
An Integrated Framework for Checking Concurrency-related Programming
Errors∗

Qichang Chen and Liqiang Wang
Department of Computer Science

University of Wyoming
{qchen2, wang}@cs.uwyo.edu

Abstract

Developing concurrent programs is intrinsically difficult.
They are subject to programming errors that are not present
in traditional sequential programs. Our current work is
to design and implement a hybrid approach that integrates
static and dynamic analyses to check concurrency-related
programming errors more accurately and efficiently. The
experiments show that the hybrid approach is able to detect
concurrency errors in unexecuted parts of the code com-
pared to dynamic analysis, and produce fewer false alarms
compared to static analysis. Our future work includes but is
not limited to optimizing performance, improving accuracy,
as well as locating and confirming concurrency errors.

1 Introduction

Multicore/multiprocessor hardware has become ubiqui-
tous, which enforces concurrent programming to become a
common technique. Although for the past decade we have
witnessed incrementally more programmers writing concur-
rent programs, the vast majority of current applications are
still sequential and can no longer benefit from the hardware
improvement without significant redesign. In order for soft-
ware applications to benefit from the continued exponential
throughput advances in new architectures, the applications
will need to be well-written concurrent software programs.
However, developing concurrent programs is intrinsically
hard due to the fact that concurrency introduces a whole
new class of errors that do not exist in sequential programs.

Three of the most common concurrency errors are dead-
lock, data race and atomicity violation. Deadlock and data
race are well-known and have been studied for a long time.
A deadlock occurs when all threads are blocked, each wait-
ing for some action by one of the other threads. A data race

∗The work was supported in part by ONR Grant N000140910740.

Program 1
Thread 1
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Thread 2
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Program 2
Thread 1
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Thread 2
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Figure 1. Examples in Java demonstrating data races
and atomicity violations.

occurs when two concurrent threads perform conflicting ac-
cesses (i.e., accesses to the same shared variable and at least
one access is a write) and the threads use no explicit mech-
anism to prevent the accesses from being simultaneous. An
example is shown in Figure 1, which is adopted from [3].
In Program 1 of Figure 1, conflicting accesses to the shared
variable bal can happen simultaneously without any pro-
tecting lock, hence a data race occurs. Atomicity violation
is not as well-known as deadlock and race condition. An
atomicity violation occurs when an interleaved execution
of a set of code blocks (expected to be atomic) by multi-
ple threads is not equivalent to any serial execution of the
same code blocks. Program 2 in Figure 1 eliminates the
data race in Program 1 by adding a lock o. However, Pro-
gram 2 is still incorrect if the deposit method is required
to be atomic. An atomicity violation occurs in Program 2
when the two synchronization blocks in thread 2 execute
between the two synchronization blocks in thread 1, which
leads the result of bal to be incorrect.

Detecting concurrency-related software errors are based

1



on three main techniques of program analysis: dynamic
analysis, static analysis, and model checking. Dynamic
analysis reasons about behavior of a program through ob-
servations of its executions. To detect concurrency errors,
dynamic analysis extends the traditional testing techniques.
It tries to look for potential concurrency errors by search-
ing specific patterns based on the current observed events,
even the errors do not show up in the current execution paths
[9, 6, 12, 11, 13, 8]. Static analysis makes predictions about
the runtime behavior of a program by analyzing its source
code [7, 10]. The strength of static analysis is that it can
consider all possible behaviors of a program. However,
it may produce false positives (i.e., false alarms), because
some aspects of a program’s behavior, such as alias relation-
ships, values of array indices, and happens-before relation-
ships, are very difficult to analyze statically. Model check-
ing is a formal method for proving that a finite-state model
satisfies a temporal logic property, which can be used to
check concurrency errors [5]. Although known as the most
rigorous automatic method to verify software, model check-
ing still faces a combinatorial blowup of the state space,
commonly known as the state explosion problem.

Static and dynamic analyses can be combined in vari-
ous ways. Static analysis can be used to reduce the over-
head of dynamic analysis. For example, static analysis can
show that some statements are not involved in any data races
or atomicity violations and hence do not need to be instru-
mented; this can significantly reduce the overhead of dy-
namic analysis by up to a factor of 20 [1]. Conversely, dy-
namic analysis can help static analysis by providing more
accurate runtime information.

