
A Novel Concurrent Generalized Deadlock
Detection Algorithm in Distributed Systems

Wei Lu1, Yong Yang1(B), Liqiang Wang2, Weiwei Xing1, and Xiaoping Che1

1 School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
{wlu,12112088,wwxing,xpche}@bjtu.edu.cn

2 Department of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, FL 32816, USA

lwang@cs.ucf.edu

Abstract. Detecting deadlocks has been considered an important prob-
lem in distributed systems. Many approaches are proposed to handle
this issue; however, little attention has been paid on coordinating con-
current execution of distributed deadlock detection algorithms. Previous
approaches may report incorrect results (false negatives), and they are
inefficient due to lack of proper coordination of concurrent execution.
In this paper, we present a novel concurrent coordination algorithm for
distributed generalized deadlock detection. The proposed algorithm aims
to avoid false negatives and improve the performance when concurrently
executing deadlock detection in a distributed system. Our algorithm
adopts diffusion computation to distribute probe messages and employs
priority-based method to coordinate concurrent algorithm instances. Pri-
ority carried in the received probe messages will be locally recorded
by each initiator. Instead of being suspended by higher priority algo-
rithm instances, lower priority algorithm instances can accomplish dead-
lock detection locally. The initiator with the highest priority will receive
and collect all related resource requests information from lower priority
instances in a hierarchical manner and perform global deadlock detec-
tion at last. We evaluate our algorithm on a bunch of event-driven sim-
ulations. The experimental results show that our approach can achieve
better accuracy and efficiency compared to previous approaches.

Keywords: Distributed system · Deadlock detection · Concurrent
coordination · False negative

1 Introduction

Problems of detecting deadlocks have been long considered important problems
in distributed systems due to the vulnerability to deadlocks. A deadlock occurs
when processes wait for resources held by other processes, such as data object
in database systems, buffers in store-and-forward communication networks, or
messages in message passing systems. The wait-for relationships are usually rep-
resented by WFG (Wait-for graph), a directed graph in which vertices represent
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part II, LNCS 9529, pp. 479–493, 2015.
DOI: 10.1007/978-3-319-27122-4 33

480 W. Lu et al.

processes and edges indicate not granted resource requests between processes, in
a distributed system [1–3].

Some researches have classified existing deadlock detection algorithms in
terms of underlying resource request models [3–5]. For example, in the p-out-of-
q (also called generalized) model, a process makes requests for q resources and
remains idle until p out of the q resources are granted [6–8].

Deadlocks in the generalized model correspond to generalized deadlocks.
Detection of generalized deadlock is rather difficult, because the resource depen-
dent topology is more complex than those in other models. A cycle in the WFG
is a necessary but not sufficient condition in the AND model, whereas a knot
(which is a strongly connected sub-graph with no edge directed away from the
sub-graph in a directed graph [9–11]) is a sufficient but not necessary condi-
tion for a generalized deadlock [12]. It become more complicated when several
processes initiating the deadlock detection algorithm concurrently, e.g., a process
might be involved in more than one instance and will be declared deadlocked
and resolved by more than one algorithm instance. This problem can result in
useless abortion, i.e., false deadlock resolution. Priority-based approach is often
used to address the aforementioned problem; however, improper coordination of
algorithm instances may cause false negative and poor performance.

To avoid false negatives and improve performance in concurrent execution of
algorithm, we propose a novel concurrent coordination algorithm for distributed
generalized deadlock detection. During the probe phase, each initiator will record
the priority locally when receiving a probe message. After the probe phase, a
hierarchical resource request report mechanism is exploited to construct a global
WFG in the initiator with the highest priority.

Contributions of proposed algorithm are summarized as follows:

(1). The proposed algorithm can handle all kinds of aforementioned resource
request models;

(2). Our algorithm can avoid false negatives of deadlock detection and provide
better performance.

The rest of this paper is organized as follows. Related work is presented in
Sect. 2. System models and definitions are described in Sect. 3. Section 4 details
the proposed algorithm. Experiment results are shown in Sect. 5. At last, Sect. 6
gives conclusions and future works.

