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Abstract

In concurrent programming, non-blocking synchronization is very efficient but difficult to design cor-

rectly. This paper presents a static analysis to show that code blocks using non-blocking synchronization

are atomic, i.e., that every execution of the program is equivalent to one in which those code blocks

execute without interruption by other threads. Our analysis determines commutativity of operations

based primarily on how synchronization primitives (including locks, Load-Linked, Store-Conditional,

and Compare-and-Swap) are used. A reduction theorem states that certain patterns of commutativity

imply atomicity. Atomicity is itself an important correctness requirement for many concurrent programs.

Furthermore, an atomic code block can be treated as a single transition during subsequent analysis of

the program; this can greatly improve the efficiency of the subsequent analysis; for example, it can signif-

icantly reduce the time and space for model checking. We demonstrate the effectiveness of our approach

on several concurrent non-blocking programs.
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1 Introduction

Many concurrent programs use blocking synchronization primitives, such as locks and condition variables.

Non-blocking synchronization primitives, such as Compare-and-Swap, and Load-Linked / Store-Conditional,

never block (i.e., suspend execution of) a thread. Non-blocking (also called “lock-free”) synchronization is

becoming increasingly popular, because it offers several advantages, including better performance, immunity

to deadlock, and tolerance to priority inversion and pre-emption [Mic04b, MS96].

An important use of non-blocking synchronization is in the implementation of non-blocking objects. A

concurrent implementation of an object is non-blocking if it guarantees that some process can complete its

operation on the object after a finite number of steps of the system, regardless of the activities and speeds

of other processes [Her93]. Non-blocking synchronization is also used to implement blocking objects, such

as spin locks.

Algorithms that use non-blocking synchronization are often subtle and difficult to design and verify. This

paper presents a static analysis to show that code blocks using non-blocking synchronization are atomic.

Informally, a code block is atomic if every execution is equivalent to one in which the code block is executed

serially, i.e., without interruption by other threads. Atomicity is well known in the context of transaction

processing, where it is often called serializability.

Atomicity is an important correctness requirement for many concurrent programs. Furthermore, each

atomic code block can be treated as a single transition during subsequent static or dynamic analysis of the

program; this can greatly improve the efficiency of the subsequent analysis.

This paper presents a conservative intra-procedural static analysis to infer atomicity. We build on Flana-

gan et al.’s work on atomicity types [FQ03] and purity [FFQ05] in order to develop an analysis that is much

more effective for programs that use non-blocking synchronization primitives. Our analysis first classifies all

actions (i.e., operations) in a program into different types based on their commutativity, which is determined

based primarily on how locks and non-blocking synchronization primitives are used in the program. The

analysis then combines those types to determine the types of larger code blocks, and then determines the

atomicity of the program.

We formalize the analysis for a language SYNL that allows declaration of top-level procedures (as in

an API) that implicitly get concurrently called by the environment. The language does not allow explicit

procedure calls; internal procedures are inlined, and we do not handle recursion. Despite these limitations,

SYNL is powerful enough for expressing many non-blocking algorithms. The analysis can be extended to be
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inter-procedural. It applies equally to non-blocking objects and blocking objects.

The analysis is incomplete (i.e., sometimes fails to show atomicity), but is effective for common patterns

of non-blocking synchronization, as demonstrated by the applications in Section 6. We applied it to four

interesting non-trivial non-blocking programs: the running example in Sections 4 and 5, and three other

programs described in Section 6. Our analysis can be applied directly to one of them. For the next two,

we modify the algorithms slightly before applying our analysis and show that the modification preserves the

behaviors of the algorithms. For the fourth one, we just omit some optional optimizations before applying

our analysis.

We consider the results encouraging, since we do not know of any other algorithmic (i.e., automatable)

analysis that can show atomicity of the same (or larger) code blocks in the modified or original versions. We

believe our analysis provides a useful method for manual verification of atomicity, as well as being suitable

for automation. The experiments in Section 6 show that the atomicity analysis can significantly reduce the

time and space of subsequent verification.

2 Related Work

This paper significantly extends our previous work [WS05] with a refined definition for pure loop, a formal

semantics for the language SYNL, correctness proofs for core aspects of the analysis, and an analysis for

DCAS-based double-ended queue.

Gao and Hesselink [GH04] used simulation relations to prove that a non-blocking (called lock-free in

[GH04]) algorithm refines a higher-level (coarse-grained) specification. Using the PVS theorem prover, they

proved correctness of algorithms similar to the ones in Figures 3 and 9. The proofs took a few man-months

and are not easily re-usable for new algorithms.

Flanagan et al. developed type systems [FQ03] based on Lipton’s reduction theorem [Lip75] to verify

atomicity. Wang and Stoller [WS03, WS06b, WS06a] and Flanagan et al. [FF04] developed runtime al-

gorithms to check atomicity. All of this work focuses on locks and is not effective for programs that use

non-blocking synchronization.

Flanagan et al. extended their atomicity type system with a notion of purity [FFQ05]. A code block

is pure if, whenever it evaluates without interruption by other threads and terminates normally, it does

not change the program state. Non-blocking programs often contain code blocks that abort an attempted

update to a shared variable if the variable was updated concurrently by other threads; these code blocks are
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often pure according to our definition of purity, which generalizes the definition in [FFQ05] by taking into

account liveness of variables and use of unique references. The type system in [FFQ05] can show atomicity

of simple non-blocking algorithms but not of any of the algorithms analyzed in this paper, because it does

not accurately analyze usage of non-blocking synchronization primitives; for example, it has no analogue of

the notions of “matching read” or “matching LL” in Section 5.2, and does not analyze exceptional variants

(also defined in Section 5.2) of a procedure separately.

Atomicity used to optimize model checking can be regarded as a partial-order reduction [Pel98], i.e., a

method for exploiting commutativity to reduce the number of states explored by a verification algorithm. For

non-blocking algorithms, traditional partial-order reductions are less effective than our analysis, because they

do not distinguish left-movers and right-movers, and they focus on exploiting commutativity of operations

with little regard for the context in which the operations are used, while our analysis considers in detail the

context (surrounding synchronization and conditions) of each operation.

The model-checking (i.e., state-space exploration) algorithm in [QRR04] dynamically identifies transac-

tions, which correspond roughly to executions of atomic blocks. Their algorithm relies on a separate analysis

to determine commutativity of actions. An inter-procedural extension of our analysis could be used for this.

This would allow their algorithm to be applied effectively to non-blocking programs.

Linearizability [HW90] is a correctness condition for objects shared by concurrent processes. Informally,

a concurrent object o is linearizable if and only if each concurrent operation history h for o is equivalent

to some legal sequential history s, and s preserves the real-time partial order of operations in h. The

equivalence is based on comparing the arguments and return values of procedure calls. Legality is defined

in terms of a specification of the correct behaviors of the object. We focus on proving atomicity rather than

linearizability, because atomicity does not require a specification of correct behaviors. Atomicity can help

establish linearizability: first show that the concurrent implementation executed sequentially (i.e., single-

threaded) satisfies the sequential specification, and then apply our analysis to show that the procedures of

the implementation are atomic.
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3 Background

3.1 Non-Blocking Synchronization Primitives

Non-blocking synchronization primitives include Load-Linked (LL) and Store-Conditional (SC), supported

by PowerPC, MIPS, and Alpha, and Compare-and-Swap (CAS), supported by IBM System 370, Intel IA-32

and IA-64, Sun SPARC, and the JVM in Sun JDK 1.5.

LL(addr) returns the content of the given memory address. SC(addr, val) checks whether any other

thread has written to the address addr (by executing a successful SC on it) after the most recent LL(addr)

by the current thread; if not, the new value val is written into addr, and the operation returns true to

indicate success; otherwise, the new value is not written, and false is returned to indicate failure. Another

primitive VL (validate) is often supported. VL(addr) returns true iff no other thread has written to addr

after the most recent LL(addr) by the current thread.

In a run of a program, the matching LL (if any) for a SC(v, val) or VL(v) action is the last LL(v) before

that action in the same thread. If there is no matching LL for a SC action, the SC action fails. Similarly,

the matching SC (if any) for a LL(v) is the next SC(v, val) after that action in the same thread.

CAS(addr, expval, newval) compares the content of address addr to the expected value expval; if the two

values are equal, then the new value newval is written to addr, and the operation returns true to indicate

success; otherwise, the new value is not written, and the operation returns false to indicate failure.

3.2 A Language: SYNL

We formalize our analysis for a language SYNL (Synchronization Language). The syntax of SYNL is shown

in Figure 1. There is no explicit procedure call, as discussed in Section 1.

A program consists of global variable declarations, thread-local variable declarations, and procedure

definitions. A thread-local variable is accessible in only one thread, and its value persists between procedure

calls of the same thread.

An execution of a SYNL program consists of an arbitrary number of invocations (by the environment)

of its procedures with arbitrary type-correct arguments (for brevity, we leave the type system implicit), and

with an arbitrary amount of concurrency. Therefore, SYNL does not need constructs to create threads.

Statements include assignments, synchronized (for lock synchronization), sequential composition, con-

ditionals, local blocks, loops, continue, return, break, and skip. synchronized has the same semantics
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as in Java. A local statement introduces a scoped variable. In this paper, a local variable is introduced

by a local statement, a thread-local declaration, or a procedure parameter declaration. The loop state-

ment defines an unconditional loop: “loop s” is equivalent to “while (true) s”. Every while loop can be

re-written using loop, if, and break. All loops in SYNL are unconditional.

Expressions in SYNL include constant values, variables, field accesses, array accesses, non-blocking syn-

chronizations, object allocations new, and calls to primitive operations (such as arithmetic operations).

Variables may have primitive types and reference types. A local variable may contain a reference to a shared

object. For example, a field access x.fd may access both a local variable x and a shared variable (i.e., a

field of a shared object). Primitive operations have no side effect.

As syntactic sugar, we allow non-blocking primitives to be used as statements when their return values

are not needed; for example, SC(x, e) used as a statement is the syntactic sugar for: local dummy =

SC(x, e) in skip.

Program ::= global var∗; thread-local var∗; proc proc∗

Procedure ::= pn(var∗) stmt∗

Statement ::= loc = e | synchronized(e) s | s; s | if e s s | local x = e in s | loop s
| continue | return | return e | break | skip

Expr ::= val | loc | CAS(loc, e, e) | LL(loc) | VL(loc) | SC(loc, e) | new C | prim(e, ...)
Location ::= x | x.fd | x[e]

proc ∈ Procedure
s ∈ Statement
e ∈ Expr

loc ∈ Location
pn ∈ ProcedureName
val ∈ V al

x ∈ V ariable
fd ∈ Field

prim ∈ PrimitiveOperation
C ∈ Class

Figure 1: Syntax of SYNL.

