each
processor, we also require that the total number of columns on each
processor Np

c does not exceed q2N=Np, where q2 is a user-specified
parameter. When distributing non-zero elements of the matrices
and vectors to processor p, we stop the process if one of the
following two conditions is satisfied,

Np
eZq1Ne; ð17Þ

Np
c Zq2N=Np: ð18Þ

For the tomographic inversion analyzed in this study, we obtained
the shortest overall wall-time when setting q1¼1.30 and q2¼2.18
on the Yellowstone supercomputer at NWSC. The distributions of Np

e
and Np

c for all processors are shown in Fig. 5e and f.

3. Results

We have examined the scalability of our code and made
performance comparisons with LSQR solver of PETSc on Yellow-
stone supercomputer at the NCAR-Wyoming Supercomputing

Fig. 5. Histrograms of element and column loadings on each processor for the even column (a and b), load balancing (c and d) and optimal (e and f) partition methods. (a) max_elem/
avg_elem=6.71, (b) max_col/avg_col=1.00, (c) max_elem/avg_elem=1.00 (d) max_col/avg_col=38.69, (e) max_elem/avg_elem=1.30 and (f) max_col/avg_col=2.18.

Table 1
Characteristics of datasets.

12K kernel dataset 125K kernel dataset

N 38,093,067 38,093,067
Mk 12,000 125,520
Md 261,330,576 261,330,576
nz Ak 14,190,626,015 143,524,414,175
nz Ad 818,542,016 818,542,016
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Center (NWSC) in Cheyenne, Wyoming. The Yellowstone system is
based on IBM's iDataPlex architecture with 4518 dual-socket
nodes. There are 8 Intel 2.6-GHz Intel Sandy Bridge EP with
Advanced Vector Extensions (AVX) processors per socket and

2 GB 1600-MHz DDR3 memory per processor. We used all 16
processors per node in all the following tests.

The details of two datasets of our full-3D waveform tomogra-
phy for Southern California used in the tests are listed in Table 1.
In the inversion problems, the zeroth-order and second-order
Tikhonov regularization matrices are used (Section 2.4 and
Fig. 4) and the size of matrix A is about 261 million rows by 38
million columns (Table 1). The 125K kernel dataset contains all
125,520 frequency-dependent kernels and there are over 143
billion non-zero elements in matrix A (Table 1). We will use the
125K kernel dataset for our performance analysis tests. In this
paper, we compared the performances between our LSQR code
and the parallel LSQR solver of PETSc (Balay et al., 1997). Due to the
memory limitation on the PETSc, we picked about one tenth of
kernels in 125K kernel dataset for the performance comparison
tests. In the 12K kernel dataset, the size of inversion problem is
about the same, but the amount of non-zero elements is about one
tenth of the 125K kernel dataset (Table 1).

3.1. Performance analysis

We first evaluate the scalability of our implementations by
using the 125K kernel dataset and all the measurements corre-
spond to the wall time of 100 LSQR iterations. Fig. 6a shows the

Fig. 6. Performance analysis results of 100 LSQR iterations of the 125K kernel
dataset from 4000 to 12,000 processors. (a) The comparisons between our wall
time measurements and ideally scaled wall time. (b) The stacked histograms show
the wall time of different operations in our implementations. In all cases, over
90% of total wall time is spent on sparse matrix–vector multiplications (SMVMs).
(c) The wall times of SMVMs and communication operations. The red dash lines
represent the predicted time of ideal scalability. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 7. (a) The average communication volume of gathering required vector
elements from the other processors and (b) average processors that each processor
need to communicate to during the Adv and AT

du operations from 4000 to 12,000
processors.
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comparisons between our wall time measurements (the blue
curve) and the scalable predictions (the red curve) from 4000 to
12,000 processors. The differences between measured and pre-
dicted times ((measurement-prediction)/prediction) are about
2.8% on 4800 processors, 9.9% on 7200 processors, 16.3% on
9600 processors, and 26.8% on 12,000 processors. In general, the
scalability is weaker when the number of processor increases.
To understand the cause of this issue, a further time profiling of
operations in our implementations is required.

We first analyze the time spending of the operations in our
implementations. In Fig. 6b, the total wall times from 4000 to
12,000 processors are separated into four categories. The “SMVMs”
represents the time spending on the pure sparse matrix–vector
multiplications (SMVMs) during the Av and ATu and excludes any
other expenses. The “gather vector” and “MPI_Allreduce” are the
time spending on two types of inter-processor communication.
The “gather vector” includes the wall times of gathering required
vector v elements from the other processors for Adv and gathering
required vector u elements from the other processors for AT

du
(details in Section 2.2). In our implementations, the other type of
communication is summing the u′k from all processors and then
distributing the updated u′k back to all processors during the
matrix–vector multiplication Akv (details in Section 2.2). In prac-
tice, we used the “MPI_Allreduce” function, which is more efficient
than a combined use of “MPI_reduce” and “MPI_Bcast”, to com-
plete the task. The wall times of the rest of expenses, such as
vector normalizations and scalar-vector products are classified
into the “other functions” category. In all the tests, over 95% of
the total wall time is used in the matrix–vector multiplications in
the LSQR iterations, which include the sparse matrix–vector
multiplications (SMVMs) and communication (“gather vector”
and “MPI_Allreduce”) operations (Fig. 6b).