In order to exploit the complementary benefits of differ-
ent program analyses, we are designing a hybrid approach
that integrates static, dynamic analysis, and model check-
ing. Generally, we perform static analysis for program
source code to generate a summary of the program. When
an instrumented program runs, we collect the observed
events together with the static summary to build abstracted
tree structures, which are used for checking concurrency-
related programming errors. To help programmer distin-
guish real bugs from other benign or false warnings, we use
symbolic analysis together with a constraint solver to con-
firm the reported warnings.

2 Our Current Work

2.1 Integrated Dynamic and Static Anal-
ysis for Atomicity Violation Detection

We have implemented the hybrid approach in a tool
called Hybrid Atomicity Violation Explorer (HAVE) for
detecting atomicity violations in multi-threaded Java pro-
grams [3]. In HAVE, we first perform a conservative in-

source 
code

static summary
trees

static
analyzer

instrumentation
tool

hybrid 
treesspeculator

hybrid
conflict-edge tool

instrumented 
code

dynamic
trees

dynamic
monitor

trees algorithm

atomicity violation
warningscode treesmonitor warnings

Figure 2. The architecture of the tool HAVE.

traprocedural static analysis to generate a static summary
tree SST for each method in the program. When the in-
strumented program runs, our runtime system tracks and
records accesses to shared variables and reference variables,
and builds tree structures. When we observe an unexe-
cuted branch during dynamic analysis, the static summary
of that unexplored branch is retrieved and instantiated using
the runtime values. Thus, the instantiated summary spec-
ulatively approximates what would have happened if the
branch had been executed. Finally, we check atomicity vi-
olations based on the hybrid tree structures, which contains
both information from static analysis and dynamic analysis.

We have evaluated the tool HAVE on 9 benchmarks to-
taling 284 thousand lines of code which include large-scale
web servers (Apache Tomcat and Jigsaw). We have discov-
ered 13 bugs (non-atomic transaction) involving 145 loca-
tions in source code with HAVE in contrast with 11 bugs
involving 90 locations in source code using our previous
purely dynamic approach. The average slowdown is 16.5x,
which is about 4 times as our previous purely dynamic ap-
proach [11]. Hence, the hybrid approach reports fewer false
positives than the previous static approaches [7, 1], and
fewer false negatives (i.e., missed errors) than the previous
dynamic approaches [6, 12, 11], at the sacrifice of perfor-
mance.

Figure 2 shows the architecture of our tool, HAVE, which
consists of five components.

2.2 Limitations of HAVE

The analysis of HAVE is incomplete and unsound.
First of all, no interprocedural analysis was applied dur-

ing the stage of generating summaries. The summary it-
self is a condensed abstraction which is not a semantically
equivalent to its source. Secondly, when the speculation is
instantiated with the runtime information, some informa-
tion could be missed since some symbolic names in that
static summary might not be resolved, which leads to the
incompleteness during post-stage analysis.

It is also not sound because our approaches could report
false positives due to ignoring value information. For exam-
ple, in the statements of “if (x>0) then S1 else

2



S2; if (x<0) then S3 else S4;”, S1 and S3
are mutual exclusive (assuming that x is not modified in
S1 and S2), but our current approach can not eliminate it.
In addition, HAVE is unable to verify that a warning is a
real bug.

2.3 Thread Escape Analysis

In order to reduce the runtime overhead, we developed
an integrated thread escape analysis that extends a dynamic
escape analysis by incorporating static analysis. Thread es-
cape analysis, a program analysis technique that determines
which objects escape from their creating threads (i.e., can be
accessed by multiple threads), is important for subsequent
program analyses.

Our hybrid approach works in two phases: in the first
phase, it performs static analysis on program source code to
obtain the concise static summaries; the second phase is a
dynamic analysis: we monitor the actual field accesses dur-
ing execution and perform an interprocedural synthesis on
the runtime information and the static summaries to deter-
mine the escaped fields. Thus, the tool HAVE introduced in
Section 2.1 will focus on the thread-shared fields only.