2 Related Work

2.1 Categories of Deadlock Detection Algorithms

Deadlock detection approaches can be classified in different ways according to
classification criteria. Singhal [3] classified the deadlock detection in distributed
systems into three types: centralized, decentralized, and hierarchical, according
to the way in which WFG is maintained and how to detect cycles and knots.
Knapp described three taxonomies based on theoretical principle: path push-
ing [14] (which is later disproved due to asynchronous snapshots at different

A Novel Concurrent Generalized Deadlock Detection Algorithm 481

sites [15]), probe-based (includes edge chasing and diffusing computing) [16], and
global state detection, to detect deadlocks in distributed systems [2]. Brzezinski
defined five types of resource request models: Single-Request, AND, OR [12,17],
AND-OR, and generalized model (p-out-of-q) [18–22], based on the complexity
of resource requests [3–5].

2.2 Review of Algorithms of Generalized Deadlock Detection

Centralized Deadlock Detection Algorithms. A process, acting as initia-
tor, sends probe messages to its direct and indirect successor processes when it
suspecting itself blocked in a defined time interval. All reply messages will be
sent back directly to the initiator where a global WFG and deadlock detection
will be constructed and performed.

The authors of [13] proposed a centralized algorithm in which an initiator
send probe messages directly to all the processes reachable from itself, and replies
from successor processes are sent back to the initiator process directly. The
Initiator is in charge of constructing global WFG and detecting deadlocks.

The authors of [21] proposed a two-phases centralized algorithm. Unlike clas-
sical diffusion computation, the resource request is carried in the probe messages,
and report messages are send to initiator directly rather than backward along
the opposite direction of edges. The resource requests are equal distributed in
each probe message, and the performance is improved in this manner.

The authors of [19,20] proposed a centralized algorithm to detect and resolve
deadlocks in which the termination of the algorithm depended on either tech-
nique of weight distribution liked [1] or whenever a deadlock was detected. Reply
messages carrying weight information will be delayed until all the probe messages
have been received from all its predecessor processes. Message overhead will be
minimized through merging weighted messages into one message. To decrease
time complexity, the proposed algorithm performs reduction as soon as a reply
message from an active process is received.

Decentralized Deadlock Detection Algorithms. Different with central-
ized approaches, no complete global WFG is constructed by the initiator node
(site, process, and node will be used interchangeably throughout this paper) in
decentralized approaches. Nevertheless, the WFG constituted in multiple sites
in decentralized deadlock detection algorithms.

The paper [12,23] presented a one-phase decentralized algorithm for detect-
ing generalized distributed deadlocks. The algorithm initiated by an initiator
consists of outwards and inwards sweep. The outwards sweep induces a span-
ning tree and records WFG by propagating the probe messages. The inwards
sweep performs a reduction in an up-tree direction started at an active node.
An ECHO message will be replied by an active node when receiving probe mes-
sages. A PIP message, contains ids of nodes that sent PIP messages but reduces
later and residual requirement conditions, will be replied when a node receiving
the second and subsequent probe message if the state of this node is indeter-
minate at this instant. When a node that sent PIP message receiving ECHO

482 W. Lu et al.

or PIP message that makes it reduced would send ECHO message to its parent
node in directed spanning tree. This algorithm performed reduction in a “lazy
evaluation” manner.

The paper [22] proposed a semi-centralized algorithm for distributed gener-
alized deadlock detection and resolution. They adopted hash table to save global
ids, initiation time-stamp (hash key) of initiator, resource requests and phantom
edges (hash value). The approach delays the phantom edge reply message report-
ing operating and combines it with common reply messages, and reply messages
are in a reduction manner by reduction of request conditions of involved nodes.

Hierarchical Deadlock Detection Algorithm. Sites are arranged in a hier-
archical way, and each site only responses for detecting deadlock that involves
its child processes.

