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8 Abstract We have successfully ported an arbitrary high-

9 order discontinuous Galerkin method for solving the three-

10 dimensional isotropic elastic wave equation on unstruc-

11 tured tetrahedral meshes to multiple GPU using CUDA and

12 MPI and obtained a speedup factor of about 28.3 for the

13 single-precision version of our codes and a speedup factor

14 of about 14.9 for the double-precision version. The GPU

15 used in the comparisons is NVIDIA Tesla C2070 Fermi,

16 and the CPU used is Intel Xeon W5660. To effectively

17 overlap inter-process communication with computation, we

18 separate the elements on each subdomain into inner and

19 outer elements and complete the computation on outer

20 elements and fill the MPI buffer first. While the MPI

21 messages travel across the network, the GPU performs

22 computation on inner elements, and all other calculations

23 that do not use information of outer elements from neigh-

24 boring subdomains. A significant portion of the speedup

25 also comes from a customized matrix–matrix multiplica-

26 tion kernel, which is used extensively throughout our

27 program. Preliminary performance analysis on our parallel

28 GPU codes shows favorable strong and weak scalabilities.

29

30 Keywords Seismic wave propagation � Discontinuous

31 Galerkin � GPU

321 Introduction

33Computer simulations of seismic wavefields have been

34playing an important role in seismology in the past few

35decades. However, the accurate and computationally effi-

36cient numerical solution of the three-dimensional elastic

37seismic wave equation is still a very challenging task,

38especially when the material properties are complex, and

39the modeling geometry, such as surface topography and

40subsurface fault structures, is irregular. In the past, several

41numerical schemes have been developed to solve the

42elastic seismic wave equation. The finite-difference (FD)

43method was introduced to simulate SH and P-SV waves on

44regular, staggered-grid, two-dimensional meshes in Ma-

45dariaga (1976) and Virieux (1984, 1986). The FD method

46was later extended to three spatial dimensions and to

47account for anisotropic, visco-elastic material properties

48(e.g., Mora 1989; Igel et al. 1995; Tessmer 1995; Graves

491996; Moczo et al. 2002). The spatial accuracy of the FD

50method is mainly controlled by the number of grid points

51required to accurately sample the wavelength. The pseudo-

52spectral (PS) method with Chebychev or Legendre poly-

53nomials (e.g., Carcione 1994; Tessmer and Kosloff 1994;

54Igel 1999) partially overcomes some limitations of the FD

55method and allows for highly accurate computations of

56spatial derivatives. However, due to the global character of

57its derivative operators, it is relatively cumbersome to

58account for irregular modeling geometries, and efficient

59and scalable parallelization on distributed-memory com-

60puter clusters is not as straightforward as in the FD method.

61Another possibility is to consider the weak (i.e., varia-

62tional) form of the seismic wave equation. The finite-ele-

63ment (FE) method (e.g., Lysmer and Drake 1972; Bao et al.

641998) and the spectral-element (SE) method (e.g., Ko-

65matitsch and Vilotte 1998; Komatitsch and Tromp 1999,
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66 2002) are based on the weak form. An important advantage

67 of such methods is that the free-surface boundary condition

68 is naturally accounted for even when the surface topogra-

69 phy is highly irregular. And in the SE method, high-order

70 polynomials (e.g., Lagrange polynomials defined on

71 Gauss–Lobatto–Legendre points) are used for approxima-

72 tion, which provide a significant improvement in spatial

73 accuracy and computational efficiency.

74 The arbitrary high-order discontinuous Galerkin (ADER-

75 DG) method on unstructured meshes was introduced to

76 solve two-dimensional isotropic elastic seismic wave

77 equation in Käser and Dumbser (2006). It was later exten-

78 ded to three-dimensional isotropic elastic case in Dumbser

79 and Käser (2006) and to account for viscoelastic attenuation

80 (Käser et al. 2007), anisotropy (la Puente De et al. 2007) and

81 poroelasticity (la Puente et al. 2008). The p-adaptivity (i.e.,

82 the polynomial degrees of the spatial basis functions can

83 vary from element to element) and locally varying time

84 steps were addressed in Dumbser et al. (2007). Unlike

85 conventional numerical schemes, which usually adopt a

86 relatively low-order time-stepping method such as the

87 Newmark scheme (Hughes 1987) and the 4th-order Runge–

88 Kutta scheme (e.g., Igel 1999), the ADER-DG method

89 achieves high-order accuracy in both space and time by

90 using the arbitrary high-order derivatives (ADER), which

91 was originally introduced in Toro (1999) in the finite-vol-

92 ume framework. The ADER scheme performs high-order

93 explicit time integration in a single step without any inter-

94 mediate stages. In three dimensions, the ADER-DG scheme

95 achieves high-order accuracy on unstructured tetrahedral

96 meshes, which allows for automated mesh generation even

97 when the modeling geometry is highly complex. Further-

98 more, a majority of the operators in the ADER-DG method

99 are applied in an element-local way, with weak element-to-

100 element coupling based on numerical flux functions, which

101 result in strong locality in memory access patterns. And the

102 high-order nature of this method lets it require fewer data

103 points, therefore, fewer memory fetches, in exchange for

104 higher arithmetic intensity. These characteristics of the

105 ADER-DG method make it well suited to run on massively

106 parallel graphic processing units (GPUs).

107 In the past four decades, the development in the com-

108 puting chip industry has been roughly following the Moore’s

109 law. Many of the performance improvements were due to

110 increased clock speeds and sophisticated instruction sched-

111 uling in a single core. As the transistor density keeps

112 increasing, the industry is now facing a number of engi-

113 neering difficulties with using a large number of transistors

114 efficiently in individual cores (e.g., power consumption,

115 power dissipation). The effect is that clock speeds are

116 staying relatively constant, and core architecture is expected

117 to become simpler, if changes much at all. As a consequence,

118 when we consider future platforms for high-performance

119scientific computing, there are some inevitable trends, for

120instance, the increase in the number of cores in general-

121purpose CPUs and the adoption of many-core accelerators

122(e.g., Field Programmable Gate Array, Graphic Processing

123Unit, Cell Broadband Engine) due to their smaller footprints

124and lower power consumptions than general-purpose CPUs.

125The users who want to once again experience substantial

126performance improvements as before need to learn how to

127exploit multiple/many cores. The GPU is becoming an

128attractive co-processor for general-purpose scientific com-

129puting due to its high arithmetic computation power, large

130memory bandwidth, and relatively lower costs and power

131consumptions per FLOP, when compared with a typical

132CPU. A typical GPU (e.g., NVIDIA GeForce 9800) can

133reach a peak processing rate of 700 GFLOPS (1

134GFLOPS = 109 floating-point-operations per second) and a

135peak memory bandwidth of 70 GB/s. Unlike in a conven-

136tional CPU, in a GPU, many more transistors are dedicated

137for data processing rather than data caching or flow control,

138which makes GPUs particularly well suited to address

139problems that can be expressed as data-parallel computa-

140tions. Recent efforts by GPU vendors, in particular, NVI-

141DIA’s CUDA (Compute Unified Device Architecture)

142programming model, the OpenCL (Open Computing Lan-

143guage) framework, and the OpenACC compiler directives

144and APIs, have significantly increased the programmability

145of commodity GPUs. Using these tools, a programmer can

146directly issue and manage data-parallel computations on

147GPUs using high-level instructions without the need to map

148them into a set of graphic-processing instructions.