An execution is an initial state followed by a sequence of transitions. A program state is a tuple which

consists of a global store G, a heap H, each thread’s local store L and program statements (this indicates the

next statement to execute; it takes the place of a program counter). Each transition corresponds to one step

of evaluation of an expression or statement in a standard way. The formal definitions of states and transitions

are in Appendix B. For each transition, we consider the action performed by it. These actions capture the

relevant behavior of the transition for our analysis and are described in Section 3.3. Note that all constructs

in SYNL are deterministic, so the intermediate states during an execution are uniquely determined by the
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initial state and the sequence of transitions, and we will sometimes talk about executions as if those states

were present in them.

Code blocks in a program P are atomic if: for every reachable state s of P in which all threads are

executing outside those code blocks, s is also reachable in an execution of P in which those code blocks are

executed serially, i.e., without interruption by other threads.

3.3 Commutativity and Atomicity Types

The live scope of a local variable consists of control points where the variable is in scope and live. We

overload “live scope” by also saying that a state (of a multithreaded program) with some thread at such a

control point is in the live scope of the variable. SYNL does not allow references to local variables, so the

live scope of every local variable can easily be determined.

A local reference variable v in a program P is unique if, in every reachable state of P that is in the live

scope of v, no other variables contain the same reference as v. Thus, during the live scope of v, the object

pointed by v is unshared, although it may be shared outside the live scope of v. In this paper, “reference”

is often short for “reference variable”. Any static uniqueness analysis may be used to identify unique local

references.

An unshared object is an object accessed by only one thread. An unshared variable is a local variable,

a field of an unshared object, or a field of an object referenced by a unique local reference (this definition

could be extended to include fields of objects reachable by a chain of unique references). Other variables are

shared variables. Escape analysis can be used to determine when objects become shared; before that, their

fields are unshared variables.

A local action is an access to an unshared variable. Conservatively, other variable accesses can be treated

as global actions. Acquire and release on shared locks are also global actions. Thus, there are four kinds of

global actions: read, write, acquire lock, and release lock. Let R(v), W (v), acq(v), and rel(v) denote these

global actions, respectively, where v denotes the accessed variable or lock. LL and VL are global reads. SC

and CAS are global writes to their first argument and, if their second or (for CAS) third argument are shared

variables, also global reads of those variables. Every action is atomic, since a single action is executed in a

single step of execution.

Following [Lip75], actions are classified according to their commutativity. An action is a right-mover/left-

mover if, whenever it appears immediately before/after an action from a different thread, the two actions
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can be swapped without changing the resulting state. An action is a both-mover if it is a left-mover and a

right-mover. An action not known to be a left-mover or right-mover is atomic (type), since a single action

is executed in a single step of execution.

Theorem 3.1. Local actions are both-movers.

Proof. Accesses to local variables and fields of unshared objects are obviously both-movers. For accesses to

a field f of an object o through a unique local reference v, they are all in the live scope of v. During the live

scope of v, other threads cannot hold any reference to the object o. So they cannot access o.f concurrently

through v. Hence, accesses to o.f through v are both-movers.

Theorem 3.2. Lock acquires are right-movers. Lock releases are left-movers.

Proof. See [FQ03], from which this theorem is taken. Here is a proof sketch. For acq(v), its immediate

successor global action a from another thread can not be a successful acq(v) or rel(v), because acq(v) would

block, and rel(v) would fail (in Java, it would throw an exception). Hence acq(v) and a can be swapped

without affecting the result, so lock acquire is a right-mover. For similar reasons, lock release is a left-mover.

Theorem 3.3. (1) For a global read R(v), if no global write W (v) from other threads can happen immediately

before/after R(v), R(v) is a left/right mover. (2) For a global write W (v), if no global read R(v) or write

W (v) from other threads can happen immediately before/after W (v), W (v) is a left/right mover.

Proof sketch. The main observations are that two reads commute, and accesses to different variables com-

mute.

We briefly review atomicity types, which were introduced by Flanagan and Qadeer [FQ03]. An atomicity

type is associated with an action. The atomicity types are: right-mover (R), left-mover (L), both-mover

(B), atomic (A), and non-atomic (N , called compound in [FQ03]). The first three mean that the actions

have the specified commutativity. Atomic is used for single actions that are not left-movers or right-movers

and for atomic (as defined in Section 3.2) sequences of actions. Non-atomic is used when none of the other

atomicity types are known to apply. Atomicity types are partially ordered such that smaller ones give

stronger guarantees. The ordering is: B @ t @ A @ N for t ∈ {L,R}. The atomicity type of an expression

or statement can be computed from the atomicity types of its parts (such as actions) using the following

operations on atomicity types. The join (i.e., least upper bound) operation based on this ordering is used

to compute the atomicity of an if statement from the atomicity types of the then and else branches. The
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iterative closure t∗ of an atomicity type t denotes the atomicity of a statement that repeatedly executed a

sub-statement with atomicity type t. It is defined by: B∗ = B, R∗ = R, L∗ = L, A∗ = N , N∗ = N . The

sequential composition a; b is defined by the following table (the rows are labeled by the first argument; the

columns are labeled by the second argument):

; B R L A N

B B R L A N

R R R A A N

L L N L N N

A A N A N N

N N N N N N

4 Pure Loops

For a loop (recall that all loops in SYNL are unconditional, like while (true) s), if an iteration terminates

exceptionally via a break or return statement, it is called an exceptional iteration; otherwise, it is called a

normal iteration. For simplicity, we do not consider nested loops in this paper. We define pure loops based

on the notion of pure statements introduced in [FFQ05]1. Informally, a loop is pure if all normal iterations of

the loop have no side effect (a formal definition appears in Section 4.1.1). Typically, a normal iteration uses

some side-effect-free actions to check whether some conditions on the current state are satisfied. When these

conditions are not satisfied, another iteration is needed. When these conditions are satisfied, an exceptional

iteration occurs; it may have side effects and exit the loop. Therefore, following the idea proposed in [FFQ05],

to determine the atomicity of a pure loop, we may ignore its normal iterations and focus on its exceptional

iterations.

Note that pure is not the same as side-effect free, because a pure loop may have side effects in exceptional

iterations.

A simple example of a pure loop appears in the implementation of the Down operation on a semaphore

shown in Figure 2. Iterations that end at return are exceptional. Iterations that end at line 4 (i.e., when

tmp > 0 is false) or line 5 (i.e., when SC returns false) are normal and have no residual side effects.

1In our framework, unlike [FFQ05], purity is a property (of loops) that has no effect on the operational semantics.
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1 proc Down(sem) {

2 loop

3 local tmp = LL(sem) in local tmp = LL(sem) in

4 if (tmp > 0) TRUE(tmp > 0)

5 if (SC(sem, tmp-1)) TRUE(SC(sem, tmp-1))

6 return; return;

7 }

Figure 2: Down operation on a semaphore. Its exceptional variant introduced in Section 5.2.1 is shown on
the right.

4.1 Formal Definition of Pure Loops

4.1.1 Pure Actions and Pure Loops

Some local reference is not unique according to the definition in Section 3.3, but all its effects on other

threads are limited to normal iterations of loops, which can be ignored under some condition when analyzing

atomicity, as shown below in Theorem 4.1. To capture this, we define: a local reference variable v is quasi-

unique in a program P if v is unique (as defined in Section 3.3) when all loop-local variables (i.e., their entire

scopes are in the loop body) in normal iterations of loops in P are ignored (in other words, some loop-local

variables in normal iterations may contain the same reference as v while v is in scope and live). In this paper,

quasi-unique local references are identified manually. This could be done automatically using an extended

static uniqueness analysis.

Informally, an action in a normal iteration of a loop is pure if any update performed by the action is not

visible to other threads or to the current thread after the current normal iteration; in other words, there is

no data flow from the action to outside of the normal iteration in which it occurs. Formally, a pure action

should satisfy the following two conditions:

(1) If it performs an update, the target location loc must satisfy the following conditions: (1.i) loc is a

local variable, a field of an unshared object, or a field of an object o accessed through a quasi-unique local

reference; and (1.ii) for all paths in the control flow graph from the beginning of the loop body to exit points

of the loop (i.e., break and return statements), if there is any access to loc, the first one must be write

(and if loc is a field of a shared object, the write is performed by dereferencing a unique local reference); and

(1.iii) if loc is not accessed on some path described in (1.ii), then loc is loop-local.

(2) (2.i) If it is a LL action, each matching SC(loc,-) is in the same iteration of the loop; if it is a SC

action, each matching LL(loc) is also in the same iteration. (2.ii) It is not a successful SC.
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Condition (1) as a whole ensures that the updates in normal iterations have no side-effects outside.

Condition (1.i) ensures that the updates in normal iterations effectively have no side-effects on other threads.

Suppose a field f of a shared object o is updated in a normal iteration through a quasi-unique local reference,

other threads concurrently access o.f (and hence see the update) only in normal iterations, so those accesses

and their effects also disappear when normal iterations are deleted, as in Theorem 4.1. Conditions (1.ii) and

(1.iii) ensure that updates in normal iterations are not visible to subsequent operations of the same thread.

Condition (2.i) is needed because LL implicitly performs an update that can affect subsequent SC operations

by the same thread. Condition (2.ii) is needed because a successful SC has side-effects on SC operations in

other threads.

Formally, a loop is pure if, for each normal iteration of the loop, every action that can occur in it is pure.

To check whether a loop is pure, we construct a control flow graph (CFG), analyze it to identify actions that

can occur in normal iterations of the loop, and then check whether those actions are pure according to the

above definition. There is a special case for SC and CAS. When a SC is used as the test condition of an

if statement (e.g., the SC in Figure 3), if only the false branch of the if statement can be executed under

normal iterations, the SC is treated as a read (not an update). CAS is handled similarly.

4.1.2 An Example of Pure Loop

An example appears in Figure 3, which shows Herlihy’s algorithm for non-blocking concurrent implementa-

tion of small objects [Her93]. Suppose a small object (i.e., small enough to be copied efficiently) is shared by

a set of threads. The main steps on each thread in the algorithm are: (1) read the shared object reference

Q using LL; (2) copy the data from the shared object into a private (i.e., currently unshared) working copy

of the object, i.e., the object referred by prv; (3) perform the requested computation on the private object;

(4) switch the reference values in Q and prv between the shared object and the private object using SC and

an assignment statement. Note that the formerly shared object becomes a private copy, and the formerly

private object becomes the current shared copy.