A hierarchical algorithm was proposed to detect deadlocks in distributed
database system in [24]. They arranged all the resource controllers in a tree
structure. Controllers were classified into two types: leaf-controllers and nonleaf-
controllers. A leaf-controller responds to manage resources and collect part of
the global TWF (Transaction Wait-For) that represent the wait-for relations of
corresponding resources. Whenever there is a change of TWF occurs in a leaf-
controller, the change will be propagated to its parent non-leaf controller to do
deadlock detection locally.

The authors of [25] proposed a hierarchical deadlock detection algorithm
different from [24]. A central control site is chosen among all sites, and the rest
of sites will be divided into several clusters in which an inter-cluster control
site will be selected by the central control site. The inter-cluster control site
responds to detecting inner cluster deadlock and reports its detection results to
the central control site. The global deadlocks will be detected by the central
control site finally.

2.3 Previous Concurrent Coordination Strategies

Most of the previous works focused on performance improvement of single exe-
cution of the deadlock detection algorithm. Very few effort was paid on han-
dling the practical and important problem: concurrent execution in which more
than one node conduct concurrent deadlock detection in a distributed system.
Priority-based approach was commonly used by most representative algorithm
that address problem of concurrent execution [12,20–22]. They can be classified
into mainly two categories: [12]-like and [21]-like.

The authors of [12] proposed a concurrent execution strategy in which high
priority algorithm instance will suspend low-priority one. So, algorithm instance
with lower priority cannot complete in this approach, and message overload
(number and size) is high due to repeatedly sending probe messages by processes
with lower priority. That is, a process will terminate the current algorithm
instance to join a higher priority instance when it receives a probe message
with a higher priority.

A Novel Concurrent Generalized Deadlock Detection Algorithm 483

The authors of [21] proposed an improved approach to improve performance
by equal distributing resource requests in probe messages to reduce the message
size in the probe phase. In addition, a higher priority process will report an active
state to a lower priority process when the higher priority process is receiving a
probe message from the lower one. It is based on the assumption that processes
with higher priority will always resolve the detected deadlocks. The lower priority
algorithm can accomplish and do local deadlock detection and resolution after
receiving enough resource request information [21].

The shortage of [12] is that repeatedly work of low-priority instance will be
done by high priority instance again. And, false negatives might happen if a
probe message is sent to a process with a higher priority by a process with a
lower priority in an OR model [21].

To address the aforementioned shortages in previous approaches, we propose
a novel concurrent coordination algorithm for generalized distributed deadlock
detection by:

(1). Utilizing equal distribution of resource requests in probe messages to reduce
the message size like [21];

(2). Reusing the information discarded by previous approaches to reduce mes-
sage overhead, that is, lower priority initiator process’s execution will not
be suspended by higher ones any more;

(3). Recording priority of probe messages locally and adopting a hierarchical
resource request report mechanism to collect global WFG to avoid false
negatives.

3 Preliminaries

3.1 System Model

This paper follows the system model described in [12,20–22]. A distributed sys-
tem consists of various site communicating with each other by message passing
to exchange messages or access resource. Messages are sent and received in a
reliable way but their delay time is uncertain. A node has one of the following
two states: active and blocked . In a generalized model a node is on active state
when sufficient number of its resource requests are granted, otherwise it is on
blocked state. Two kinds of messages, computation message and control mes-
sage, are transmitted in the system. Computation messages are triggered by the
execution of applications, and control messages are issued when the execution of
deadlock detection algorithm. Both computation message and control message
could be sent by an active process, however, a blocked process can only send
control message.

3.2 Definitions of Deadlocks

Definition 1. WFG is a directed graph G(V,E), V denotes the set of all vertices
and E is the set of directed edges.

484 W. Lu et al.

A generalized deadlock exists in a distributed system iff the resource request
of processes can never be granted. Actually, the resource request of deadlocked
processes consists of a sub-graph D(N,K) in G(V,E), and all resource requests
belonging to each node in D will never be granted while the resource requests
belonging to the node out of D is always satisfied.

Definition 2. Let rci denote the resource conditions or requests of node i.

For example, rci = (j&k)|l means node i becomes active if both node j and node
k grant the request resources to i, or node l grants the request resource to node i.