Since the majority of wall time is spent on the sparse matrix–
vector multiplications and communication in our implementa-
tions, we further analyze the scalabilities of those operations.
Fig. 6c shows the wall times of SMVMs (the black curve), “gather
vector” (the blue curve) “MPI_Allreduce” (the green curve) and the

scalable predictions (the red curves) from 4000 to 12,000 proces-
sors. For the SMVMs, the time differences between measurements
and predictions ((measurement-prediction)/prediction) are about
1.9% on 4800 processors, 6.6% on 7200 processors, 9.6% on 9600
processors, and 16.1% on 12,000 processors (Fig. 6c). Although the
scalability is weaker when the number of processors increases, the
differences are all less than 20%. For the “gather vector”, the time
differences between measurements and predictions are about 2.4%
on 4800 processors, 31.9% on 7200 processors, 55.4% on 9600
processors, and 87.2% on 12,000 processors (Fig. 6c). Compare to
the SMVMs, the scalability of the “gather vector” operations is
much poorer. Fig. 7a and b show the average communication
volume during the Adv and AT

du operations and the average
number of processors needed during the “gather vector” opera-
tions for each processor. As processors increase, the average
communication volume decreases about linearly (Fig. 7a) but the
average number of processors needed during communication
increases accordingly (Fig. 7b). The increase in the average number
of processors needed during the “gather vector” operations
(Fig. 7b) implies that the total processors involved in the commu-
nication operations also increase and therefore limits the scal-
ability of the “gather vector” operations. For the “MPI_Allreduce”
function, its wall time is not scalable. When the number of
processors increases, there are more processors involved in the
operations. However, the increase in wall time is small (Fig. 6c).

Although the scalability of our implementations is weaker as
processors increase, the overall wall time still decreases (Fig. 6a
and b). This is because the majority of total wall time (about 90% in
all the tests) is spent on the SMVMs (Fig. 6b), which has relatively
strong scalability (Fig. 6c).

3.2. Performance comparisons

The Portable, Extensible Toolkit for Scientific Computation
(PETSc) (Balay et al., 1997) is a widely used computational library.
In PETSc library, many easy-to-use linear equations solvers are
provided and the LSQR algorithm is in the Krylov Subspace

Fig. 8. Illustration of PETSc's matrix–vector multiplication implementations. The gray bars in matrix A represent the non-zero values of kernel and damping matrices. The
required communication volume is in strip-pattern. For memory and computation balance, each processor stores a portion of kernel and damping matrices. When the
number of processor double, the matrix–vector multiplication of A3v3 is paralleled into A5v5 and A6v6, as shown in left-hand-side.
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Methods (KSP) component. To use the LSQR solver in PETSc library,
we used functions in PETSc library to create the input matrix and
vectors. The non-zero elements in the matrix A, including the
Jacobian (or Fréchet) matrix Ak and the regularization matrix Ad,
are stored in the default matrix format, the compressed-sparse-
row (CSR) format. Each processor stores both a portion of matrix
Ak and matrix Ad (Fig. 8) for both memory and calculation
balances. The vector v and u are evenly separated into processors
(Fig. 8). Processor p owns sub-matrix Ap, a portion of vector v, vp,
and a portion of vector u, up. During the matrix–vector multi-
plication Av, because each processor only owns a portion of vector
v, it is required to transfer needed elements of vector v from other
processors to processor p to complete the matrix–vector multi-
plication Apv (Fig. 8). The communication volume for processor p
depends upon the number of required v elements for Apv outside
the vp(Fig. 8). When the required elements outside the vp is large,
the increases not only in the communication cost but also in the
memory allocation for storing the gathered vector elements from
other processors. The same amount of communication cost is
required during the matrix–vector multiplication ATu.

In this paper, we compared the performances between our and
the PETSc's implementations of the LSQR algorithm. Due to the
memory constraints on PETSc's implementations, the 12 K kernel
dataset is used for comparison tests. We used a built-in profiling
option in the PETSc that can be accessed by adding the flag

“-log_summary”. Fig. 9a shows total and communication wall
times of two implementations for 100 LSQR iterations from 2400
to 9600 processors. In PETSc's implementations, the wall times
increase when the number of processor increases and over 50% of
total wall time is spent on communication. We then compare the
average communication volume between two implementations
(Fig. 9b). Notice that we include the communication volume from
both “gather vector” and “MPI_Allreduce” operations (Section 2.2)
in the comparison tests. When the number of processor increases,
the average communication volume decreases in our implementa-
tions but that increases in PETSc's implementations.