149With the rapid development of the GPU programming

150tools, various numerical algorithms have been successfully

151ported to GPUs, and GPU-CPU hybrid computing plat-

152forms and substantial speedups, compared with pure-CPU

153implementations, have been achieved for applications in

154different disciplines. The discontinuous Galerkin (DG)

155method for solving the 3D Maxwell’s equations, which are

156linear, hyperbolic systems of conservation laws similar to

157the seismic wave equation, has been successfully mapped

158to GPU using NVIDIA’s CUDA framework and achieved

159more than an order of magnitude speed-up compared with

160the same implementation on a single current-generation

161CPU (Klöckner et al. 2009). The GPU implementation was

162done on a single NVIDIA GTX 280, which costs around

163$400. A significant portion of the speed-up came from the

164high-order nature of the DG method. In the area of

165acoustic/elastic seismic wave propagation simulations, the

166finite-difference and the spectral-element methods have

167been successfully implemented on CPU-GPU hybrid

168clusters using the CUDA programming model (e.g., Abd-

169elkhalek et al. 2009; Komatitsch et al. 2009; Komatitsch

170et al. 2010; Michéa and Komatitsch 2010; Okamoto et al.

1712010; Wang et al. 2010). The speedup obtained varies from
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172 around 209 to around 609 depending on several factors,

173 e.g., whether a particular calculation is amenable to GPU

174 acceleration, how well the reference CPU code is opti-

175 mized, the particular CPU and GPU architectures used in

176 the comparisons, and the specific compilers, as well as the

177 compiler options, used for generating the binary codes.

178 In Mu et al. (2013), we successfully ported the ADER-DG

179 method for solving three-dimensional elastic seismic wave

180 equation to a single NVIDIA Tesla C2075 GPU using

181 CUDA and obtained a speedup factor of about 24 when

182 compared with the serial CPU code running on one Intel

183 Xeon W5880 core. In this article, we explore the potential of

184 accelerating the ADER-DG method using multiple NVIDIA

185 Fermi GPUs with CUDA and the Message-Passing Interface

186 (MPI). Our reference CPU code is a community code named

187 ‘‘SeisSol.’’ The ‘‘SeisSol’’ code was written in Fortran 90

188 and parallelized using the Message-Passing Interface (MPI).

189 It implements the ADER-DG method for solving the three-

190 dimensional seismic wave equation in different types of

191 material properties (e.g., elastic, visco-elastic, anisotropic,

192 poroelastic). It has been optimized for different types of

193 CPU architectures and applied extensively in seismic wave

194 propagation simulations related to earthquake ground-

195 motion prediction, volcano seismology, seismic exploration,

196 and dynamic earthquake rupture simulations. For a complete

197 list of the references of its applications, please refer to the

198 ‘‘SeisSol Working Group’’ website or la Puente et al. (2009).

199 The lessons learned in our implementation and optimization

200 experiments may also shed some light on how to port this

201 type of algorithms to GPUs more effectively using other

202 types of GPU programming tools such as OpenCL and

203 OpenACC.

204 2 CUDA programming model

205 For readers who are not familiar with CUDA or GPU

206 programming, we give a very brief introduction about the

207 programming model in this section. The CUDA software

208 stack is composed of several layers, including a hardware

209 driver, an application programming interface (API), and its

210 runtime environment. There are also two high-level,

211 extensively optimized CUDA mathematical libraries, the

212 fast Fourier transform library (CUFFT) and the basic linear

213 algebra subprograms (CUBLAS), which are distributed

214 together with the software stack. The CUDA API com-

215 prises an extension to the C programming language for a

216 minimum learning curve. The complete CUDA program-

217 ming toolkit is distributed free of charge and is regularly

218 maintained and updated by NVIDIA.

219 A CUDA program is essentially a C program with mul-

220 tiple subroutines (i.e., functions). Some of the subroutines

221 may run on the ‘‘host’’ (i.e., the CPU), and others may run on

222the ‘‘device’’ (the GPU). The subroutines that run on the

223device are called CUDA ‘‘kernels.’’ A CUDA kernel is

224typically executed on a very large number of threads to

225exploit data parallelism, which is essentially a type of single-

226instruction-multiple-data (SIMD) calculation. Unlike on

227CPUs where thread generation and scheduling usually take

228thousands of clock cycles, GPU threads are extremely ‘‘light-

229weight’’ and cost very few cycles to generate and manage.

230The very large amounts of threads are organized into many

231‘‘thread blocks.’’ The threads within a block are executed in

232groups of 16, called a ‘‘half-warp,’’ by the ‘‘multiprocessors’’

233(a type of vector processor), each of which executes in par-

234allel with the others. A multiprocessor can have a number of

235‘‘stream processors,’’ which are sometimes called ‘‘cores.’’

236A high-end Fermi GPU has 16 multiprocessors, and each

237multiprocessor has two groups of 16 stream processors,

238which amounts to 512 processing cores.

239The memory on a GPU is organized in a hierarchical

240structure. Each thread has access to its own register, which

241is very fast, but the amount is very limited. The threads

242within the same block have access to a small pool of low-

243latency ‘‘shared memory.’’ The total amount of registers

244and shared memory available on a GPU restricts the

245maximum number of active warps on a multiprocessor (i.e.,

246the ‘‘occupancy’’), depending upon the amount of registers

247and shared memory used by each warp. To maximize

248occupancy, one should minimize the usage of registers and

249shared memory in the kernel. The most abundant memory

250type on a GPU is the ‘‘global memory’’; however, accesses

251to the global memory have much higher latencies. To hide

252the latency, one needs to launch a large number of thread

253blocks so that the thread scheduler can effectively overlap

254the global memory transactions for some blocks with the

255arithmetic calculations on other blocks. To reduce the total

256number of global memory transactions, each access needs

257to be ‘‘coalesced’’ (i.e., consecutive threads accessing

258consecutive memory addresses), otherwise the access will

259be ‘‘serialized’’ (i.e., separated into multiple transactions),

260which may heavily impact the performance of the code.

261In addition to data-parallelism, GPUs are also capable of

262task parallelism which is implemented as ‘‘streams’’ in

263CUDA. Different tasks can be placed in different streams,

264and the tasks will proceed in parallel despite the fact that they

265may have nothing in common. Currently task parallelism on

266GPUs is not yet as flexible as on CPUs. Current-generation

267NVIDIA GPUs now support simultaneous kernel executions

268and memory copies either to or from the device.

2693 Overview of the ADER-DG method

270The ADER-DG method for solving the seismic wave

271equation is both flexible and robust. It allows unstructured
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272 meshes and easy control of accuracy without compromising

273 simulation stability. Like the SE method, the solution inside

274 each element is approximated using a set of orthogonal basis

275 functions, which leads to diagonal mass matrices. These

276 types of basic functions exist for a wide range of element

277 types. Unlike the SE or typical FE schemes, the solution is

278 allowed to be discontinuous across element boundaries. The

279 discontinuities are treated using well-established ideas of

280 numerical flux functions from the high-order finite-volume

281 framework. The spatial approximation accuracy can be

282 easily adjusted by changing the order of the polynomial

283 basis functions within each element (i.e., p-adaptivity). The

284 ADER time-stepping scheme is composed of three major

285 ingredients, a Taylor expansion of the degree-of-freedoms

286 (DOFs, i.e., the coefficients of the polynomial basis func-

287 tions in each element) in time, the solution of the Derivative

288 Riemann Problem (DRP) (Toro and Titarev 2002) that

289 approximates the space derivatives at the element bound-

290 aries and the Cauchy-Kovalewski procedure for replacing

291 the temporal derivatives in the Taylor series with spatial

292 derivatives. We summarize major equations of the ADER-

293 DG method for solving the three-dimensional isotropic

294 elastic wave equation on unstructured tetrahedral meshes in

295 the following. Please refer to Dumbser and Käser (2006) for

296 details of the numerical scheme.