Fig. 1. Example of deadlocked WFG

Definition 3. Let evaluate(rci) be a recursive operation based on the following:

(1). evaluate(rci) = true for an active node i,
(2). evaluate(i) = evaluate(rci),
(3). evaluate(P ∨ Q) = evaluate(P) ∨ evaluate(Q),
(4). evaluate(P ∧ Q) = evaluate(P) ∧ evaluate(Q).

where P and Q are non-empty AND/OR expression of node identifiers.

Definition 4. A sub-graph D(N,K) involves a deadlock if the following condi-
tions are satisfied:

(1). evaluate(rci) = false, ∀ i ∈ D.
(2). No computation message is under transmission between any nodes in D.

For example, D(N,K) presents a WFG in which K = {〈a, b〉 , 〈b, c〉 , 〈c, d〉}
and N = {a, b, c} in Fig. 1. evaluate(rca) = evaluate(a) = evaluate(b). State of
node a is decided by node b, and other nodes are evaluated in a similar way.

4 Proposed Algorithm

In this section, we will omit describing the single execution of the proposed gen-
eralized deadlock detection algorithm, but detail the proposed algorithm used to
coordinate the concurrent execution of deadlock detection algorithm instances.

A Novel Concurrent Generalized Deadlock Detection Algorithm 485

In a distributed system, processes can be blocked concurrently, and all the
blocked processes may initiate the deadlock detection algorithm after being
blocked for a certain time interval. It will become more complex when more
than one algorithm instance executing concurrently in a distributed system.
Especially, a process is participating more than one algorithm instance. The
proposed algorithm aims to handle the concurrent execution of deadlock detec-
tion algorithm to avoid false negatives and improve performance.

4.1 Informal Description of Concurrency Execution

The proposed algorithm adopts a priority-based approach like previous works to
coordinate the concurrency execution. Instead of being suspended by higher pri-
ority instances, lower priority instances can continue executing even if encoun-
tering a higher priority instance in the proposed algorithm. The initiator will
record both lower and higher priority in the probe messages when receiving a
probe message with a different priority. The probe phase will complete when
all initiator nodes finish local procedure. At last, the initiator with the highest
priority will collect resource requests by receiving report messages from lower
priority initiator nodes in a hierarchical manner.

A node initiates a deadlock detection algorithm instance by sending probe
messages with a priority (denoted as its id for simple in this paper) and a weight
value to its direct successor nodes when it suspects itself being blocked as Algo-
rithm 1. The probe message will be propagated by nodes that receive the probe
message and have not participated any other algorithm instance yet. Resource
requests are distributed among all probe messages sent to successor processes.
Probe message will be not propagated by the node that has participated an algo-
rithm instance. There are three cases when a node receiving a probe message:

Case 1, the node has participated an algorithm instance and has a lower
priority than received probe message as Algorithm 2;

Case 2, the node has participated an algorithm instance and has a higher
priority than received probe message as Algorithm 2;

Case 3, it is a leaf node as Algorithm 3 line 4;
The node will record the priority in the probe message and send a REPORT

message with its local current priority to the initiator process that propagates
the probe message in both case 1 and case 2. The priority in the REPORT
message will be also recorded locally or REPORT to the initiator of the instance
that this node is participating now as Algorithm 5. In case 3, the node will
send REPORT message to the initiator node directly.

A weight value will also be carried by the REPORT message and sent back
to reply PROBE message. An algorithm terminates when the initiator receives
all distributed weights and the sum of all the weight is 1. An initiator will
complete its local deadlock detection algorithm if the sum of weight value is 1
as Algorithm 2 line 14 - line 23 and Algorithm 4. If a node is a leaf node
(i.e., has no resource request from any other processes) or has the least priority,
detection results (deadlocked and active) will be reported to the initiator that
has the minimal priority in the set of initiators with priority higher than local

486 W. Lu et al.

priority as Algorithm 7 line 10 - line 13. Generally, a node will report its
local detection results to the higher one after receiving REPORT messages from
all processes have lower priority recorded locally. The process within the highest
priority will receive all local detection results and resource requests, construct a
global WFG, and perform global deadlock detection at last as Algorithm 6.