Before a thread t1 switches the reference of the shared copy o with the private copy of t1, another thread

t2 may read the reference to o using LL(Q). Even though o becomes the private copy of t1, t2 may still hold

the reference to o, though the SC of t2 will fail later, causing t2 to loop and read the current reference from

Q. Thus, t1 may write to o while t2 copies data from o. If t2 tried to perform a computation on a copy of

the data that reflects only part of some update, it might suffer a fatal error, such as divide by zero. Line 4
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global Q;

thread-local prv;

proc alg(input)

1 loop

2 local m = LL(Q) in

3 copy(prv.data,m.data);

4 if (!VL(Q)) continue;

5 computation(prv.data,input);

6 if (SC(Q,prv))

7 prv = m;

8 break;

local m = LL(Q) in

copy(prv.data,m.data);

TRUE(VL(Q));

computation(prv.data,input);

TRUE(SC(Q,prv));

prv = m;

break;

Figure 3: Herlihy’s non-blocking algorithm for small objects. Its exceptional variant, defined in Section 5.2.1,
is shown on the right.

prevents this: if o.data (accessed as m.data) is modified by another thread during the copy in line 3, the VL

will fail.

Initially, prv is a unique local reference. After the reference values in Q and prv are switched, some

other threads executing the loop may still have references to the formerly shared object as described in the

previous paragraph. Note that prv can be aliased only by m and Q variables at those threads during normal

iterations. Therefore, when normal iterations are ignored, prv is a unique local reference except in the states

between a successful SC and “prv = m” because the thread temporarily has two references to the object.

Since prv and m are both local variables, “prv = m” contains only local actions. It is well known that the

set of reachable states is not affected when a sequence of local actions executes atomically together with a

non-local action that immediately precedes or immediately follows the sequence, if the intermediate states

between those actions are ignored. In this case, ignoring those intermediate states is justified because these

transitions are in a loop body, and our goal (shown in Theorems 4.1 and 4.2) is to preserve reachability of

states where all threads are executing outside of loops (because the theorems require that all loops are pure).

Therefore, according to the definition in Section 4.1.1, all actions in normal iterations are pure, so the

loop is pure.

4.1.3 Normal Iterations of Pure Loops Can Be Deleted

Theorem 4.1 shows that all normal iterations of all pure loops can be deleted from an execution without

affecting the result of the execution. Informally, deleting a transition from an execution means removing it

and adjusting the subsequent states. Details are in Appendix C. Theorem 4.1 is the basis for proving in

Section 5 that normal iterations of pure loops can be ignored when analyzing atomicity.
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Theorem 4.1. Suppose all loops in a program P are pure. Let σ be an execution of P . Let σ′ be an execution

obtained from σ by deleting all transitions in all normal iterations of all pure loops in P . Then σ′ is also an

execution of P , and σ and σ′ contain the same states in which all threads are executing outside pure loops.

Proof sketch. A detailed proof appears in Appendix C. Here is a proof sketch.

Recall that loops in SYNL are equivalent to while (true) s. When the body of a loop terminates

normally, the thread begins another iteration of the same loop body.

According to the definition of pure loop, normal iterations can update only unshared variables and fields

of shared objects accessed by dereferencing quasi-unique local references. The values written are dead by

the end of the loop body, except that an update to a field of a shared object accessed by dereferencing a

quasi-unique local reference can be visible in normal iterations of pure loops in other threads. Because all

normal iterations of pure loops are removed simultaneously, all of these side-effects on other threads are also

eliminated. The syntax of SYNL ensures that lock acquire and release actions occur in matching pairs in

an execution of a loop body, so deleting them does not affect the resulting state of the lock; also, note that

other threads cannot perform any operations on a lock while it is held by this thread. Because the definition

of pure loop implies that no successful SC occurs in normal iterations, and the matching pairs of LL and SC

(if they exist) must occur in the same iteration of a loop, so deleting them does not affect subsequent LLs

and SCs in this thread or LLs and SCs in other threads. CAS just reads and writes variables, and the same

reasoning as for other reads and writes applies.

Theorem 4.2. Suppose all loops in a program P are pure. After deleting all transitions in all normal

iterations of all loops, accesses to fields of shared objects by dereferencing quasi-unique local references are

both-movers.

Proof. According to the definition of quasi-unique local references, these references become unique after all

normal iterations of all loops are deleted. As shown in Theorem 3.1, accesses through unique local references

are both-movers.

5 Checking Atomicity

The main issue in applying Theorem 3.3 is determining whether a global action can happen immediately

before or after another global action. Our analysis determines this based on how synchronization primitives

are used.
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5.1 Lock Synchronization

Lock synchronization is well studied. We sketch a simple treatment of lock synchronization, to illustrate

how analysis of locks fits into our overall analysis algorithm.

Theorem 5.1. If expressions e1 and e2 appear in the bodies of different synchronized statements that

synchronize on the same lock, then e1 cannot be executed immediately before or after e2.

Proof sketch. Since e1 and e2 are protected by the same lock, at least one acquire and release of the lock

must occur between e1 and e2 in any execution.

Alias analysis may be used to determine whether two synchronized statements synchronize on the same

lock.

5.2 Non-Blocking Synchronization

5.2.1 Exceptional Variants

Based on Theorem 4.1, for each pure loop, it suffices to analyze atomicity of each exceptional iteration of

the loop. For each break or return statement in a loop, the backward slice of the loop body starting at

that break or return and ending at the loop’s entry point is called an exceptional slice of the loop.

The atomicity of a procedure can be determined by analyzing atomicity of its exceptional variants. Each

exceptional variant is a specialized version of the procedure, and corresponds to a selection of exceptional

slices of its pure loops, with each pure loop replaced by its selected exceptional slice. If the selected excep-

tional slice includes only the true branch of an “if e S1 S2” statement, then we replace the if statement

with “TRUE(e); S1” in the corresponding exceptional variants of the procedure; if the slice includes only the

false branch, we replace the if statement with “TRUE(!e); S2”. A SC expression in TRUE(SC(v, val)) must

be successful, and we call it a successful SC expression. Non-pure loops appear unchanged in the exceptional

variants. For example, Figures 2 and 3 show the exceptional variants for the semaphore Down procedure and

Herlihy’s non-blocking algorithm, respectively.

Theorem 5.2. If all exceptional variants of a procedure p are atomic, then p is atomic.

Proof Sketch. Let P denote the original program that contains p. Let σ be an execution of P . Let ϕ be a

state in σ in which all threads are executing outside p.

According to Theorem 4.1, an execution σ′ of P can be obtained from σ by deleting all transitions in

normal iterations of pure loops in procedure p, and ϕ is reachable in σ′. By the definition of exceptional
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variant, there must be exceptional variants of p which can produce the same exceptional iterations of pure

loops of p as in σ′. Let P ′ denote the program obtained by replacing procedure p with such exceptional

variants. Thus, σ′ is also an execution of P ′.

By hypothesis, all exceptional variants of p are atomic. Based on σ′, by the definition of atomicity, there

exists an execution σ′′ of P ′ in which the exceptional variant of p are executed atomically and in which ϕ is

reachable.

By the definition of exceptional variants of a procedure, every execution of an exceptional variant of p is

also an execution of p. Therefore, σ′′ is also an execution of P , and all executions of p in σ′′ are executed

atomically, and ϕ is reachable in σ′′. Thus, by the definition of atomicity, p is atomic.

5.2.2 Atomicity Analysis of Non-Blocking Synchronization Primitives LL/SC/VL

There is a unique matching LL action for each successful SC action in an execution. In program code, there

might be multiple LL expressions or statements that can produce the matching LL action for an occurrence

of SC. We call these the matching LL expressions of the SC expression. For example, if there is an if

statement before a SC, and both branches of the if statement contain LL, both of the LL expressions can

possibly match the SC.

For a SC(v, val) in a program, to find its matching LL expressions, we do a backward depth-first search

on the control flow graph starting from the SC, and not going past edges labeled with LL(v). All of the

visited occurrences of LL(v) match the SC. For a VL(v), its matching LLs can be found in the same way.

We implicitly assume hereafter that each SC expression has a unique matching LL expression. This

assumption is not essential, but it simplifies the analysis and is satisfied by the non-blocking algorithms we

have seen. We also implicitly assume that a variable updated by a SC is updated only by SC, not by other

actions (such as regular assignment or CAS).

Theorem 5.3. A successful SC or VL is a left-mover, and the matching LL is a right-mover.

Proof. By the semantics of LL, SC and VL, for a successful SC(v, val) or VL(v) action and its matching

LL(v), any other SC action (successful or failed) on v executed by another thread cannot be executed between

them. Therefore, the successful SC or VL is a left-mover, and the matching LL is a right-mover.

Theorem 5.4. Let SC and LL denote a successful SC(v, val) expression and its matching LL(v) executed

by a thread t, respectively. Let SC ′ and LL′ denote a successful SC(v, val′) expression and its matching
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LL(v) executed by another thread t′, respectively. SC ′, LL′, and all transitions of t′ between them cannot be

executed between SC and LL.

Proof sketch. According to Theorem 5.3, SC ′ cannot happen between LL and SC. Thus, there are two

cases: SC ′ happens before LL, or SC ′ happens after SC. For the first case, the theorem obviously holds. For

the second case, if LL′ happens between LL and SC, SC must also happen between LL′ and SC ′ (because

SC succeeds), which is impossible since SC ′ also needs to succeed; if LL′ happens after SC, the theorem

obviously holds.

5.2.3 Atomicity Analysis of Non-Blocking Synchronization Primitive CAS

CAS is often used in a similar way as LL/SC. CAS takes an address, an expected value, and a new value as

arguments. There is often an assignment before CAS to save the old value into a temporary variable that is

used as the expected value. For a CAS, its matching read, if any, is the action which reads the old value and

saves it as the expected value. Note that a CAS can succeed even without a matching read; a SC cannot

succeed without a matching LL. We use a backward search on the control flow graph to find the matching

reads for a CAS expression. We implicitly assume hereafter that there is a unique matching read for each

CAS.

CAS-based programs may suffer from the ABA problem: if a thread reads a value A of a shared variable

v, computes a new value A′, and then executes CAS(v, A, A′), the CAS may succeed when it should not, if the

shared variable’s value was changed from A to B and then back to A by CASs of other threads. A common

solution is to associate a modification counter with each variable accessed by CAS [Mic04b]. The counter is

read together with the data value, and each CAS checks whether the counter still has the previously read

value. A successful CAS increments the counter. With this mechanism, variants of Theorem 5.3 and 5.4

hold for CAS: just replace “matching LL” with “matching read”, and replace “SC” with “CAS”.