297 The three-dimensional elastic wave equation for an iso-

298 tropic medium can be expressed using a first-order velocity-

299 stress formulation and written in a compact form as

otQp þ ApqoxQq þ BpqoyQq þ CpqozQq ¼ 0; ð1Þ

301301 where Q is a 9-vector consisting of the six independent

302 components of the symmetric stress tensor and the velocity

303 vector Q ¼ ðrxx; ryy;rzz; rxy; ryz; rxz; u; v;wÞT, and Apq, Bpq

304 and Cpq are space-dependent 9 9 9 sparse matrices with the

305 nonzero elements given by the space-dependent Lamé

306 parameters and the buoyancy (i.e., the inverse of the density).

307 Summation for all repeated indices is implied in all equations.

308 The seismic source and the free-surface and absorbing

309 boundary conditions can be considered separately as shown in

310 Käser and Dumbser (2006) and Dumbser and Käser (2006).

311 Inside each tetrahedral element TðmÞ, the numerical

312 solution Qh can be expressed as a linear combination of

313 space-dependent and time-independent polynomial basis

314 functions Ul n; g; fð Þ of degree N with support on T ðmÞ,

Q
ðmÞ
h

h i
p
ðn; g; f; tÞ ¼ Q̂

ðmÞ
pl ðtÞUlðn; g; fÞ; ð2Þ

316316 where Q̂
ðmÞ
pl ðtÞ are time-dependent DOFs, and n, g, f are

317 coordinates in the reference element TE. Explicit

318 expressions for the orthogonal basis functions Ulðn; g; fÞ
319 on a reference tetrahedral element are given in Cockburn

320 et al. (2000) and the appendix A of Käser et al. (2006).

321Bring Eq. (2) into Eq. (1), multiplying both sides with a test

322functionUk, integrate over an element T ðmÞ, and then apply

323integration by parts, we obtain,
Z

TðmÞ

dVðUkotQpÞ þ
Z

oTðmÞ

dSðUkFh
pÞ

�
Z

TðmÞ

dVðoxUkApqQp þ oyUkBpqQp þ ozUkCpqQpÞ ¼ 0:

ð3Þ

325325The numerical flux Fh
p between the element T ðmÞ and one

326of its neighboring elements, TðmjÞ, j = 1, 2, 3, 4, can be

327computed from an exact Riemann solver,

Fh
p ¼

1

2
T j

pq AðmÞqr þ AðmÞqr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmÞ
sl UðmÞl

þ 1

2
T j

pq AðmÞqr � AðmÞqr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmjÞ
sl UðmjÞ

l ;

ð4Þ

329329where T j
pq is the rotation matrix that transforms the vector

330Q from the global Cartesian coordinate to a local normal

331coordinate that is aligned with the boundary face between

332the element T ðmÞ and its neighbor element TðmjÞ. Bring Eq.

333(4) into Eq. (3) and convert all the integrals from the global

334xyz-system to the ngf-system in the reference element TE

335through a coordinate transformation, we obtain the semi-

336discrete discontinuous Galerkin formulation,

Jj jotQ̂
ðmÞ
pl Mkl � Jj j A�pqQ̂

ðmÞ
ql Kn

kl þ B�pqQ̂
ðmÞ
ql K

g
kl þ C�pqQ̂

ðmÞ
ql Kf

kl

� �

þ 1

2
T j

pq AðmÞqr þ AðmÞqr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmÞ
sl F

�;j
kl

þ 1

2
T j

pq AðmÞqr � AðmÞqr

���
���

� �
ðT j

rsÞ
�1

Q̂
ðmjÞ
sl F

þ;j;i;h
kl ¼ 0; ð5Þ

338338where Jj j is the determinant of the Jacobian matrix of the

339coordinate transformation being equal to 6 times the

340volume of the tetrahedron, Sj

�� �� is the area of face j between

341the element TðmÞ; and its neighbor element TðmjÞ, A�pq, B�pq ,

342and C�pq are linear combinations of Apq, Bpq , and Cpq with

343the coefficients given by the Jacobian of the coordinate

344transformation, Mkl, Kn
kl, K

g
kl; and Kf

kl are the mass, stiffness,

345and flux matrices are given by

F
�;j
kl ¼

Z

oðTEÞj
½UkðnðjÞðv; sÞÞUlðnðjÞðv; sÞÞ�dvds;

81� j� 4;

ð6Þ

347347F
þ;j;i;h
kl ¼

Z

oðTEÞj
½UkðnðjÞðv; sÞÞUlðnðiÞð~vðhÞðv; sÞ; ~sðhÞðv; sÞÞÞ�

dvds 81� i� 4; 81� h� 3: ð7Þ

349349The mass, stiffness, and flux matrices are all computed

350on the reference element which means that they can be
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351 evaluated analytically beforehand using a computer algebra

352 system (e.g., Maple, Mathematica) and stored on disk.

353 If we project Eq. (1) onto the DG spatial basis functions,

354 the temporal derivative of the DOF can be expressed as

otQ̂pnðtÞ ¼ ð�M�1
nk Kn

lkA�pq �M�1
nk K

g
lkB�pq

�M�1
nk Kf

lkC�pqÞQ̂qlðtÞ;

356356 and the m-th temporal derivative can be determined

357 recursively as

om
t Q̂pnðtÞ ¼ ð�M�1

nk Kn
lkA�pq �M�1

nk K
g
lkB�pq

�M�1
nk Kf

lkC�pqÞo
m�1
t Q̂qlðtÞ: ð8Þ

359359 The Taylor expansion of the DOF at time tn is,

Q̂pnðtÞ ¼
XN

m¼0

ðt � tnÞm

m!
om

t Q̂pnðtnÞ;

361361 which can be integrated from tn to tnþ1,

IpnqlðDtÞQ̂qlðtnÞ �
Ztnþ1

tn

Q̂pnðtÞdt ¼
XN

m¼0

Dtmþ1

ðmþ 1Þ! o
m
t Q̂pnðtnÞ;

ð9Þ

363363 where Dt ¼ tnþ1 � tn, and om
t Q̂pnðtnÞ can be computed

364 recursively using Eq. (8).

365 Considering Eq. (9), the fully discretized system can

366 then be obtained by integrating the semi-discrete system,

367 Eq. (5), from tn to tnþ1;

Jj j½Q̂ðmÞnþ1
pl � Q̂

ðmÞn
pl �Mkl

¼ Jj jðA�pqKn
klþB�pqK

g
klþC�pqKf

klÞIqlmnðDtÞðQ̂ðmÞmn Þ
n

�1

2

X4

j¼1

Sj

�� ��T j
pq AðmÞqr þ AðmÞqr

���
���

� �
T j

rs

� ��1
F
�;j
kl IslmnðDtÞðQ̂ðmÞmn Þ

n

�1

2

X4

j¼1

Sj

�� ��T j
pq AðmÞqr � AðmÞqr

���
���

� �
T j

rs

� ��1
F
þ;j;i;h
kl IslmnðDtÞðQ̂ðmjÞ

mn Þ
n:

ð10Þ

369369 Equation (10), together with Eqs. (8) and (9), provides

370 the mathematical foundation for our GPU implementation

371 and optimization.