We also detect phantom edge, node i send a probe message to node j while a
reply message is being transmitted to i by j in edge i → j, during the deadlock
detection procedure to avoid false results as Algorithm 3. Proposed algorithm
will determine an edge is a phantom edge when the probe message is replied.

4.2 Formal Description of Concurrency Execution

Data types, message types and operations are formally defined as follows
(Table 1).

Table 1. Date types, additional data types, message types, and operations at node i

Data type Description

W Weight value that is carried in PROBE and REPORT messages

rci Resource request of node i

RCi Resource request that is collected by node i

INi Ids of node that has requested resource to node i and has been
not granted by node i

OUTi Ids of node that has been requested resource by node i and has
been not granted resource to node i

PROBE PROBE(pri, i, RCi,W) is sent by node i with priority (pri),
resource request (RCi), and WEIGHT (W)

REPORT REPORT (pri, i, RC(j),W, Pricur) is sent by node j to initiator
node that has a priority (pri) with local priority (Pricur), resource
request (RCj), weight (W)

NOTIFY NOTIFY (pri, Pricur) is sent by node that has Pricur to initiator
node that has pri

SUBMIT SUBMIT (pri, i, RCi, P rihigh, P rilow) is sent by node i to initia-
tor node has pri with resource request (RCi), priority (Prihigh
and Prilow) collected locally

WEIGHT Sum of weight values in REPORT messages (additional data
type)

Prihigh Set of priority that is higher that Pricur (additional data type)

Prilow Set of priority that is lower that Pricur (additional data type)

max{Prihigh} The maximum value in Prihigh

min{Prilow} The minimum value in Prilow

|{1, 2, ..., n}| The size of a set

A Novel Concurrent Generalized Deadlock Detection Algorithm 487

Algorithm 1. When node i initiating an deadlock detection algorithm instance
1: for j ∈ OUTi do
2: Sending PROBE(i, i, rc, 1

|OUTi|) to node j;
3: end for

Algorithm 2. When a non-leaf node j receiving a PROBE(pri, i, rc, w) mes-
sage
1: if i → j is not a phantom edge then
2: if Pricur! = NULL and Pricur > pri then
3: Prilow := Prilow ∪ {pri};
4: Sending NOTIFY(pri, Pricur);
5: if node j is not an initiator then
6: Sending NOTIFY(Pricur, P ricur);
7: end if
8: else if Pricur! = NULL and Pricur < pri then
9: Prihigh := Prihigh ∪ {pri};

10: Sending NOTIFY(pri, Pricur);
11: if node j is not an initiator then
12: Sending NOTIFY(Pricur, P ricur);
13: end if
14: else if Pricur! = NULL and Pricur == pri then
15: if node i is an initiator then
16: WEIGHT := WEIGHT + w;
17: if WEIGHT == 1 and Prilow == ∅ then
18: Algorithm 7;
19: end if
20: else
21: Sending REPORT(Pricur, P ricur, rc, w, Pricur);
22: end if
23: end if
24: if Pricur == NULL then
25: Pricur := pri;
26: RCj := rc ∪ rcj ;

27: w
′
:= w

|OUTj |
28: for k ∈ OUTk do
29: Sending PROBE(Pricur, j,

RCj

|OUTj | , w
′
) to node k;

30: end for
31: end if
32: else
33: Discarding the PROBE message (a phantom edge: i → j);
34: Sending REPORT(pri, i, rc, w, ∅);
35: end if

5 Experiment

In this section, we evaluate the correctness and performance of the pro-
posed algorithm and present the simulation results. False negative is mainly

488 W. Lu et al.

Algorithm 3. When a leaf node j receiving a PROBE(pri, i, rc, w) message
1: if i ∈ INj then
2: Pricur := pri;
3: RCj := rc ∪ rcj ;
4: Sending REPORT(pri, i, RCj , w, Pricur);
5: else
6: Discarding the PROBE message (a phantom edge: i → j);
7: Sending REPORT(pri, i, rc, w, ∅);
8: end if