5.3 Non-Blocking Synchronization and Invariants

In many algorithms, an invariant holds throughout execution of a code block. If the invariants for two code

blocks contradict, executions of the two code blocks by different threads cannot be interleaved.

A predicate p(lvar) is called a local invariant of a code block “local lvar = e in stmt” (which is called

a local block on lvar), if it satisfies the following two conditions: (i) lvar is not updated in stmt, and (ii)

p(lvar) holds throughout execution of stmt.
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Condition (i) is easy to check, because there is no aliasing of local variables in SYNL. When condition

(i) holds, a local invariant for a block can easily be obtained from the TRUE statements in stmt that depend

only on lvar. For example, in the exceptional variant of procedure Down shown in Figure 2, a local condition

for the code block in lines 3-6 is tmp > 0. If condition (i) does not hold, or no appropriate TRUE statements

appear in the local block, its local invariant is true.

A local block of the form “local lvar = LL(svar) in {stmt; TRUE(SC(svar, val));}” is called a LL-SC

block on svar.

Theorem 5.5. Suppose a shared variable svar is updated only by SC expressions in LL-SC blocks, and every

LL-SC block on svar in the program has the same local invariant p(lvar). Suppose a local block S “local

lvar′ = svar in stmt′” has a local invariant !p(lvar′).

(a) No successful SC(svar) in the LL-SC blocks on svar can occur inside S.

(b) No transition in local block S can be executed inside any LL-SC block on svar, and no transition in

any LL-SC block on svar can be executed inside local block S.

Proof of (a). We prove (a) by contradiction. Let “local lvar = LL(svar) in {stmt; TRUE(SC(svar, val));}”
be a LL-SC block on svar. Suppose a successful SC(svar) in this LL-SC block occurs inside S; this implies

that S and the LL-SC block are being executed by different threads. Without loss of generality, we consider

the first such SC(svar). According to the assumption for the local block S, !p(lvar′) holds during stmt′.

Because svar is updated only by SC actions from LL-SC blocks, lvar′ == svar and hence !p(svar) holds

from the start of stmt′ until SC(svar) is executed. This implies that !p(svar) holds when SC(svar) is

executed. The LL-SC block has local invariant p(lvar), and lvar == svar holds until the SC, because lvar

is not updated in the LL-SC block, and svar is not updated before the first successful SC on it, so p(svar)

holds when SC(svar) is executed. This contradicts the previous conclusion.

Proof of (b). According to the proof of (a), no successful SC(svar) can happen inside S. Consider an

execution of a LL-SC block on svar. There are two cases:

Case 1: the successful SC happens before S. Thus, the whole LL-SC block happens before S. Obviously,

the theorem holds in this case.

Case 2: the successful SC happens after S. If the matching LL also happens after S, the whole LL-SC

block happens after S. Hence the theorem holds. Suppose the matching LL happens inside S or before S.

Similar to the proof of (a), because svar is updated only by SC actions from LL-SC blocks, and no successful

SCs happen inside S or between the matching LL and the SC, lvar′ == svar and hence !p(svar) holds
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from the start of stmt′ until the SC(svar) happens. Thus, !p(svar) holds when SC(svar) happens. By the

same reasoning as in the proof of (a), p(svar) holds when SC(svar) happens. This contradicts the previous

conclusion. Therefore, when SC happens after S, the matching LL cannot happen inside S or before S.

The definition of LL-SC block and the above theorem can be generalized, so that the LL does not need

to occur at the beginning of a local block, and the SC does not need to occur at the end of a local block. A

similar theorem holds for CAS.

5.4 Atomicity Inference

To analyze atomicity of each procedure in a program, we identify pure loops, then check atomicity of each

procedure’s exceptional variants, by computing atomicity types for all expressions and statements, as follows:

• Step 1: Identify all local actions and lock actions. According to Theorem 3.1, all local actions have

atomicity type B. According to Theorem 3.2, all lock acquires and releases have atomicity type R and

L, respectively.

• Step 2: According to Theorem 5.3, if all updates on a variable v are done through SC, all successful

SC(v, val) and VL(v) have atomicity type L, and their matching LL(v) have atomicity type R. A

successful VL(v) between a successful SC(v, val) and the matching LL(v) has atomicity type B. The

analogous theorem for CAS is used for successful CAS and the matching reads.

• Step 3: Infer local invariants for local blocks, as described in Section 5.3.

• Step 4: Using Theorems 5.1, 5.4 and 5.5, for each read, check whether there is a write on the same

variable that can happen immediately before/after it; for each write, check whether there is a read

or write on the same variable can happen immediately before/after it. For access to variables on the

heap, the analysis does a case split on whether two field accesses refer to the same location; both cases

are considered, unless alias analysis shows one is impossible. Our current alias analysis just checks

whether the references have the same type and whether the accessed fields have the same name; if not,

the two field accesses must be to different locations. Assign atomicity types to the reads and writes

based on Theorem 3.3, if they were not given atomicity types in previous steps.

• Step 5: For actions not given an atomicity type in previous steps, conservatively assign them atomicity

type A.
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local m = LL(Q) in a1:R local m = LL(Q) in

copy(prv.data,m.data); a2:B copy(prv.data,m.data);

if (!VL(Q)) continue; a3:B TRUE(VL(Q));

computation(prv.data,input); a4:B computation(prv.data,input);

if (SC(Q,prv)) a5:L TRUE(SC(Q,prv))

prv = m; a6:B prv = m;

break; a7:B break;

Figure 4: Atomicity types for actions of Herlihy’s non-blocking algorithm.

• Step 6: Propagate atomicity types from the actions up through the abstract syntax trees of the

procedures using the atomicity calculus sketched in Section 3.3 and detailed in [FQ03]. The atomicity

type of a compound program construct is computed from the atomicity types of its parts using join,

sequential composition, and iterative closure, as appropriate.

At last, for each procedure p in the original program, if every exceptional variant of p has atomicity type

A, then by Theorem 5.2, p has atomicity type A.

As an example, we compute the atomicity of Herlihy’s non-blocking algorithm for small objects as shown

in Figure 4. Recall that the procedure has one exceptional variant, given in Section 5.2.1. In step 1, local

actions in line a6 and line a7 are identified and assigned atomicity type B. Since prv is a quasi-unique

local reference, the computation action in line a4 and the copy action in line a2 (the read in line a2 will

consider later) are both-movers according to Theorem 4.2, hence, they are assigned atomicity type B. In

step 2, successful SC in line a5 has atomicity type L, the matching LL in line a1 has atomicity type R, and

successful VL in line a3 has atomicity type B. Step 3 is skipped in this algorithm. In step 4, we know any

write to m.data (which must through successful SC) in other threads cannot happen immediately before or

after the read to m.data in line a2, since a successful SC is followed. Hence, both actions in line a2 have

atomicity type B. Now we can propagate atomicity types from the actions, and conclude the only exceptional

variant is atomic. Therefore, the procedure is atomic.

6 Applications

This paper demonstrates the applicability of our analysis to four non-trivial non-blocking algorithms from the

literature. One is the running example, i.e., Herlihy’s non-blocking algorithm; the other three are presented

in this section. Although in two cases we must modify the algorithms slightly, and in one case we omit some
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proc Enq(value)

local node = new Node();

node.value = value;

node.next = null;

loop

local t = LL(Tail) in

local next = LL(t.Next) in

if (!VL(Tail)) continue;

if (next != null)

SC(Tail,next);

continue;

if (SC(t.Next,node))

// optional

[SC(Tail,node);]

return;

proc Deq()

loop

local h = LL(Head) in

local next = h.Next in

if (!VL(Head)) continue;

if (next == null)

return EMPTY;

if (h == LL(Tail))

SC(Tail,next);

continue;

local value = next.Value in

if (SC(Head,next))

return value;

Figure 5: Michael and Scott’s Non-Blocking FIFO Queue (NFQ). Head and Tail are global variables.

optimizations before applying our analysis, we consider the results encouraging, since we do not know of any

other algorithmic (i.e., automatic) analysis that can show atomicity of the modified or original versions.

6.1 Michael and Scott’s Non-Blocking FIFO Queue Using LL/SC/VL

6.1.1 NFQ and NFQ′

Figure 5 contains code for a non-blocking FIFO queue (NFQ) that uses LL/SC/VL [Mic04a]. It is similar to

the well-known CAS-based algorithm in [MS96]. It uses a singly-linked list whose head and tail are pointed

to by global variables Head and Tail. Enqueue consists of three main steps: create a node, add it to the

end of the list, and update Tail. A blocking implementation would use a lock around the second and third

steps to achieve atomicity. In the non-blocking algorithm, if a thread gets delayed (or killed) after the second

step, other threads may update Tail on its behalf; in that case, if the delayed thread later tries to update

Tail, its SC will harmlessly fail. To avoid blocking, the dequeue operation also updates Tail. Dequeue is

also non-blocking. A dummy node is used as the head of the queue to avoid degenerate cases. The code for

Deq in [Mic04a, MS96] stores the value of LL(Tail) in a local variable; the code in Figure 5 does not. This

does not affect the correctness or performance of the algorithm but makes it easier to analyze.

We would like to show that NFQ is linearizable, using the two-step approach described in Section 2: one

step is to show that the concurrent implementation executed sequentially satisfies the sequential specification;

the other step is to apply our analysis to show that the procedures of the implementation are atomic.

An obstacle to apply our atomicity analysis to NFQ is that the loops in Enq and Deq are not pure,

because of the updates to Tail in normal iterations. Therefore, we modify the program to make the loops
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proc AddNode(value)

local node = new Node() in

node.Value = value;

node.Next = null;

loop

local t = LL(Tail) in

local next = LL(t.Next) in

if !VL(Tail)

continue;

if (next != null)

continue;

if SC(t.Next,node)

return;

proc UpdateTail()

loop

local t = LL(Tail) in

local next = t.Next in

if !VL(Tail)

continue;

if (next != NULL)

SC(Tail,next);

return;

proc Deq’()

loop

local h = LL(Head) in

local next = h.Next in

if (!VL(Head))

continue;

if (next == null)

return EMPTY;

if (h == LL(Tail))

continue;

local value = next.Value in

if (SC(Head,next))

return value;

Figure 6: NFQ′, a modified version of NFQ.

pure before applying our analysis algorithm; specifically, we consider the modified program NFQ′ in Figure

6, and we prove in Appendix A that the modification preserves linearizability. In NFQ′, all updates to Tail

are performed in a separate procedure UpdateTail. UpdateTail may be invoked (by the environment) at

any time, so NFQ′ is effectively more non-deterministic than NFQ.