372 4 Implementation and optimization on multiple GPUs

373 Prior to running our wave-equation solver, a tetrahedral

374 mesh for the entire modeling domain was generated on a

375 CPU using the commercial mesh generation software

376 ‘‘GAMBIT.’’ The mesh generation process is fully auto-

377 mated, and the generated tetrahedral mesh conforms to all

378 discontinuities built into the modeling geometry, including

379irregular surface topography and subsurface fault struc-

380tures. The entire mesh was then split into subdomains, one

381per GPU, using the open-source software ‘‘METIS’’ which

382is a serial CPU program for partitioning finite-element

383meshes in a way that minimizes inter-processor commu-

384nication cost while maintaining load balancing.

3854.1 Pre-processing

386In Fig. 1, we listed the major steps in the reference parallel

387CPU code, ‘‘SeisSol’’ la Puente De et al. (2009), and those

388in our parallel CPU-GPU hybrid implementation. In our

389parallel CPU-GPU hybrid implementation, we assume that

390each MPI process has access to only one device, and each

391device is controlled by only one MPI process. At the start

392of the calculation, a sequence of pre-processing steps is

393executed on the CPUs. The pre-processing sequence

394includes:

395(1) reading and processing a control file;

396(2) reading and processing geometric information, which

397include the tetrahedral mesh, the boundary condi-

398tions, the material properties (i.e., density and Lamé

399parameters) for each element, and the mesh parti-

400tioning information generated by METIS;

401(3) for the elements in each subdomain, creating a list of

402all the elements that are in contact with elements in

403other subdomains, which we call the ‘‘outer’’ ele-

404ments, and those that are not, which we call the

405‘‘inner’’ elements;

406(4) reading and processing the DG matrices, which

407include the mass, stiffness, and flux matrices, which

408were pre-computed and stored on the disk; and

409(5) reading and processing the files describing the seismic

410source and seismic receivers.

411Our CUDA program adopts the typical CUDA pro-

412gramming model. After the pre-processing sequence is

413carried out on the host CPUs, the arrays needed by the

414CUDA kernels are then copied to the global memory of the

415devices using ‘‘cudaMemcpy.’’ The hosts then call a

416sequence of CUDA kernels in every time step. The results

417of the simulation (e.g., the synthetic seismograms) are

418stored on the devices during the time loop and copied back

419to the hosts after all time steps are completed.

420In our implementation, the calculation for each tetra-

421hedral element is carried out by one thread block. Within

422each thread block, the number of threads depends upon the

423dimension of the element’s DOFs. The DOFs, Q̂
ðmÞ
pl , are

424allocated and initialized in the global memory of the device

425using ‘‘cudaMalloc’’ and ‘‘cudaMemset.’’ For a 5th-order

426scheme which is sufficiently accurate for most of our

427applications, the number of DOFs per component per
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FcudaMemcpy(HostToDevice)

cudaStreamSynchronize

split DOF array on subdomain into 
"inner" & "outer" elements

cudaStreamSynchronize

second term numerical flux update

GPU copy message from host and distribute

GPU assemble message and copy to host

add source contribution and update DOFsadd source contribution and update DOFs

numerical flux update

volume contribution

GPU Time-steppingCPU Time-stepping

CPU Post-processing

end

write result output file

CPU Post-processing

CPU Pre-processing

GPU implementation

CPU Pre-processing

CPU implementation

cudaMemcpy(DeviceToHost)

mark "inner" & "outer" elements

read and process source and receiver info

read and process DG matrices

read and process geometric info

read and process control file

start

read and process source and receiver info

read and process DG matrices

read and process geometric info

read and process control file

start

END

CONTINUE

Loop on iteration
from 1 to nCycleEND

CONTINUE

Loop on iteration
from 1 to nCycle

end

write result output file

calc time-integrated DOFs for inner elements

first term numerical flux update

volume contribution

CPU distribute message 

CPU non-blocking MPI

CPU assemble message

calc time-integrated DOFs for all elements

calc time-integrated DOFs for outer elements

CPU non-blocking MPI

combine time-integrated DOFs
from inner & outer elements

 

Fig. 1 The flowcharts of the major steps in the reference parallel CPU codes (left) and those in our CPU-GPU hybrid implementation (right).

The whole calculation can be separated into three sections: pre-processing, time-stepping, and post-processing. The pre-processing section reads

and calculates all the data that the time-stepping section will use. The time-stepping section updates the DOFs of each tetrahedral element

according to Eqs. (8)–(10) and has been ported to the GPU. The post-processing section is in charge of writing out the DOFs and/or the

seismograms at the pre-specified locations
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428 element is 35. Considering the nine components of the

429 governing PDE (i.e., six stress components and three

430 velocity components), the DOFs of each element consist of

431 a 9 9 35 matrix which is represented in memory as a one-

432 dimensional array of length 315 organized in the column-

433 major ordering. To obtain better memory alignment, we

434 padded five zeros behind the DOFs of each element so that

435 the length of the one-dimensional DOF array of each ele-

436 ment is increased to 320, which is 10 times the number of

437 threads in a warp. For a subdomain of ‘‘nElem’’ elements,

438 the length of the one-dimensional DOF array for the whole

439 subdomain is, therefore, ‘‘nElem 9 320.’’ The amount of

440 memory that is wasted on purpose is less than 1.6 %;

441 however, the better memory alignment improved the per-

442 formance of some simple operations such as summation

443 operations and scalar-product operations by around 6.3 %.

444 4.2 Matrix–matrix multiplications

445 The implementation and optimization details for steps (1)–(5)

446 are documented in Mu et al. (2013). In this section, we give a

447 very brief summary. In those steps, most of the total wall-time

448 is spent on matrix–matrix multiplications. We use step (2)

449 which computes the volume contribution, as an example. A

450 flowchart of the major calculations in step (2) is shown in

451 Fig. 2a. Considering the first term on the right-hand-side of

452 Eq. (10), the calculations in step (2) involve mathematical

453 operations in the form of A�pqKn
kl½IqlmnðDtÞðQ̂ðmÞmn Þ

n�, where the

454 time-integrated DOF IqlmnðDtÞðQ̂ðmÞmn Þ
n
, denoted as ‘‘dgwork’’