Algorithm 4. When a node i receiving a REPORT (pri
′
, j, rc, w, pri

′′
) message

1: WEIGHT := WEIGHT + w;
2: RCi := RCi ∪ rc
3: if pri

′′
! = ∅ then

4: if WEIGHT == 1 and Prilow == ∅ then
5: Algorithm 7;
6: end if
7: else
8: RCi := RCi/i → j;
9: end if

Algorithm 5. When a node i receiving a NOTIFY (pri
′
, pri

′′
) message

1: if Pricur > pri
′
then

2: Prilow := Prilow ∪ {pri′};

3: else if Pricur < pri
′
then

4: Prihigh := Prihigh ∪ {pri′};
5: end if

Algorithm 6 . When a node i receiving a SUBMIT (pri, j, RCj , P ri
′
high,

P ri
′
low) message

1: RCi := RCi ∪ RCj ;

2: Prihigh := Prihigh ∪ Pri
′
high;

3: Pritmp := Pritmp ∪ Pri
′
low;

4: if Pricur == max(Pricur) then
5: if Pritmp ∩ Prilow == Prilow then
6: Algorithm 7 (line 1-line 7) and terminating;
7: end if
8: else
9: if Pritmp ∩ Prilow == Prilow then

10: Algorithm 7 (line 11-line 13) and terminating;
11: end if
12: end if

considered as the correctness metric. The performance metrics mainly total mes-
sage number and total message size of submitted messages in the life-cycle of

A Novel Concurrent Generalized Deadlock Detection Algorithm 489

Algorithm 7. Locally deadlock detection procedure LDD(RCi)
1: for rcj ∈ RCi do
2: if evaluate(rcj) == flase then
3: Deadlocked := Deadlocked ∪ {j}
4: else
5: Active := Active ∪ {j}
6: end if
7: end for
8: if Pricur == max{Prihigh} then
9: Algorithm terminating;

10: else
11: pri := min{Prihigh};
12: Sending SUBMIT(pri, i, RCi, P rihigh, P rilow);
13: end if

algorithm. Especially, total message size is the number of resource request con-
tained in a PROBE message.

5.1 Experiment Setup

Simulation programs are event-driven and written in Python2.7. Processes are
used to simulate nodes in a distributed system, and network socket is used to
implement message passing and simulate wait-for relationship between processes
(nodes). The number of socket calls (e.g., socket.send() and socket.recv()) and
the size of data that presents resource request are collected and compared. Each
simulation result is the mean value obtained after running the program for 100
times. We choose two extreme resource request models: Single-Request and Gen-
eralized model, to perform simulation. Each process waits for another one process
that has a lower id value (i.e., priority) in Single-Request model. In the Gener-
alized model, each process waits for all the other processes excepting for itself.
Six special cases are constructed manually in Fig. 2 to examine the correctness
and efficiency of the distributed deadlock detection algorithms.

5.2 Simulation Results

Table 2 gives the quantitative comparison among [12,21] and the proposed meth-
ods where notation “NFN” denotes no false negatives and notation “FN” denotes
false negatives. The reason of false negative in [21] comes from the OR request
model. Based on the assumption that higher priority algorithm instance will
resolve the deadlock, detected deadlocks (e.g., a and c) in Fig. 2(d) can be
resolved even if there is a false negative. However, no deadlocks will be detected
in Fig. 2(e) and (f), because the edge c → d propagates the false negative result to
sub-graph (a and c included). The proposed algorithm can detect all deadlocks
in Fig. 2 without false negatives.

The value of x-axis represents the number of processes. The value of y-axis
of left sub-figure in Figs. 3, 4, 5, and 6 means the total number of messages that

490 W. Lu et al.

Fig. 2. Six WFGs of different resource request models

Table 2. Results of correctness simulations

Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d) Fig. 2(e) Fig. 2(f)

[12]-like NFN NFN NFN NFN NFN NFN

[21]-like NFN NFN NFN FN FN FN

Proposed NFN NFN NFN NFN NFN NFN

Fig. 3. All processes as initiator in Generalized model

are transmitted, and the value of y-axis of right sub-figure represents the total
data size of transmitted messages.