6.1.2 Atomicity of NFQ′

All exceptional variants for the procedures of NFQ′ are listed in Figure 7. Each line of code is labeled on the

left with a line number and the atomicity type of the code on that line. A line may contain multiple actions;

we refer to the sequential composition of their atomicity types as the atomicity type of the line. Next we

describe how the atomicity analysis algorithm in Section 5.4 works on these procedures.

In step 1, a1, a2, a3, a7, a9, b4, b6, c4, c5, d4 and d8 are classified as both-movers, because they access

local variables.

In step 2, a4, a5, b1, c1 are d1 are classified as right-movers, because they are matching LLs for successful
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proc AddNode(value)

a1:B local node = new Node() in

a2:B node.Value = value;

a3:B node.Next = null;

a4:R local t = LL(Tail) in

a5:R local next = LL(t.Next) in

a6:B TRUE(VL(Tail));

a7:B TRUE(next == null);

a8:L TRUE(SC(t.Next,node));

a9:B return;

proc UpdateTail()

b1:R local t = LL(Tail) in

b2:R local next = t.Next in

b3:B TRUE(VL(Tail));

b4:B TRUE(next != NULL);

b5:L TRUE(SC(Tail,next));

b6:B return;

proc Deq’1()

c1:R local h = LL(Head) in

c2:A local next = h.Next in

c3:L TRUE(VL(Head));

c4:B TRUE(next == null);

c5:B return EMPTY;

proc Deq’2()

d1:R local h = LL(Head) in

d2:R local next = h.Next in

d3:B TRUE(VL(Head));

d4:B TRUE(next != null);

d5:A TRUE(h != LL(Tail));

d6:B local value = next.Value in

d7:L TRUE(SC(Head,next));

d8:B return value;

Figure 7: Exceptional variants for procedures of NFQ′.

SCs or VLs; a6 (which is reclassified as a both-mover in step 4), a8, b5, c3, and d7 are classified as left-movers

because they are successful SCs or VLs; b3 and d3 are classified as both-movers because they are between

matching LLs and successful SCs.

In step 3, the local invariant for a5-a9 and c2-c5 is next == null. The local invariant for b2-b6 and d2-d8

is next ! = null.

Now consider step 4. Let ta and tu denote the local variable t in AddNode and UpdateTail, respectively.

If ta.Next of the LL-SC block in AddNode is aliased with tu.Next of the local block in UpdateTail, then

according to Theorem 5.5, the update on Tail (i.e., b5) cannot happen between a6 and a7, so a6 is a

both-mover. a8 cannot happen between b2 and b3, so b2 is a right-mover. Suppose ta.Next is not aliased

with tu.Next; this implies ta is not aliased with tu, i.e., ta 6= tu, so even if a8 happens between b2 and b3,

b2 is a right-mover by Theorem 3.3. ta 6= tu implies that the value of Tail read in line of a4 in AddNode is

not equal to the value of Tail read in line of b1 in UpdateTail. Thus, even if b5 happens between a6 and

a7, a6 is still a both mover by Theorem 3.3. For d2, if h.Next is aliased with t.Next of AddNode, a8 cannot

happen between d2 and d3 according to Theorem 5.5, hence d2 is a right-mover by Theorem 3.3; if h.Next

is not aliased with t.Next, d2 is again a right-mover. Also in step 4, d6 is inferred to be a both-mover,

because there is no write to the Value field of any shared object; the only write a2 to the Value field is on

an object that has not escaped.
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program without atomic with atomic
states time states time

unbounded AddNode threads 4500 > 19h 13 3.0s
unbounded Deq’ threads 1285 88 m 10 1.7s
incorrect AddNode 13 5 s 13 3.0s

Table 1: Experimental results for verification of NFQ′ with TVLA.

In step 5, the unclassified c2 and d5 are given atomicity type A. Step 6 infers that each procedure in

Figure 7 has atomicity type A. Step 7 infers that all procedures in NFQ′ are atomic.

6.1.3 Linearizability of NFQ′ and NFQ

We showed in Section 6.1.2 that the procedures in NFQ′ are atomic, and we showed in Appendix A that NFQ′

can simulate all behaviors of NFQ. To conclude that NFQ′, and hence NFQ, are linearizable with respect

to a sequential specification of FIFO queues, we need to show that NFQ′ executed sequentially satisfies that

specification. One approach is to use a powerful verification tool such as TVLA [YS03], which is a model

checker based on static analysis. With our approach, TVLA only needs to consider sequential executions of

NFQ′, so the verification is much faster and use much less memory than the verification in [YS03], where

TVLA was used to show directly that NFQ satisfies some complicated temporal logic formulas.

To evaluate the speedup that our atomicity analysis can provide for subsequent verification, following

[YS03, Table 2], we used TVLA to verify several correctness properties of NFQ′. We analyzed the correct

program with two different environments: in the first one, the number of threads that concurrently call

AddNode is unbounded (but there is only one thread that performs dequeues, and there is only one UpdateTail

thread, since it contains a non-terminating loop); in the second one, the number of threads that concurrently

perform dequeues is unbounded (but there is only one thread that performs AddNode, and one that calls

UpdateTail). We also checked the properties for an incorrect version of NFQ′; specifically, we deleted

the statement “if (next != null) continue” in the AddNode procedure; TVLA catches this error. We

performed all experiments twice: once with each procedure body declared as atomic, as inferred by our

analysis algorithm, and once without those declarations. The atomicity declarations had little effect on the

time needed for TVLA to find an error in the incorrect program, but it reduced the time and space needed

to verify the correct versions by a factor of 100 or more. The experimental results appear in Table 1.
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6.2 Gao and Hesselink’s Non-Blocking Algorithm for Large Objects

For large objects, copying is the major performance bottleneck in Herlihy’s algorithm. Gao and Hesselink

[GH04] proposed an algorithm that avoids copying the whole object. The fields of each object are divided

into W disjoint groups such that each operation changes only fields in one group. When copying data

between the shared and private copies of an object, only the modified groups are copied. To efficiently

detect modifications, a version number is associated with each group of fields of each copy of the object. The

algorithm works as follows: (1) read the shared object reference using LL; (2) copy data and version numbers

in all modified groups of fields of the currently shared copy of the object into the corresponding groups of

fields of the current thread’s private copy; (3) do the computation on the private copy, updating fields in some

group, and incrementing the corresponding version number; (4) switch the references between the shared

object and the private object using SC. The algorithm is more complicated than Herlihy’s algorithm for small

objects in Figure 3 mainly because of the loop over groups of fields, the conditional behavior depending on

which groups of fields changed, and the use of version numbers to efficiently detect changes.

Our analysis cannot directly show that the algorithm is atomic, due to the use of version numbers.

Our analysis algorithm is able to show that a version of the algorithm that does not use version numbers

is atomic. We then show that the transformations that optimize the algorithm by introducing and using

version numbers preserve atomicity; this is relatively easy.

We show that the non-blocking algorithm for large objects (specifically, Algorithm 3 in Figure 9) is atomic.

The procedure call copy(prvObj.data[i],m.data[i]) copies the data in m.data[i] to prvObj.data[i].

Lines 3-8 are an unrolled loop that copies each group of fields; we unrolled the loop because our cur-

rent analysis does not support nested loops, although it could be extended to do so. The procedure call

compute(prvObj,g) does computation based on the data in prvObj and writes the result into prvObj.data[g].

Algorithm 3 in Figure 9 differs in some minor ways from the original algorithm in [GH04]. It does not

contain the redundant array old used in [GH04]. Like Herlihy’s algorithm in Figure 3, it uses VL (line 6)

to prevent errors due to inconsistent states of prvObj that may result from updates during copying (line 5).

[GH04] simply assumed that such errors do not occur. Also, we omit the guard predicate used in [GH04],

which is used to optimize cases where compute is applied in a state in which it performs no updates.

Algorithm 1 in Figure 8 is a simplified version of the algorithm, in which all data of the shared object

(i.e., m) are copied into the working object (i.e., prvObj) of the current thread in every iteration of the loop.

Like prv in Herlihy’s algorithm in Figure 3, prvObj is a quasi-unique local reference. Moreover, for all i,
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proc alg1(SharedObj, g)

01 loop

02 local m = LL(SharedObj) in

03 copy(prvObj.data[1], m.data[1]);

04 if (!VL(SharedObj)) continue;

05 ... // repeat the previous two lines W times,

// incrementing the index each time,

// to copy each group of fields

06 compute(prvObj, g);

07 if (SC(SharedObj, prvObj))

08 prvObj = m;

09 return;

proc alg2(SharedObj, g)

01 loop

02 local m = LL(SharedObj) in

03 if (prvObj.data[1] != m.data[1])

04 copy(prvObj.data[1], m.data[1]);

05 if (!VL(SharedObj)) continue;

06 ... // repeat the previous three lines W times,

// incrementing the index each time,

// to copy each group of fields.

07 compute(prvObj, g);

08 if (SC(SharedObj, prvObj))

09 prvObj = m;

10 return;

Figure 8: Gao and Hesselink’s non-blocking algorithm for large objects: Algorithms 1 and 2. SharedObj is
a global variable. prvObj is a thread-local variable.

proc alg3(SharedObj, g)

01 loop

02 local m = LL(SharedObj) in

03 local newVersion[1] = m.version[1] in

04 if (newVersion[1] != prvObj.version[1])

05 copy(prvObj.data[1], m.data[1]);

06 if (!VL(SharedObj)) continue;

07 prvObj.version[1] = newVersion[1];

08 ... // repeat lines 3-7 W times, incrementing the index each time, to copy each group of fields.

09 compute(prvObj, g);

10 prvObj.version[g]++;

11 if (SC(SharedObj, prvObj))

12 prvObj = m;

13 return;

14 else

15 prvObj.version[g] = 0;

Figure 9: Gao and Hesselink’s non-blocking algorithm for large objects: Algorithm 3. SharedObj is a global
variable. prvObj is a thread-local variable.

prvObj.data[i] is dead at the end of the loop’s body under all normal terminations. Therefore, the loop is

pure. By the same reasoning as for the non-blocking algorithm for small objects in Figure 3, the procedure

of Algorithm 1 in Figure 8 is atomic.