455 in Fig. 2a, is computed in step (1) and has the same dimension

456 and memory layout as the DOF array. The multiplication

457 between Kn
kl, denoted as ‘‘Kxi’’ in Fig. 2a, and the time-

458 integrated DOF is different from the normal matrix–matrix

459 product in linear algebra. This multiplication involves three

460 steps: first, transpose the time-integrated DOF matrix, second,

461 multiply with the stiffness matrix following the usual matrix–

462 matrix product rule, third, transpose the matrix obtained in the

463 previous step. We call this multiplication the ‘‘left-multipli-

464 cation.’’ A code segment for the baseline CUDA implemen-

465 tation of the left-multiplication is shown in Fig. 2b. This left-

466 multiplication operation is used extensively through the cal-

467 culations in steps (1)–(4) and deserves more optimization

468 effort. First, we can reduce the number of floating-point

469 operations by exploiting the fact that some of the matrices in

470 this operation are sparse; second, the order of the floating-

471 point operations can be rearranged in a way such that the

472 accesses to ‘‘dgwork’’ in the global memory are as coalesced

473 as possible. The DOF, its temporal derivatives, and the time-

474 integrated DOF are generally dense. However, the stiffness

475 matrices and the Jacobians have fill-ratios ranging from 8.8 %

476 to 29.6 %. To take advantage of this sparsity, one possibility

477is to adopt an existing sparse linear algebra library such as

478‘‘CUSP’’ (Bell and Garland 2009) or cuSPARSE. However,

479the result we obtained using ‘‘CUSP’’ was not very satisfac-

480tory. The best performance gain, which was obtained using

481the ‘‘HYB’’ matrix format, was about 36.2 % compared with

482the baseline implementation shown in Fig. 2b. This is largely

483due to the very irregular distribution of the non-zeros in our

484matrices, which caused a large number of uncoalesced

485accesses to the time-integrated DOF arrays, and the amount of

486arithmetic calculations was not large enough to hide the

487memory access latencies due to the low fill-ratio in the stiff-

488ness matrix. Considering the fact that the locations of the non-

489zero elements in the stiffness matrices can be determined

490beforehand and are fixed throughout the program, the results

491of the left-multiplications can be evaluated analytically

492beforehand and expressed in terms of the non-zero elements

493in those matrices using a computer algebra system. The

494expressions of the left-multiplication results, which are linear

495combinations of the time-integrated DOF with coefficients

496given by the non-zero elements of the stiffness matrices, can

497be hardwired into the CUDA kernels. This implementation

498eliminates all redundant calculations involving zero elements

499and by carefully arranging the order of the calculations in

500accordance with the thread layout, we can also minimize the

501number of uncoalesced memory accesses to the time-inte-

502grated DOF array. A code segment of the optimized left-

503multiplication is shown in Fig. 2c, which is about 4 times

504faster than the baseline implementation shown in Fig. 2b.

505This approach can also be applied to normal matrix–matrix

506product and is used throughout steps (1)–(4) in our optimized

507CUDA codes. A drawback of this approach is that the

508resulting kernel source code is quite long, and some manual

509editing is required to ensure coalesced memory accesses.

510However, modern computer algebra systems (e.g., Mathem-

511atica, Maple) usually have automated procedures for trans-

512lating long mathematical expressions into the C language

513which is usually error-proof and can be directly incorporated

514into the CUDA kernels with minimal effort.

515Our own matrix–matrix multiplication scheme greatly

516contributes our CUDA codes. Before we settled for the

517final version of our single-GPU code, we also complete two

518other versions of CUDA implementations, one is the

519baseline implementation, which adapts conventional

520CUDA dense matrix–matrix multiplication, and the other is

521the median implementation which uses sparse matrix–

522matrix multiplication scheme. As a result, compared with

523the CPU based ADER-DG code, the baseline implemen-

524tation obtains a speedup factor of 9.79, and the median

525implementation improved the speedup factor from 9.79 to

52613.29. This improvement mainly gains from getting rid of

527all zeros elements’ computation; however, due to the very

528irregular distribution of non-zeros locality, this median
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RETURN

dudt *= JacobianDet
Grid_size = nElem; Block_size = nDegFr * nVar

dudt -= temp_DOF * Cstar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Kzeta * dgwork
Grid_size = nElem; Block_size = nVar

dudt -= temp_DOF * Bstar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Keta * dgwork
Grid_size = nElem; Block_size = nVar

dudt -= temp_DOF * Astar
Grid_size = nElem; Block_size = nDegFr

temp_DOF = Kxi * dgwork
Grid_size = nElem; Block_size = nVar

cudaMemset dudt to 0

BEGIN

(a)

(b)

(c)
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529 implementation still almost 2 times slower than our final

530 implementation, which enjoys a speedup factor of 24.39.

531 4.3 Overlapping communication with computation

532 Considering Eqs. (8)–(10), the calculations on the devices

533 within each time step can be organized into five major steps:

534 (1) calculating the time-integrated DOFs, i.e., the term

535 IqlmnðDtÞðQ̂ðmÞmn Þ
n

using the DOFs ðQ̂ðmÞmn Þ
n

at the

536 current time step through the Cauchy-Kovalewski

537 procedure, i.e., Eqs. (8) and (9),

538 (2) calculating the volume contributions, i.e., the first

539 term on the right-hand-side of Eq. (10), using the

540 time-integrated DOFs obtained in step (1),

541 (3) calculating the first numerical flux term, i.e., the

542 second term on the right-hand-side of Eq. (10), using

543 the time-integrated DOFs obtained in step (1),

544 (4) calculating the second numerical flux term, i.e., the

545 third term on the right-hand-side of Eq. (10), using

546 the time-integrated DOFs of the four neighboring

547 elements obtained in step (1),

548 (5) updating the DOFs to the next time step ðQ̂ðmÞpl Þ
nþ1

549 using the DOFs at the current time step ðQ̂ðmÞpl Þ
n
, the

550 volume contributions obtained in step (2) and the

551 numerical flux terms obtained in steps (3) and (4), as

552 well as any contributions from the seismic source, by

553 using Eq. (10) which also involves inverting the mass

554 matrix Mkl, which is diagonal.

555 All the calculations in steps (1), (2), (3), and (5) can be

556 performed in an element-local way and require no inter-

557 element information exchange, which is ideal for SIMD-

558 type processors such as GPUs. The calculations in step (4)

559 need to use the time-integrated DOFs from all neighboring

560 elements which in our distributed-memory, parallel

561implementation requires passing time-integrated DOFs of

562the outer elements of each subdomain across different MPI

563processes. Most of this communication overhead can be

564hidden through overlapping computation with

565communication.

566In our implementation, we calculate the time-integrated

567DOFs for all the outer elements of a subdomain first. The

568calculation of the time-integrated DOF requires access to

569the DOF array in the global memory. The DOFs of the

570outer elements are usually scattered throughout the entire

571DOF array of the subdomain. To avoid non-coalesced

572memory accesses, which could impact performance by up

573to 54 %, the entire DOF array is split into two sub-arrays,

574one for DOFs of all the outer elements and the other for the

575DOFs of all inner elements. Once we complete the calcu-

576lations of the time-integrated DOFs of the outer elements,

577the device starts to compute the time-integrated DOFs of

578the inner elements of the subdomain right away. At the

579same time, the time-integrated DOFs of the outer elements

580are assembled into a separate array which is then copied

581into the host memory asynchronously to fill the MPI buffer

582using a separate CUDA stream, and then the host initiates a

583non-blocking MPI data transfer and returns. While the

584messages are being transferred, the device completes the

585calculations of the time-integrated DOFs of the inner ele-

586ments, combines them with the time-integrated DOFs of

587the outer elements into a single time-integrated DOF array

588and proceeds to calculations of the volume contributions in

589step (2) and the first numerical flux term in step (3). On the

590host, synchronization over all the MPI processes is per-

591formed; once the host receives the array containing the

592time-integrated DOFs of the outer elements on the neigh-

593boring subdomains, it is copied to the device asynchro-

594nously using a separate CUDA stream. After completing

595step (3), the device synchronizes all streams to make sure

596that the required time-integrated DOFs from all neighbor-

597ing subdomains have arrived and proceed to calculate the

598second numerical flux term in step (4) and then update the

599DOFs as in step (5). The overhead for splitting the entire

600DOF array into two sub-arrays for inner and outer elements

601and for combining the time-integrated DOFs of the outer

602and inner elements into a single array amounts to less than

6030.1 % of the total computing time on the device. The entire

604process is illustrated in Fig. 1.