In PETSc's implementations, when the number of processor
increases, the wall time of communication and average commu-
nication volume per processor also increase (Fig. 9). Fig. 8 illus-
trates the increase of communication volume, when the number of
processor is doubled. To balance the memory loading and calcula-
tions, the original task in each processor is paralleled into two
processors. In the example, the original matrix–vector multiplica-
tion A3v in the third processor is partitioned into two sub-matrix–
vector multiplications A5v and A6v. It turns out that the amount of
communication volume for A5v and A6v is more than that of the
A3v. In addition, each processor owns a smaller portion of vector v,
so the number of processor involved in communication also
increases. Due to the increase in both communication volume and
processor number, the total communication wall time also increases.
Compare to PETSc's implementations, even though the scalability of
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communication wall time is weak in our implementations, when the
number of processor increases, the communication wall time still
decreases (Fig. 9a).

In Fig. 10 we show the speedups (wall time of PETSc/wall time of
our code) of the total and communication wall times from 2400 to
9600 processors. The speedups of total wall time are about 17x on
2400 processors, 29x on 4800 processors, 44x on 7200 processors
and 74x on 9600 processors (Fig. 10a). The majority of improvements
are from the communication processes and the Fig. 10b shows the
speedups of communication wall time. The speedups of communica-
tionwall time increase from 62x on 2400 processors to 201x on 9600
processors (Fig. 10b).

3.3. Full-3D waveform tomography for Southern California

To find an optimal damping coefficient, many LSQR runs with
different damping coefficients are required in real seismic tomo-
graphic inversions. Our optimized codes have significantly reduced
the required time and computational resources for the LSQR
algorithm and therefore make this process feasible for very large

Fig. 12. (a) The map shows the topography and major faults (thick black lines) of Southern California. (b–d) The under-damping, optimal and over-damping LSQR
perturbation results at 0.5 km of the Southern California tomographic inversion. (a) Topography, (b) under-damping, (c) optimal, (d) over-damping. In perturbation maps, the
red regions represent velocity reduction areas and the blue regions represent velocity increase areas. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. The L-curve of the full-3D waveform tomographic inversion for Southern
California.

E.-J. Lee et al. / Computers & Geosciences 61 (2013) 184–197 195



seismic tomographic inversions. The result curve is usually char-
acterized by its L shape and is called an “L-curve” (e.g. Aster et al.,
2005). In general, a damping coefficient close to the corner of the
L-curve is selected as an optimal value. Fig. 11 shows the L-curve of
our Southern California tomographic inversion.

Fig. 12a shows the topography and major faults (thick black
lines) in our study area and Fig. 12b–d show the perturbation
results of different damping coefficients at 0.5 km. In the under-
damping result (Fig. 12b), although the misfit reduction is larger,
the perturbations are oscillated. In the optimal result (Fig. 12c),
the perturbations show many correlations with geological struc-
tures. For example, the seismic velocity in the southern Great
Valley, offshore basins, Salton trough and Majave regions where
east of the San Andreas fault need to reduce, but the seismic
velocity in the Sierra Nevada and Coast Ranges where close to the
Santa Ynez regions need to increase. In the over-damping result, not
only the misfit reduction is small but also the perturbations are too
smooth (Fig. 12d).

4. Conclusions and future developments

The LSQR algorithm is efficient and stable for solving large and
ill-posed linear systems and widely used in seismic tomographic
inversions. Since the increase in seismic observations and
advances in computational seismology have made seismic tomo-
graphic inversions much larger than they are before (e.g. Lin et al.,
2010; Chen et al., 2007b), an efficient and paralleled LSQR solver is
required for those seismic tomographic inversions. In this paper,
we present our optimizations on our LSQR code and discuss the
benefits of our optimizations. The use of re-ordered damping
matrix simplifies the communication and reduces the amount of
communication volume among processors. The combination of
using CSC and CSR formats and the MPI I/O has made the data
reading process extremely efficient for very large datasets. To
further improve the performance of the LSQR code, we utilize an
optimal partition method to balance the amount of data loading,
calculations and communication volume among the processors.

In this paper, the performance of our and PETSc's implementa-
tions of the LSQR algorithm was compared. We use the kernel
dataset of full-3D waveform tomographic inversion for Southern
California in the tests. The size of the inversion problem is about
261 million rows by 38 million columns and the speedups of total
wall time for 100 LSQR iterations varies from 17x to 74x. Because
our implementations of the LSQR algorithm are designed for
reducing the communication cost in a large inverse problem, the
speedup of communication wall time also varies from 62x to 201x.
In addition, our implementations of LSQR algorithm require less
memory usage when compare with PETSc's implementations.

In future work, we could like include the OpenMP in our
currently implementations. In addition, we also plan to use the
Graphics Processing Units (GPUs) in future developments. We
would like to investigate combining OpenCL or CUDA with our
MPI code to improve the performance further.
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