Algorithm 2 in Figure 8 is an improved version of Algorithm 1 in which the copy is omitted from

m.data[i] to prvObj.data[i] when those two locations already contain the same value. Algorithm 2

clearly has the same behavior as Algorithm-1. Therefore, the procedure in Algorithm 2 is atomic.

Algorithm 3 in Figure 9 is an improved version of Algorithm 2 in which version numbers are used to

efficiently and conservatively check whether m.data[i] and prvObj.data[i] are equal. “Conservatively”

here means that the check might return false when they contain the same value (e.g., because the values
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boolean DCAS(val *addr1, val *addr2, val old1, val old2, val new1, val new2){

atomically{

if ((*addr1 == old1) && (*addr2 == old2)) {

*addr1 = new1;

*addr2 = new2;

return true;

} else

return false

}

}

Figure 10: The double compare-and-swap operation shown in C language format.

stored in m.data[i] and prvObj.data[i] happen to be equal), but this merely causes the code in the full

algorithm to do an unnecessary copy (i.e., the copy does not actually change the value of prvObj.data[i]).

The last statement “prvObj.version[g] = 0” is needed so that the update to prvObj.version[g] from line

10 will be discarded if the SC fails. Algorithm 3 clearly has the same behaviors as Algorithm 2. Therefore,

the procedure in Algorithm 3 is atomic.

To evaluate the benefit of our atomicity analysis compared to a traditional partial-order reduction, we

implemented Algorithm 3 in the model checker SPIN [Hol03]. We wrote a driver with 3 threads that

concurrently invoke arithmetic operations on a shared object with 3 integer fields, each in its own group.

The numbers of reachable states are: 4,069,080 with no optimization; 452,043 with SPIN’s built-in partial-

order reduction; 69,215 with the procedure body declared as atomic, as inferred by our analysis algorithm;

and 4619 with both optimizations.

6.3 DCAS-Based Double-ended Queue

6.3.1 The DCAS operation

There is a growing realization that the synchronization operations on single memory locations, such as CAS,

are not expressive enough to support designing efficient non-blocking algorithm [ADF+00]. Double compare-

and-swap (DCAS) shown in Figure 10 is a proposed stronger synchronization operation. DCAS is similar as

CAS; it just adds another address addr2 which is handled together with addr1. It is easy to give theorems

for DCAS analogous to Theorems 5.3, 5.4, and 5.5 for LL/SC.
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6.3.2 The Array-based Double-ended Queue

Agesen et al. proposed an array-based double-ended queue [ADF+00] using DCAS as shown in Figure 11.

The algorithm shown in Figure 11 is slightly simpler than the algorithm in [ADF+00], because we removed

an optional optimization from each procedure. In a double-ended queue (DEQ), elements can be enqueued

(pushed) or dequeued (popped) from both ends. The array-based DEQ is bounded: it can hold at most

lengthS elements. DEQ has four procedures: popRight, pushRight, popLeft, and pushLeft. We show

only popRight and pushRight. The other two are similar.

All elements are saved in an array S. Global variable R contains the index of the next position to insert

an element on the right. Thus, R-1 is the position which holds the element to pop from the right.

The procedure popRight accesses two shared variables R and S[newR]. The loop in popRight is pure,

because in all normal iterations, there is no update on shared variables, and all local variables are dead at

the end of the loop body. popRight has two exceptional variants. One exceptional variant is from line 3 to

line 9, in which the first DCAS returns true. According to our theorem for DCAS (the analogue of Theorem

5.4 for LL/SC), there is no write by other threads to shared variable R between line 3 and line 8, and there is

no write to shared variable S[newR] by other threads between line 5 and line 8. All other accesses between

line 3 and line 8 are to local variables. Thus, all the actions in this variant have atomicity type B, so this

exceptional variant is atomic. The other exceptional variant is from line 3 to line 12. It is also atomic. The

analysis is similar to the analysis for the first variant.

The procedure pushRight accesses two shared variables, R and S[oldR]. The loop in popRight is pure.

popRight has two exceptional variants. One is from line 2 to line 8. Our analysis shows that other threads

cannot update the shared variables R and S[oldR] during execution of this variant, and that it is atomic.

Similarly, the exceptional variant from line 2 to line 11 is atomic.

Therefore, according to Theorem 5.2, the procedures pushRight and popRight are atomic.

7 Conclusions

This paper presents a static analysis to infer atomicity of code blocks in programs with non-blocking syn-

chronization and applies it to four case studies. The concept of pure loop used in our analysis formally

expresses a common design pattern for non-blocking algorithms. Although we need to slightly modify some

of the case studies before applying our analysis, we consider the results encouraging, since we do not know
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// Initially L == 0, R == 1; S[0..lengthS-1] of "null"

00 proc popRight()

01 local newS = null in

02 loop

03 local oldR = R in

04 local newR = (oldR - 1) mod lengthS in

05 local oldS = S[newR]in

06 if (oldS == null)

07 if (oldR == R)

08 if (DCAS(&R, &S[newR], oldR, oldS, oldR, oldS))

09 return "empty";

10 else

11 if (DCAS(&R, &S[newR], oldR, oldS, newR, newS))

12 return oldS;

00 proc pushRight(v)

01 loop

02 local oldR = R in

03 local newR = (oldR + 1) mod lengthS in

04 local oldS = S[oldR] in

05 if (oldS != null)

06 if (oldR == R)

07 if (DCAS(&R, &S[oldR], oldR, oldS, oldR, oldS))

08 return "full";

09 else

10 if (DCAS(&R, &S[oldR], oldR, oldS, newR, v))

11 return "okay";

Figure 11: The array-based double-ended queue using DCAS. Variable R and array S are shared.

of any other algorithmic (i.e., automatable) analysis that can show atomicity of the same (or larger) code

blocks in the modified or original versions. Our analysis significantly reduces the number of states considered

during subsequent analysis, such as verification.
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Appendix

A Simulation of NFQ′

By construction, NFQ′ is more non-deterministic than NFQ and can simulate all behaviors of NFQ. We show

below that linearizability of NFQ with respect to any specification (of the kind defined in [HW90]) follows

from linearizability of NFQ′ with respect to that specification augmented freely with calls to UpdateTail.

Following [HW90], a specification Spec is a prefix-closed set of single-object sequential histories.

Based on a given Spec for NFQ, the specification Spec′ for NFQ′ is defined by introducing a new thread

PTail that executes the UpdateTail procedure: for each H ∈ Spec, for each well-formed sequential history

H ′ that can be obtained by inserting 〈Q.UpdateTail(), PTail〉 (which denotes an invocation of Q.UpdateTail
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by PTail) and 〈Q.OK(), PTail〉 (which denotes a return, also called response, from Q.UpdateTail by PTail)

in H, add H ′ to Spec′.

Recall that complete(Hr) is the subsequence of Hr obtained by deleting the invocations without matching

responses. Recall that H is linearizable with respect to Spec if H can be extended to some history Hr by

adding response events, such that

L1. complete(Hr) is equivalent to some S ∈ Spec, i.e., ∀ thread P : complete(Hr)|P = S|P , and

L2. <H ⊆<S

Theorem A.1. If NFQ′ is linearizable with respect to Spec′ then NFQ is linearizable with respect to Spec.

Proof. Let σ be an execution of NFQ. Let H be the corresponding history of NFQ obtained by deleting all

actions except for call/return. Construct an execution σ′ from σ as follows.

• Replace each successful SC(Tail, ) with an execution of UpdateTail() by PTail. Success of the original

SC implies that the SC in UpdateTail() succeeds.

• Delete each unsuccessful execution of SC(Tail, ).

One can show that σ′ is an execution of NFQ′. Let H ′ denote the corresponding history. Linearizability

of NFQ′ with respect to Spec′ implies that there is an execution H ′
r of H ′ and a sequential history S′ ∈ Spec′

such that

L1′. complete(H ′
r) is equivalent to S′, and

L2′. <H′⊆<S′

Let Hr and S be the subsequences of H ′
r and S′, respectively, obtained by deleting all invocations of

UpdateTail() and the matching responses. Note that Hr is an extension of H by adding response events.

Also, S ∈ Spec, by design of Spec′. Note that complete(Hr) is equivalent to S; this follows from L1′, and

the fact that PTail does not appear in Hr or S, so the projection of both onto PTail is the empty sequence.

Let f(<) denote the projection of an ordering < onto operations of all threads other than PTail. L2′

implies f(<H′) ⊆ f(<S′). Note that <H = f(<H′) and <S = f(<S′). So <H ⊆<S .

The converse of the above theorem can be proved similarly. Therefore, this approach, i.e., proving the

linearizability of NFQ by showing the linearizability of NFQ′, is complete.
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ϕ ∈ State = GStore × Heap × Thread∗

H ∈ Heap = Addr ⇀ Struct
d ∈ Struct = (Field ⇀ V al × SyncState) ∪ (Index ⇀ V al × SyncState)
L ∈ LStore = LVar ⇀ V al
t ∈ Thread = LStore × Statement
v ∈ V al = Addr ∪ int ∪ bool
i ∈ TID = Nat

G ∈ GStore = GVar ⇀ V al × SyncState
Y ∈ SyncState = Set(TID)

idx ∈ Index = Nat
p ∈ Addr
T ∈ Thread∗

→i ⊆ State× State
→ ⊆ State× State

Figure 12: Semantic domains for SYNL.

B Semantics of SYNL

B.1 Domains

The semantic domains used in the semantics of SYNL are shown in Figure 12. GVar and LVar are the sets of

global and local variables, respectively. A ⇀ B is the type of partial functions from A to B. A program state

is a tuple 〈G,H, T 〉 containing a global store G, a heap H, and a sequence T containing, for each thread, a

local store L and a statement to be executed next. The address of a record structure (an object or array) is

often stored in a reference variable. To access the record structure, there are two maps: the first map is from

reference variable to address, and has type GStore or LStore; the second map is from address to structure,

and has type Heap. H[p 7→ d] denotes a new heap that is identical to H except it maps address p to record

d.

The Struct domain allows arrays with gaps in the set of legal indices. This generality is unnecessary but

harmless; our proofs remain valid for semantic domains that exclude arrays with gaps.

The semantics of LL/VL/SC associates a set of thread identifiers with each global variable, each field of

each object, and each element of each array. We call this information synchronization state and represent

it using the SyncState domain. The set contains the identifiers of threads whose most recent LL on that

variable is still valid, i.e., the variable has not been updated (by a SC) since then. A LL(v) by thread i adds

i to the set associated with v. A successful SC(v, val) empties the set.