605There are many factors can influent the speedup factor

606contribution by overlapping communication with compu-

607tation; the overlapping benefit almost differs from com-

608puter to computer. Based on our completed experiments,

609the best scenario which all the GPUs located on the same

610node, the communication time takes 11.7 % of total com-

611putation time, while when each GPU locate on the different

612node, the ratio could rise up to 25.1 %. However, since we

613apply the multiple streams and the overlapping techniques,

b Fig. 2 a The flowchart of the calculations in step (2), the volume

contributions. ‘‘dudt’’ is the volume contribution, ‘‘Kxi,’’ ‘‘Keta,’’

‘‘Kzeta’’ correspond to the stiffness matrices, Kf
lk, K

g
lk, Kf

lk, in the text.

‘‘JacobianDet’’ is the determinant of the Jacobian Jj j. ‘‘nElem’’ is the

number of tetrahedral elements in the subdomain, ‘‘nDegFr’’ is the

number of DOFs per component per tetrahedral element, ‘‘nVar’’ is

the number of components in the governing equation. ‘‘AStar,’’

‘‘BStar,’’ ‘‘CStar’’ correspond to A*, B*, C* in the text. Code

segments for the calculations in the dark-gray box are listed in b and

c. b. Baseline implementation of the CUDA kernel for the ‘‘left-

multiplication’’ between the time-integrated DOF and the stiffness

matrix Kf
lk. ‘‘Kxi_dense’’ corresponds to the dense matrix represen-

tation of Kf
lk, ‘‘dgwork’’ corresponds to the time-integrated DOF, and

the result of the multiplication is stored in ‘‘temp_DOF.’’ c A segment

of the optimized CUDA kernel for the ‘‘left-multiplication’’ between

the time-integrated DOF and the stiffness matrix Kf
lk. ‘‘Kxi_sparse’’

corresponds to the sparse matrix representation of Kf
lk. Meanings of

other symbols are identical to those in Fig. b
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614 the overhead caused by communication could be

615 eliminated.

616 To ensure effective communication-computation over-

617 lap, the ratio of the number of the outer to inner elements

618 must be sufficiently small. An upper bound of this ratio can

619 be estimated based on both the processing capability of the

620 devices and the speed of the host-device and host–host

621 inter-connections. On the NVIDIA Fermi M2070 GPUs

622 that we experimented with, we achieved nearly zero

623 communication overheads when this ratio is below 2 %.

624 We note that if the same approach is implemented using a

625 classic CPU cluster, this ratio can be much larger, since the

626 calculations for the inner elements and steps (2) and (3) are

627 over an order of magnitude slower on a CPU core.

628 5 Performance analysis

629 In this study, the speedup factor is defined as the ratio

630 between the wall-time spent on running a simulation on a

631 number of CPU cores with the wall-time spent on running

632 the same simulation on the same or less number of GPUs.

633 The CPU used as the reference is the Intel Xeon W5660

634 (2.80 GHz/12 MB L2 cache) processor, and the GPU is the

635 NVIDIA Tesla C2070 (1.15 GHz/6 GB 384bit GDDR5)

636 processor. Specifications of our CPU and GPU processors

637 can be found on Intel and NVIDIA’s websites.

638 The speedup factor depends strongly upon how well the

639 reference CPU code is optimized and sometimes also on

640 the specific CPU compiler and compiling flags. The fastest

641 executable on our CPU was obtained using the Intel

642 compiler ‘‘ifort’’ with the flag ‘‘–O3.’’ The wall-time for

643 running the CPU code in double-precision mode is only

644 slightly longer than running the CPU code in single-pre-

645 cision mode by around 5 %. Our GPU codes were com-

646 piled using the standard NVIDIA ‘‘nvcc’’ compiler of

647 CUDA version 4.0. Throughout this article, we use the

648 double-precision version of the fastest CPU code as the

649 reference for computing the speedup factors of our single-

650 and double-precision GPU codes.

651 The accuracy of our single-precision GPU codes is

652 sufficient for most seismological applications. The com-

653 puted seismograms have no distinguishable differences

654 from the seismograms computed using the double-preci-

655 sion version of the reference CPU code, and the energy of

656 the waveform differences is much less than 1 % of the total

657 energy of the seismogram.

658 5.1 Single-GPU performance

659 For our single-GPU performance analysis, we computed

660 the speedup factors for problems with seven different mesh

661 sizes (Fig. 3). The number of tetrahedral elements used in

662our experiments is 3,799, 6,899, 12,547, 15,764, 21,121,

66324,606, and 29,335. The material property is constant

664throughout the mesh with density 3,000 kg/m3 and Lamé

665parameters k 5.325 9 1010 and l 3.675 9 1010 Pascal. We

666applied the traction-free boundary condition on the top of

667the mesh and absorbing boundary condition on all other

668boundaries. The seismic source is an isotropic explosive

669source buried in the center of the mesh. The wall-time

670measurements were obtained by running the simulations

671for 1,000 time steps. The speedup factors were computed

672for our single-precision GPU code with respect to the CPU

673code running on one, two, four, and eight cores. For the

674multi-core runs on the CPUs, the parallel version of the

675‘‘SeisSol’’ code is used as the reference. For the seven

676different mesh sizes, the speedup factor ranges from 23.7 to

67725.4 with respect to the serial CPU code running on one

678core, from 12.2 to 14 with respect to the parallel CPU code

679running on two cores, from 6.5 to 7.2 with respect to the

680parallel CPU code running on four CPU cores, and from

6813.5 to 3.8 with respect to the parallel CPU code running on

682eight CPU cores. The speedup factor does not decrease

683linearly with increasing number of CPU cores. For

684instance, the speedup factor with respect to eight CPU

685cores is about 14 % better than what we would have

686expected considering the speedup factor with respect to one

687CPU core if we had assumed a linear scaling. For the

688parallel version of the CPU code, there are overheads

689incurred by the MPI communication among different cores,

690while for the single-GPU simulations, such communication

691overheads do not exist.

692Since most of the calculations in the ADER-DG method

693are carried out in an element-local way, and there are no

694inter-process communication overheads on a single GPU,

695we expect the ‘‘strong scaling’’ on a single GPU, defined as

696the total wall-time needed to run the application on one

697GPU when the total number of elements (i.e., the amount

698of workload) is increased (e.g., Michéa and Komatitsch

6992010), to be nearly linear. In Fig. 4, we show the total wall-

700time for 100 time steps as a function of the total number of

701tetrahedral elements. As we can see, the strong scaling of

702our codes on a single GPU is almost linear. The calcula-

703tions in step (4) (i.e., the second term in the numerical flux)

704involve time-integrated DOFs of direct neighbors; how-

705ever, this inter-element dependence keeps its spatially local

706character, while the number of elements increases and does

707not affect the scaling.

7085.2 Multiple-GPU performance

709To analyze the performance of the parallel version of our

710CUDA codes, we use a simplified version of the SEG/

711EAGE salt model (Käser et al. 2010) as the benchmark.

712This model is geometrically complex, as shown in Fig. 5a
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713 and b. However, the generation of the tetrahedral mesh for

714 such a complex model is highly automatic, once the

715 geometries of the structural interfaces are imported into the

716 meshing software. The material properties of the different

717 zones in this model are summarized in Table 1. We note

718that a thin layer of water lies on top of the three-dimen-

719sional model. The ADER-DG method can accurately

720handle seismic wave propagation in water simply by set-

721ting the shear modulus of the elements in the water region

722to zero (Käser and Dumbser 2008).