From left sub-figures of Figs. 3, 4, 5, and 6, we can find that the proposed
algorithm has better performance than [12,21] in the aspects of total number
of message transmitted during the life-cycle of algorithm. [12,21] transmitting
almost the same number of messages in the simulations, because they both used
the strategy of suspending lower priority instance with higher one. Proposed

A Novel Concurrent Generalized Deadlock Detection Algorithm 491

Fig. 4. 1/5 of processes as initiator in Generalized model

Fig. 5. All processes as initiator in Single-Request model

Fig. 6. 1/5 of processes as initiator in Single-Request model

method reduces the number messages by recording priority and report resource
requests in the hierarchical report phase.

492 W. Lu et al.

From right sub-figures of Figs. 3, 4, 5, and 6, we can find that [21]-like meth-
ods transmits smaller number of message size than [12]-like methods. The reason
is equal distribution of resource requests in PROBE phase. Proposed methods
has smaller number of message size than [21]-like methods, because proposed
method avoid sending PROBE message by lower priority initiators when receiv-
ing PROBE messages from other initiators based on improvement of [21]-like
methods.

6 Conclusions and Future Works

This paper focuses on the problem of coordinating the deadlock detection algo-
rithm instances that executing concurrently in a distributed system. The pro-
posed algorithm coordinates the execution of concurrent instances by recording
priority of different algorithm instance and reporting resource requests in a hier-
archical manner. The proposed algorithm can avoid false detection results (false
negatives) and reduce the number and size of message transmitted during the
life-cycle of a complete deadlock detection. Simulation results show that the
proposed algorithm can report correct detection results and have better perfor-
mance.

The approach presented in this paper can be seen as a very first step towards
a solution for the problems of generalized distributed deadlock detection. A
limitation exists in the current proposal with respect to the time efficiency of
the algorithm. In the future, we will aim to improve the time complexity and
apply the proposed algorithm to detect run-time deadlocks in real scenario, such
as, MPI programs, network forwarding or distributed database systems.

Acknowledgements. This work was supported in part by National Natural Science
Foundation of China (No. 61100143, No. 61272353, No. 61370128, No. 61428201), Pro-
gram for New Century Excellent Talents in University (NCET-13-0659), Beijing Higher
Education Young Elite Teacher Project (YETP0583).

References

1. Kshemkalyani, A.D., Singhal, M.: Efficient detection and resolution of generalized
distributed deadlocks. IEEE Trans. Softw. Eng. 20(1), 43–54 (1994)

2. Knapp, E.: Deadlock detection in distributed databases. ACM Comput. Surv.
(CSUR) 19(4), 303–328 (1987)

3. Singhal, M.: Deadlock detection in distributed systems. Computer 22(11), 37–48
(1989)

4. Brzezinski, J., Helary, J.M., Raynal, M., Singhal, M.: Deadlock models and a gen-
eral algorithm for distributed deadlock detection. J. Parallel Distrib. Comput.
31(2), 112–125 (1995)

5. Singh, S., Tyagi, S.S.: A review of distributed deadlock detection techniques based
on diffusion computation approach. Int. J. Comput. Appl. 48(9), 28–32 (2012)

6. Chandy, K.M., Misra, J., Haas, L.M.: Distributed deadlock detection. ACM Trans.
Comput. Syst. (TOCS) 1(2), 144–156 (1983)

A Novel Concurrent Generalized Deadlock Detection Algorithm 493

7. Edgar, K.: Deadlock detection in distributed databases. ACM Comput. Surv.
(CSUR) 19(4), 303–328 (1987)

8. Lee, S.: Efficient generalized deadlock detection and resolution in distributed sys-
tems. In: 21st International Conference on Distributed Computing Systems, pp.
47–54 (2001)