→i is the transition relation of thread i. → is the transition relation of the program.
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Expr ::= p
Statement ::= inloop s s | done | inlocal x s | insync p s

E ::= [ ] | E.fd | E[e] | x[E] | prim(e1, ..., en, E, v1, ..., vm) | SC(loc, E)
| CAS(loc,E,e) | CAS(loc,v,E) | loc := E| if E s s | loop E
| inloop s E | E;s | local x := E in s | inlocal x E
| return E | synchronized E s | insync p E

Figure 13: Evaluation contexts of SYNL.

B.2 Evaluation Contexts

The evaluation contexts of SYNL are defined in Figure 13. Evaluation contexts are used to identify the next

part of an expression or statement to be evaluated. An evaluation context E is an expression or statement

with a hole in place of the next sub-expression or sub-statement to be evaluated. Expressions evaluate to

expressions and eventually become values. Statements evaluate to statements and eventually become the

done statement or get blocked or stuck.

Figure 13 also introduces additional expression and statement forms that help keep track of computations.

The inlocal statement denotes that execution is proceeding inside a local statement. The inloop and

insync statements are similar.

Let T [i] denote the ith element of sequence T starting with 1. In a state 〈G,H, T 〉, where T [i] contains

insync p, we say that thread i holds lock p. In a state where no thread holds lock p, we say that lock p is

free. We refer to this as the state of the lock.

Note that the grammar for evaluation contexts does not contain a production like LL(E) or VL(E); if it

did, for example, LL(x) would evaluate to, e.g., LL(3), if the value of x is 3.

B.3 Transition Rules

Let πi select the ith component of a tuple. For example, π2(〈a, b, c〉) = b. For a mapping L, let L−x denote

L with x removed from its domain.

The transition rules of SYNL are shown in Figures 14 and 15, and

val(x,G, L) =





π1(G(x)) if x ∈ dom(G)

π1(L(x)) if x ∈ dom(L)

⊥ otherwise

The transition rule G,H, T →i G,H, T.〈L, s〉 in Figure 15 models the environment calling a procedure
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G, H, T.〈L, E[x]〉.T ′ →i G, H, T.〈L, E[v]〉.T ′,
if v = val(x, G, L) ∧ v 6= ⊥

G, H, T.〈L, E[p.fd ]〉.T ′ →i G, H, T.〈L, E[π1(H(p)(fd))]〉.T ′,
if p ∈ dom(H) ∧ fd ∈ dom(H(p))

G, H, T.〈L, E[p[idx]]〉.T ′ →i G, H, T.〈L, E[π1(H(p)(idx))]〉.T ′,
if p ∈ dom(H) ∧ idx ∈ dom(H(p))

G, H, T.〈L, E[new C]〉.T ′ →i G, H[p 7→ d], T.〈L, E[p]〉.T ′, where p /∈ dom(H),
Note: d is a record of type C, and appropriately initialized

G, H, T.〈L, E[prim(v̄)]〉.T ′ →i G, H, T.〈L, E[v0]〉.T ′, where v0 = [[prim]](v̄)
Note: primitive operations have no side effect

G, H, T.〈L, E[LL(x)]〉.T ′ →i G[x 7→ 〈v, Y ∪ {i}〉], H, T.〈L, E[v]〉.T ′,
if x ∈ dom(G) ∧ 〈v, Y 〉 = G(x)

G, H, T.〈L, E[LL(x.fd)]〉.T ′ →i G, H[p 7→ H(p)[fd 7→ 〈v, Y ∪ {i}〉]], T.〈L, E[v]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧〈v, Y 〉 = H(p)(fd)

Note: p ∈ dom(H) implies p 6= ⊥
G, H, T.〈L, E[LL(x[idx])]〉.T ′ →i G, H[p 7→ H(p)[idx 7→ 〈v, Y ∪ {i}〉]], T.〈L, E[v]〉.T ′

if p = val(x, G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧〈v, Y 〉 = H(p)(idx)

G, H, T.〈L, E[VL(x)]〉.T ′ →i G, H, T.〈L, E[true]〉.T ′, if x ∈ dom(G) ∧ i ∈ π2(G(x))
G, H, T.〈L, E[VL(x)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′, if x ∈ dom(G) ∧ i /∈ π2(G(x))

G, H, T.〈L, E[VL(x.fd)]〉.T ′ →i G, H, T.〈L, E[true]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i ∈ π2(H(p)(fd))

G, H, T.〈L, E[VL(x.fd)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i /∈ π2(H(p)(fd))

G, H, T.〈L, E[VL(x[idx])]〉.T ′ →i G, H, T.〈L, E[true]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i ∈ π2(H(p)(idx))

G, H, T.〈L, E[VL(x[idx])]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i /∈ π2(H(p)(idx))

G, H, T.〈L, E[SC(x, v)]〉.T ′ →i G[x 7→ 〈v, ∅〉], H, T.〈L, E[true]〉.T ′,
if x ∈ dom(G) ∧ i ∈ π2(G(x))

G, H, T.〈L, E[SC(x, v)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′, if x ∈ dom(G) ∧ i /∈ π2(G(x))
G, H, T.〈L, E[SC(x.fd , v)]〉.T ′ →i G, H[p 7→ H(p)[fd 7→ 〈v, ∅〉]], T.〈L, E[true]〉.T ′

if p = val(x, G, L) ∧ p ∈ dom(H)
∧fd ∈ dom(H(p)) ∧ i ∈ π2(H(p)(fd))

G, H, T.〈L, E[SC(x.fd , v)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧i /∈ π2(H(p)(fd))

G, H, T.〈L, E[SC(x[idx], v)]〉.T ′ →i G, H[p 7→ H(p)[idx 7→ 〈v, ∅〉]], T.〈L, E[true]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H)
∧idx ∈ dom(H(p)) ∧ i ∈ π2(H(p)(idx))

G, H, T.〈L, E[SC(x[idx], v)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧i /∈ π2(H(p)(idx))

Figure 14: Transition rules of SYNL, part 1. Here, i = |T |+ 1.

in a new thread. Recall that SYNL allows procedures to be called concurrently by the environment.

The rule G,H, T.〈L, done〉.T ′ →i G,H, T.〈L′, s〉.T ′ in Figure 15 models the environment calling a proce-
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G, H, T.〈L, E[CAS(x, v1, v2)]〉.T ′ →i G[x 7→ 〈v2, π2(G(x))〉], H, T.〈L, E[true]〉.T ′,
if x ∈ dom(G) ∧ π1(G(x)) = v1

G, H, T.〈L, E[CAS(x, v1, v2)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′,
if x ∈ dom(G) ∧ π1(G(x)) 6= v2

G, H, T.〈L, E[CAS(x.fd , v1, v2)]〉.T ′ →i G, H[p 7→ H(p)[fd 7→ 〈v2, π2(H(p)(fd))〉]],T.〈L, E[true]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧π1(H(p)(fd)) = v1

G, H, T.〈L, E[CAS(x.fd , v1, v2)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))
∧π1(H(p)(fd)) 6= v1

G, H, T.〈L, E[CAS(x[idx], v1, v2)]〉.T ′ →i G, H[p 7→ H(p)[idx 7→ 〈v2, π2(H(p)(fd))〉]],T.〈L, E[true]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧π1(H(p)(idx)) = v1

G, H, T.〈L, E[CAS(x[idx], v1, v2)]〉.T ′ →i G, H, T.〈L, E[false]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))
∧π1((H(p)(idx)) 6= v1

G, H, T.〈L, E[x := v]〉.T ′ →i G′, H, T.〈L′, E[done]〉.T ′
if (x ∈ dom(G) ∧G′ = G[x 7→ 〈v, π2(G(x))〉] ∧ L′ = L)
∨ (x ∈ dom(L) ∧ L′ = L[x 7→ v] ∧G′ = G)

G, H, T.〈L, E[x.fd := v]〉.T ′ →i G, H[p 7→ H(p)[fd 7→ 〈v, π2(H(p)(fd))〉]],T.〈L, E[done]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ fd ∈ dom(H(p))

G, H, T.〈L, E[x[idx] := v]〉.T ′ →i G, H[p 7→ H(p)[idx 7→ 〈v, π2(H(p)(idx))〉]],T.〈L, E[done]〉.T ′
if p = val(x, G, L) ∧ p ∈ dom(H) ∧ idx ∈ dom(H(p))

G, H, T.〈L, E[if true s1 s2]〉.T ′ →i G, H, T.〈L, E[s1]〉.T ′
G, H, T.〈L, E[if false s1 s2]〉.T ′ →i G, H, T.〈L, E[s2]〉.T ′

G, H, T.〈L, E[loop s]〉.T ′ →i G, H, T.〈L, E[inloop s s]〉.T ′
G, H, T.〈L, E[inloop s E′[continue]]〉.T ′ →i G, H, T.〈L, E[inloop s s]〉.T ′,

G, H, T.〈L, E[inloop s E′[break]]〉.T ′ →i G, H, T.〈L, E[done]〉.T ′,
if E′ does not contain inloop

G, H, T.〈L, E[inloop s done]〉.T ′ →i G, H, T.〈L, E[inloop s s]〉.T ′
G, H, T.〈L, E[synchronized p s]〉.T ′ →i G, H, T.〈L, E[insync p s]〉.T ′,

if T and T ′ do not contain insync p
G, H, T.〈L, E[insync p done]〉.T ′ →i G, H, T.〈L, E[done]〉.T ′

G, H, T.〈L, E[done; s]〉.T ′ →i G, H, T.〈L, E[s]〉.T ′
G, H, T.〈L, E[local x = v in s]〉.T ′ →i G, H, T.〈L[x 7→ v], E[inlocal x s]〉.T ′, if x /∈ dom(L)
G, H, T.〈L, E[inlocal x done]〉.T ′ →i G, H, T.〈L− x, E[done]〉.T ′

G, H, T.〈L, E[return]〉.T ′ →i G, H, T.〈L, done〉.T ′
G, H, T.〈L, E[return v]〉.T ′ →i G, H, T.〈L, done〉.T ′

G, H, T →i G, H, T.〈L, s〉, where the program declares a procedure
p(x̄) {s}, and dom(L) = x̄.

G, H, T.〈L, done〉.T ′ →i G, H, T.〈L′, s〉.T ′, where the program declares a procedure
p(x̄) {s}, and dom(L′) = x̄.

Figure 15: Transition rules of SYNL, part 2. Here, i = |T |+ 1.

dure in an existing thread that finished its previous procedure calls.

Note that the only actions performed by the environment are calls to procedures defined in the program.