723This salt model is discretized into tetrahedral meshes

724with different number of elements. In Fig. 6, we show the

725speedup factors obtained for two different mesh sizes, one

726with 327,886 elements, and the other with 935,870 ele-

727ments. The simulations were run on 8, 16, 32, and 48 CPU

728cores using the parallel version of the ‘‘SeisSol’’ code. And

729the speedup factors were obtained by running the same

730simulations on the same number of GPUs. On average, the

731speedup factor for our parallel GPU codes is around 28,

732which is slightly higher than the speedup factor obtained in

733the single-GPU-single-CPU comparison. This may due to

734the fact that in the parallel CPU code, the outer elements of

735a subdomain are not treated separately from the inner

736elements, which do not allow the parallel CPU code to

737overlap the computation on the inner elements with the

738communication of the time-integrated DOFs of the outer

739elements.

740To investigate the strong scalability (i.e., the decrease in

741wall-time with increasing GPU number, while holding the

742total workload that is the number of elements and time
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Fig. 3 Single-GPU speedup factors obtained using 7 different meshes and 4 different CPU core numbers. The total number of tetrahedral

elements in the 7 meshes is 3,799, 6,899, 12,547, 15,764, 21,121, 24,606, and 29,335, respectively. The speedup factors were obtained by

running the same calculation using our CPU-GPU hybrid code with 1 GPU and using the serial/parallel ‘‘SeisSol’’ CPU code on 1/2/4/8 CPU

cores on the same compute node. The black columns represent the speedup of the CPU-GPU hybrid code relative to 1 CPU core, the dark-gray

columns represent the speedup relative to 2 CPU cores, the light gray column represents the speedup relative to 4 CPU cores and the lightest gray

columns represent the speedup relative to 8 CPU cores
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Fig. 4 Strong scalability of our single GPU code with different mesh

sizes. The black squares show the average wall-time per 100 time

steps, and the number of elements varies from 800 to 57,920
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743 steps, constant), we discretized the salt model using a mesh

744 with about 1.92 million elements and ran the simulation for

745 100 times steps. The number of GPUs used in the simu-

746 lations ranges from 32 to 64. As seen on Fig. 7, the strong

747 scaling of our parallel GPU codes is close to the ideal case

748 with some fluctuations. Our codes start to slightly under-

749 perform the ideal case when the number of GPUs used in

750 the simulation is larger than 48. As analyzed in Sect. 4.2, to

751 effectively overlap computation with communication, the

752 ratio between the number of outer elements and the number

753 of inner elements of a subdomain cannot exceed a certain

754 threshold, which is determined by the processing capability

755of the GPU and the speed of the inter-connections. In our

756case, when the number of GPUs used in the simulation

757starts to exceed 48, this ratio becomes larger than 2 %,

758which we believe is the threshold for our hardware con-

759figuration. The performance of our parallel GPU codes

760depends upon a number of factors, such as load balancing,

761but we think the extra communication overhead that was

762not effectively hidden by the computation was the domi-

763nant factor for causing our codes to underperform the ideal

764case. In Fig. 8, we show the results of our weak scaling test

765(i.e., the workload per GPU is kept about constant while

766increasing the number of GPUs). By definition, the total

767number of elements in the weak scaling test increases

768approximately linearly with the number of GPUs. If the

769communication cost is effectively overlapped by compu-

770tation, the weak scaling test should be approximately flat.

771In our tests, the average number of elements per GPU was

772kept around 53,000 with about 6 % fluctuation across dif-

773ferent simulations. The ratio between the number of outer

774and inner elements was kept around 1 %. The weak scaling

775is approximately flat (Fig. 8), with some fluctuation mostly

776caused by the variation in the number elements per GPU

777used in each simulation.

(a)

(b)

Fig. 5 a A perspective view of the 3D geometry of the discretized salt body in the SEG/EAGE salt model. b A two-dimensional cross-section

view of the SEG/EAGE salt model along the A–A0 profile (Aminzadeh et al. 1997). The material properties for the different geological structures

are listed in Table 1

Table 1 Material property of the SEG 3D salt model example

q (kg/m3) k (109) M (Pa 109) Vp (m/s) Vs (m/s)

Water 1,020 2.2950 0 1,500 0

Zone 01 2,000 4.5067 4.5067 2,600 1,501

Zone 02 2,050 5.0000 5.0000 2,705 1,562

Zone 03 2,500 7.5000 7.5000 3,000 1,732

Zone 04 2,600 9.0000 9.0000 3,223 1,861

Salt 2,160 20.800 14.457 5,094 3,103
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778 5.3 Application examples

779 We have applied our multiple-GPUs code on two well-

780 defined models, one is the SEG-EAGE Salt, and the other

781 is marmousi2. All the results with these two models have

782 been compared with CPU code SeisSol for validation.

783 For the marmousi2 model, we extrude its 2D original

784 profile and make it a 3D model with dimension of 3,500 m

785 in depth, 17,000 m in length, and 7,000 m in width

786 (Fig. 9a). There are 379,039 tetrahedral elements, and each

787 element has its own material property, also 337 receivers

788locate at 5 m beneath the surface along the A–A0 (yellow)

789line, and the horizontal interval is 50 m; the explosive

790source located at 10.0 m(depth), 7,500.0 m(length),

7913,500.0 m(width). In this case, we used 16 M2070 Fermi

792GPUs located on eight different nodes, and each node has 2

793GPUs. Our CUDA code uses 16 GPUs spend 4,812.64(s) to

794calculate 5 s seismogram, (Fig. 9b), while the SeisSol runs

795on 16 CPU cores need 135,278.50 s, the speedup factor of

79628.119.
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Fig. 6 Speedup factors of our parallel GPU codes obtained using two different mesh sizes. The number of tetrahedral elements used in our

experiments are 327,866, 935,870. The speed factors were computed for our single-precision multiple-GPUs code with respect to the CPU code

running on 16/32/48/64 cores runs on different nodes
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Fig. 7 Strong scalability of our multiple-GPUs codes with 1.92 mil-

lion elements, the black line shows the average wall-time per 100

time steps for this size-fixed problem performed by 32–64 GPUs
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797 For the SEG/EAGE salt model, we remove the very

798 detailed original structure and only keep the main features,

799 such as the salt body and those main faults (Fig. 10a). This

800 simplified SEG/EAGE salt model with dimension of 4,200 m

801 in depth, 13,500 m in length, and 13,500 m in width. The total

802 tetrahedral elements number is 447,624; each element has its

803 own material property. There are 192 receivers locate at 5 m

804 beneath the surface along A–A0 (yellow) line, and the hori-

805 zontal interval is 50 m; the explosive source located at

806 10.0 m(depth), 7,060.0 m(length), 4,740.0 m(width). In this

807 case, we used the same hardware we used for the marmousi2

808 model. Our CUDA code uses 16 GPUs spend 7,938.56 s

809 calculate 7 s seismogram, (Fig. 10b) while the SeisSol runs

810 on 16 CPU cores need 224,589.80 s, it’s a speedup of 28.299.

811 6 Summary

812 In this study, we have successfully ported the ADER-DG

813 method for solving the three-dimensional isotropic elastic

814 seismic wave equation on unstructured tetrahedral meshes

815 to CPU-GPU hybrid clusters using NVIDIA’s CUDA pro-

816 graming model and the message-passing interface (MPI).