9. Gunther, K.: Prevention of deadlocks in packet-switched data transport systems.
IEEE Trans. Commun. 29(4), 512–524 (1981)

10. Gambosi, G., Bovet, D.P., Menascoe, D.A.: A detection and removal of dead-
locks in store and forward communication networks. In: Performance of Computer-
Communication Systems, pp. 219–229 (1984)

11. Cidon, I.: An efficient distributed knot detection algorithm. IEEE Trans. Softw.
Eng. 15(5), 644–649 (1989)

12. Kshemkalyani, A.D., Singhal, M.: A one-phase algorithm to detect distributed
deadlocks in replicated databases. IEEE Trans. Knowl. Data Eng. 11(6), 880–895
(1999)

13. Chen, S., Deng, Y., Attie, P., Sun, W.: Optimal deadlock detection in distributed
systems based on locally constructed wait-for graphs. In: Proceedings of the 16th
International Conference on Distributed Computing Systems, pp. 613–619. IEEE
(1996)

14. Beeri, C., Obermarck, R.: A resource class independent deadlock detection algo-
rithm. In: Proceedings of the Seventh International Conference on Very Large Data
Bases, vol. 7, pp. 166–178 (1981)

15. Elmagarmid, A.K.: A survey of distributed deadlock detection algorithms. ACM
SIGMOD Rec. 15(3), 37–45 (1986)

16. Chandy, K.M., Ramamoorthy, C.V.: Rollback and recovery strategies for computer
programs. IEEE Trans. Computers. (TC) 100(6), 546–556 (1972)

17. Lee, S., Joo, K.H.: Efficient detection and resolution of OR deadlocks in distributed
systems. J. Parallel Distrib. Comput. 65(9), 985–993 (2005)

18. Selvaraj, S., Ramasamy, R.: An efficient detection and resolution of generalized
deadlocks in distributed systems. Int. J. Comput. Appl. 1(19), 1–7 (2010)

19. Srinivasan, S., Rajaram, R.: A decentralized deadlock detection and resolution
algorithm for generalized model in distributed systems. Distrib. Parallel Databases
29(4), 261–276 (2011)

20. Srinivasan, S., Rajaram, R.: An improved, centralised algorithm for detection and
resolution of distributed deadlock in the generalised model. Int. J. Parallel Emer-
gent Distrib. Syst. 27(3), 205–224 (2012)

21. Lee, S.: Fast, centralized detection and resolution of distributed deadlocks in the
generalized model. IEEE Trans. Softw. Eng. 30(9), 561–573 (2004)

22. Tao, Z., Li, H., Zhu, B., Wang, Y.: A semi-centralized algorithm to detect and
resolve distributed deadlocks in the generalized model. In: 2014 IEEE 17th Interna-
tional Conference on Computational Science and Engineering (CSE), pp. 735–740
(2014)

23. Kshemkalyani, A.D., Singhal, M.: Distributed detection of generalized deadlocks.
In: Proceedings of the 17th International Conference on Distributed Computing
Systems, pp. 553–560. IEEE (1997)

24. Menasce, D.A., Muntz, R.R.: Locking and deadlock detection in distributed data
bases. IEEE Trans. Softw. Eng. 3, 195–202 (1979)

25. Ho, G.S., Ramamoorthy, C.V.: Protocols for deadlock detection in distributed data-
base systems. IEEE Trans. Softw. Eng. 6, 554–557 (1982)

	A Novel Concurrent Generalized Deadlock Detection Algorithm in Distributed Systems
	1 Introduction
	2 Related Work
	2.1 Categories of Deadlock Detection Algorithms
	2.2 Review of Algorithms of Generalized Deadlock Detection
	2.3 Previous Concurrent Coordination Strategies

	3 Preliminaries
	3.1 System Model
	3.2 Definitions of Deadlocks

	4 Proposed Algorithm
	4.1 Informal Description of Concurrency Execution
	4.2 Formal Description of Concurrency Execution

	5 Experiment
	5.1 Experiment Setup
	5.2 Simulation Results

	6 Conclusions and Future Works
	References