This semantics does not model garbage collection of unreachable structures or terminated threads. This

semantics allows the heap, procedure arguments, etc., to contain invalid addresses, i.e., addresses not in

dom(H). Attempting to dereference them causes the thread to get stuck. We can consider null to be such
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an invalid address, if getting stuck is appropriate semantics for attempting to dereference null. Otherwise,

we could introduce a special null value in Addr, and add appropriate transition rules for dereferencing

null. The semantics for return does not explicitly model the communication of the return value to the

environment; it could easily be modified to do so.

C Proof of Theorem 4.1

Let σ = G0,H0, T0 →t0 G1,H1, T1 →t1 . . . be an execution of a program P .

Let [i..j] denote the set of integers from i to j. Let max(m : p(m)) denote the largest value of m that

satisfies predicate p(m). Let I be the indices in σ of all transitions that are part of normal iterations of

pure loops. Let σ′ be the execution constructed from σ by deleting transitions in I. Deleting transitions

involves adjusting the states as follows. The jth state in σ′ corresponds to the f(j)th state in σ, where

f(j) = max(m : |[0..m− 1]\I| = j), i.e., f(j) is the maximal m such that there are j transitions remaining

from the 0th to (m − 1)th transitions after deleting transitions in I. Let τj denote the jth transition in σ,

i.e., Gj , Hj , Tj →i Gj+1, Hj+1, Tj+1. Let τ ′j denote the jth transition of σ′, i.e., G′j , H ′
j , T ′j →i G′j+1, H ′

j+1,

T ′j+1.

The jth state in σ is denoted as Gj , Hj , Tj , and the components of Tj [k] are denoted as Lj [k] and Sj [k].

The jth state in σ′ is denoted as G′j ,H
′
j , T

′
j and is computed as follows. Let p ∈ Addr, fd ∈ Field, and x ∈

LVar ∪ GVar. The treatment of arrays is very similar to the treatment of records, so for brevity, we show

only the latter.

Let WriteH(σ, p, fd) denote the indices of transitions in σ that update H(p)(fd). For global variable x,

let WriteG(σ, x) denotes the indices of transitions in σ that update G(x). Note that a LL is considered as a

write, since it updates the synchronization state of x, which is part of G(x). Failed SC and CAS transitions

are not considered as writes.

Let reachingDefH(σ, j, p, fd) be the index in σ of the last transition that occurs before the jth state and

updates H(p)(fd), i.e., reachingDefH(σ, j, p, fd) = max(WriteH(σ, p, fd)∩ [0..j−1]). Note that the value

written by that transition is the value seen in the state immediately after it. Let reachingDefH ′(σ, j, p, fd)

be defined in the same way but ignoring updates in normal iterations of pure loops, i.e.,reachingDefH ′(σ, j, p, fd)

= max(WriteH(σ, p, fd)\I∩ [0..j−1]). Define reachingDefG(σ, j, x) and reachingDefG′(σ, j, x) similarly.
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H ′
j(p)(fd) = let k = reachingDefH ′(σ, f(j), p, fd)

in Hk+1(p)(fd)

G′j(x) = let k = reachingDefG′(σ, f(j), x)

in Gk+1(x)
Let Trans(σ, i) denote the indices of transitions of thread i in σ. WriteLi, reachingDefLi, and

reachingDefL′i are analogous to WriteG, reachingDefG, and reachingDefG′, respectively, except they

are for local variables of thread i.

L′j [i](x) = let k = reachingDefL′i(σ, f(j), x)

in Lk+1(x)

S′j [i] = let k = max((Trans(σ, i)\I) ∩ [0..f(j)− 1])

in Sk+1[i]

T ′j = 〈L′j , S′j〉
The following formulas for σ express the fact that each variable contains the value most recently written

to it.

Hj(p)(fd) = let k = reachingDefH(σ, i, p, fd)

in Hk+1(p)(fd)

Gj(x) = let k = reachingDefG(σ, j, x)

in Gk+1(x)

Lj [i](x) = let k = reachingDefLi(σ, j, x))

in Lk+1(x)

Sj [i] = let k = max(Trans(σ, i) ∩ [0..j − 1])

in Sk+1[i]
A storage location is a local variable, global variable, field, or array element.

An update by τj to a storage location is visible to a transition τk if reachingDefH(σ, k, p, fd) = j,

reachingDefG(σ, k, x) = j, or reachingDefLi(σ, k, x) = j, depending on the kind of storage location

updated by τj . An update by τj to synchronization state is visible to τk if (a) τj is LL and τk is the matching

SC by the same thread, or (b) τj is a lock acquire and τk is the corresponding lock release by the same

thread. The visibility of successful SC is not defined; it is not needed in this paper, because a successful SC

cannot be a pure action. Note that VL, failed SC, and CAS operations do not update synchronization state.

Lemma C.1. An update by a transition in I is visible only to transitions in I.

Proof. We suppose an update by τj with j ∈ I is visible to a transition τk with k /∈ I, and we show a
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contradiction.

We consider cases corresponding to the kind of update.

Case 1. The update is a write to a storage location x. We consider cases based on the kind of storage

location x.

Case 1.1: x is a global variable. This is impossible, because a pure action cannot update a global variable.

Case 1.2: x is a local variable or a field of an unshared object. k /∈ I implies that x is not loop-local,

so condition (1.iii) in the definition of pure action implies x is accessed in every exceptional iteration of

the loop (in which τj occurs). The normal iteration in which τj occurs must be followed (possibly after

more normal iterations) by an exceptional iteration. Condition (1.ii) implies the first access to x in that

exceptional iteration must be a write. Let j2 be the index of that write. τj2 precedes τk, because τj2 is the

first access to x after the sequence of normal iterations containing τj . The update to x by τj2 is visible to

τk, so the update to x by τj is not, this is a contradiction.

Case 1.3: x is a field of an object o accessed by τj through a unique local reference variable v.

Case 1.3.1: thread(τj) = thread(τk). The reasoning is the same as in case 1.2.

Case 1.3.2: thread(τj) 6= thread(τk). By the same reasoning as in case 1.2, the sequence of normal

iterations containing τj is followed by an exceptional iteration that contains a write τj2 to x. Furthermore,

condition (1.ii) in the definition of pure action implies that τj2 is performed by dereferencing a quasi-unique

local reference.

Since τj uses a unique local reference, some subsequent transition τo of thread(τj) must make a reference

to o accessible to thread(τk) by updating a shared variable. Note that τo must precede τk. A pure action

cannot update a shared variable, so τo must occur in or after the exceptional iteration in which τj2 occurs.

If τo occurs in the exceptional iteration, τj2 precedes τo, because τj2 is performed by dereferencing a quasi-

unique local reference to o, and thread(τj) does not have such a reference after τo. If τo occurs after the

exceptional iteration, then clearly τj2 precedes τo. Thus, in both cases, by transitivity, τj2 precedes τk, so τk

sees the update from τj2 , not the update from τj . This is a contradiction.

Case 1.4: x is a field of an object o accessed through a quasi-unique local reference variable v.

Case 1.4.1: thread(τj) = thread(τk). The reasoning is the same as in case 1.2.

Case 1.4.2: thread(τj) 6= thread(τk). The reasoning is almost the same as in case 1.3.2. Note that,

although other threads (including thread(τk)) may have references to o in locations accessed only in normal

iterations of loops, these references cannot be stored into shared variables in the normal iterations. Therefore
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the reasoning in case 1.3.2 about a transition τo of thread(τj) that makes o accessible to thread(τk) when

thread(τk) is outside of normal iterations is valid in this case as well.

Case 1.5: x is an array element. The analysis is similar to the analysis for a field access.

Case 2: The update is to synchronized state.

Case 2.1: τj performs a LL action.

Condition (2.i) in the definition of pure action implies that the LL in τj and the matching SC occur in

the same normal iteration. An update by a LL action to synchronization state is visible only to the matching

SC by the same thread. Therefore, the update by τj is not visible to τk. This is a contradiction.

Case 2.2: τj performs a SC action.

Condition (2.ii) implies that no successful SC can occur in I, and failed SC operations do not update the

synchronization state, so τj does not perform any update visible to τk. This is a contradiction.

Case 2.3: synchronized.

synchronized statements are block-structured, so if some transition in I performs an acquire action,

then I also contains the transition that performs the matching release action (which ends the synchronized

block). Moreover, other threads cannot perform any operations on a lock while it is held by the current

thread (an attempted acquire action blocks until the lock is freed). Hence, the updates to synchronization

states by acquire and release transitions in I are visible only in I.

Lemma C.2. For every transition τ ′j in σ′,

(i) τ ′j and τf(j) are transitions of the same thread, call it thread i, and

(ii) S′j [i] = Sf(j)[i], and

(iii) all locations read by τ ′j have the same value in state G′j, H ′
j, L′j [i] and state Gf(j), Hf(j), Lf(j)[i].

Proof. Claims (i) and (ii) follow directly from the definitions of σ′ and f . Claim (iii) follows immediately

from Lemma C.1.

Lemma C.3. σ′ is an execution of the program P .

Proof. A straightforward property of the operational semantics is that, if some transition rule shows that ϕ1

→ ϕ2 is a transition of P , and ϕ′1 and ϕ′2 are obtained from ϕ1 and ϕ2, respectively, by a change to some

parts of the state that are not accessed by the transition according to Lemma C.2, then the same transition

rule shows that ϕ′1 → ϕ′2 is a transition of P . We conclude that τ ′j is a transition of the program based on

the same transition rule used to show that τf(j) is a transition of the program. Therefore, σ′ is an execution

of the program P .
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Lemma C.4. σ and σ′ contain the same states in which all threads are executing outside pure loops.

Proof. All deleted transitions are in pure loops, so there is a one-to-one correspondence between states

outside executions of pure loops in σ and states outside executions of pure loops in σ′. We show that the

corresponding states are the same. By inspection of the formulas defining H ′, G′, and T ′, deletion of a

transition that updates a location x produces a difference between corresponding states in σ and σ′ that

propagates forward in σ′ until it encounters either a transition that updates x or the end of x’s scope. Con-

dition (1.ii) in the definition of pure action implies that, for each such location x, at least one of these two

things happens before the end of the pure loop.

Theorem 4.1 Let σ be an execution of a program P . Suppose all loops in P are pure. Let σ′ be an execution

obtained from σ by deleting all transitions in all normal iterations of all pure loops in P . Then σ′ is also an

execution of P , and σ and σ′ contain the same states in which all threads are executing outside pure loops.

Proof. The theorem follows directly from Lemmas C.3 and C.4.
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