817 The serial version of our CUDA codes runs approximately

818 24.3 times faster than the reference serial CPU codes at

819 single precision and about 12.8 times at double precision.

820The parallel version of our CUDA codes runs about 28.3

821times faster than the reference parallel CPU codes at single

822precision and about 14.9 times at double precision. The

823increase in speed can be directly translated into an increase

824in the size of the problems that can be solved using the

825ADER-DG method. Some preliminary performance ana-

826lysis shows that our parallel GPU codes have favorable

827strong and weak scalability as long as the ratio between the

828number of outer elements and inner elements of each sub-

829domain is smaller than a certain threshold.

830The ADER-DG method has a number of unique charac-

831teristics that make it very suitable for acceleration using

832GPU-type SIMD processors. The majority of the calcula-

833tions can be carried out in an element-local way with weak

834inter-element coupling implemented using the numerical

835flux functions. In particular, as shown in Eq. (10), the only

836term that involves inter-element information exchange is the

837second term in the numerical flux, and we have shown that

838on a distributed-memory parallel system, the communica-

839tion cost can be effectively overlapped with computation.

840This locality in the ADER-DG method makes it relatively

841straightforward to partition the workload among different

842thread blocks on each GPU and also among different GPUs

843on the cluster and results in close-to-ideal scalability. The

844ADER-DG method is also a high-order method, which

845requires more work per DOF than low-order methods. The
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Fig. 9 a A perspective view of the 3D Marmousi2 model with dimension of 3,500 m in depth, 17,000 m in length, and 7,000 m in width. There

are 379,039 tetrahedral elements, and each element has its own material property. There are 337 receivers locate at 5 m beneath the surface along

the A–A0 (yellow) line, and the horizontal interval is 50 m; the explosive source located at 10.0 m(depth), 7,500.0 m(length), 3,500.0 m(width).

(b). The plot of the marmousi2 model shot gather, computed by our multiple-GPUs code. Our CUDA code uses 16 GPUs spend

4,812.64(s) calculate 5 s seismogram, while the SeisSol runs on 16 CPU cores need 135,278.50(s), it’s a speedup of 28.119. (Color figure online)
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846 increase in arithmetic intensity shifts the bottleneck from the

847 memory bandwidth to the compute bandwidth. The relative

848 abundance of cheap computing power on a GPU makes it

849 favorable for implementing high-order methods.

850 7 Discussion

851 Debates still exist in the computer sciences community

852 about how the speedup factor should be defined in a more

853 general and objective way. Some definitions are more

854 favorable to the GPUs, and some definitions are more

855 favorable to the CPUs. But in spite of the debates about the

856 definitions of the speedup factor, a common consensus

857 among both the theoreticians and the practitioners is that

858 GPUs are relatively low-cost, low-power-consumption,

859 powerful co-processors that are suitable for SIMD-type

860 calculations and studies about efficient implementations of

861 numerical algorithms for scientific computing on the GPU

862 architectures are worthwhile. In this sense, the lessons

863 learned through the implementation and optimization

864process are more important than the exact speedup num-

865bers that we have obtained.

866Unlike implementations on a single GPU, to port the

867codes to multiple GPUs effectively, we need to deal with

868an extra layer of complexity introduced by inter-process

869communications. For the ADER-DG method, in which a

870majority of the calculations are local to each element, we

871can hide the inter-process communication overhead by

872overlapping communication with computation. We sepa-

873rate the elements on a subdomain into inner and outer

874elements. Once the computation on the outer elements is

875completed, we can fill the MPI buffer using a separate

876stream on the GPU and issue a non-blocking MPI call on

877the CPU. While the MPI messages are traveling across the

878network, the GPU proceeds to perform computations on the

879inner elements, and all other computations that do not need

880information from the outer elements. The technologies for

881multiple-GPU and CPU-GPU inter-connections are rapidly

882evolving, and GPU-Aware MPI (GAMPI) libraries for

883CUDA-enabled devices are gradually emerging. It is likely

884that the process for overlapping communication with
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Fig. 10 a A perspective view of the simplified SEG/EAGE salt model with dimension of 4,200 m in depth, 13,500 m in length and 13,500 m in

width. There are 447,624 tetrahedral elements and each element has its own material property. There are 192 receivers locate at 5 m beneath the

surface along A–A0 (yellow) line and the horizontal interval is 50 m, the explosive source located at 10.0 m (depth), 7,060.0 m (length),

4,740.0 m (width). b The plot of the SEG/EAGE salt model shot gather, computed by our multiple-GPUs code. Our CUDA code uses 16 GPUs

spend 7,938.56(s) calculate 7 s seismogram, while the SeisSol runs on 16 CPU cores need 224,589.80(s), it’s a speedup of 28.299. (Color figure

online)
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885 computation by taking advantage of the multiple-stream

886 capabilities of GPUs (i.e., task parallelism) will be much

887 simplified and become more efficient in the near future.

888 A sizeable portion of the speedup we obtained is owed

889 to the use of our customized matrix–matrix multiplication

890 kernels. In our implementation, the results of the multi-

891 plications are evaluated analytically in terms of the non-

892 zeros in the matrices whose locations can be determined

893 beforehand and are fixed throughout the program. This

894 approach allows us to condense the calculations by

895 exploiting the sparsity of the matrices and also gives us

896 enough freedom to manually adjust memory access pat-

897 terns to minimize uncoalesced global memory accesses.

898 This approach is applicable because the matrices involved

899 in the ADER-DG method are element-local and relatively

900 small (e.g., for a 5th-order scheme the size of the stiffness

901 matrices is only 35 by 35), and the structures of these

902 matrices are determined only by the specific forms of the

903 spatial basis functions used to approximate the solution in

904 the reference element. For more general matrix–matrix

905 multiplication problems, some off-the-shelf, pre-tuned

906 GPU linear algebra libraries, such as CUBLAS and cu-

907 SPARSE, might be more suitable.

908 The work described in this article is vender-specific. But

909 we believe that most of the algorithmic analysis and

910 implementation ideas presented here can be reused either

911 identically or with slight modifications to adapt the ADER-

912 DG method to other related architectures. To reinforce this

913 point, we note that the emerging OpenCL industry standard

914 for parallel programming of heterogeneous systems speci-

915 fies a programming model that is very similar to CUDA. As

916 GPUs are being widely adopted as powerful and energy-

917 efficient co-processors in modern-day computer clusters,

918 the work described here may help to accelerate the adop-

919 tion of the ADER-DG method for seismic wave propaga-

920 tion simulations on such heterogeneous clusters.

921 This work provides an accurate yet flexible forward

922 simulation solution other than conventional finite-differ-

923 ence method. With the capability of unstructured mesh and

924 topography, our ADER-DG CUDA code could handle

925 some complex scenario along with a relatively high effi-

926 ciency and accuracy. This work could be further applied to

927 earthquake related applications, such as full-wave seismic

928 tomography (e.g., Chen et al. 2007; Liu and Tromp 2006;

929 Tromp et al. 2008), accurate earthquake source inversion

930 (e.g., Chen et al. 2005, 2010; Lee et al. 2011), seismic

931 hazard analysis (e.g., Graves et al. 2010), and reliable

932 ground-motion predictions (e.g., Graves et al. 2008; Ko-

933 matitsch et al. 2004; Olsen 2000).
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