We implement our analysis for Java programs in a tool
called HEAT (Hybrid Escape Analysis for Thread) [2] and
evaluate it on several benchmarks and real-world applica-
tions. The experiment shows that the hybrid approach im-
proves accuracy of escape analysis compared to existing ap-
proaches and significantly reduces overhead of subsequent
program analyses on several benchmarks (in our experi-
ment, specifically, a hybrid approach for checking atomic-
ity violations). For example, many memory-intensive pro-
grams would take many hours to finish under previous dy-
namic or hybrid analysis because of overwhelming number
of events generated from monitoring the field accesses. Our
tool identifies more unshared fields, which in turn consid-
erably trims down the number of monitored events and al-
lows the dynamic or hybrid analysis to finish in a reasonable
time.

3 Ongoing and Future Work

3.1 Interprocedural Speculation

We plan to extend our existing tool HAVE with inter-
procedural speculation. We perform an iterative context-
sensitive interprocedural analysis on the static summary
trees SST during speculation for different calling contexts.

When we encounter a method call during speculation,
we expand it based on its definition in SST and substitute
the formal parameters with actual arguments. This context-
sensitive approach enables us to resolve object references
inside the method body for invocations at different sites.

3.2 Reduce Runtime Overhead

Since the runtime overhead is usually huge in our hy-
brid approach as well as other dynamic analyses, reducing
monitoring overhead will be critical to make the tool to be
practical. We will develop heuristics to selectively turn off
the monitoring after relevant paths and interleavings have
been tested. An instrumented program may run slowly at
the start because of monitoring and checking. As the pro-
gram runs, our analyzer caches the monitored events. For
a code block, if relevant paths and events have been ob-
served, the monitoring on the code block can be turned
off to speed up the execution. Thus, the monitoring on
frequently-executed code will be disabled soon, and the
monitoring on infrequently-executed code remains so long
lurking bug may be detected. Because most overhead re-
sides in frequently-executed portions, the runtime overhead
of the instrumented program will remain at very low level
after initial executions.

Specifically, we will explore the criterions for pro-
gram state equivalence to identify redundant program states
for monitoring thus reduces the overall runtime overhead.
When our dynamic monitor observes a method call, it
records the current program’s state into a succinct summary
with regard to key program state conditions (e.g., the locks
holding by the current thread, the calling context, the states
of shared objects). So when a method call is invoked again
under the same or a similar context, it is executed without
monitoring. We will adopt some heuristics to help us set up
the differentiation standards.

3.3 Fault Localization and Confirmation

To accurately locate and confirm programming faults, we
need to check massive thread interleavings and feasible ex-
ecution paths. The percentage of paths covered by dynamic
analysis is usually small. For example, a program with 3
threads and 50 lines of code per thread may have more than
1069 different interleavings. We will use symbolic anal-
ysis techniques that implicitly analyze all possible thread
interleavings under an execution. This may seem like an
intractable task considering the fact that the number of in-
terleavings is exponential. Advances in modern constraint
solvers, however, suggest that this is quite feasible.

In general, accurately locating the faulty code requires
a complete specification of the system behavior. Unfor-
tunately, such specifications are often missing in realistic
software development settings. Without a complete speci-
fication, it is not possible to determine whether a particu-
lar line in the code is faulty or not. We will model thread
executions using suitable constraints and reduce the fault
localization and confirmation problem to solve a set of con-
straints. Our symbolic analysis will be based on satisfiabil-

3



ity modulo theories (SMT), which benefit from recent sig-
nificant advances in Boolean satisfiability (SAT) solvers and
SMT solvers. Specifically, we resort to a state-of-the-art
constraint solver Yices [4] to resolve the constraints.

In this approach, one needs to add a quadratic number of
constraints (with respect to the total number of transitions).
These constraints may pose a significant performance over-
head for a SMT solver. We plan to use partial order reduc-
tion, which is based on a static analysis technique to find
statically independent transitions, to reduce the number of
constraints. In principle, we need only to add constraints to
statements that are not statically independent.

4 Conclusions

This paper presents our existing, ongoing, and future
work on a hybrid approach that integrates static, dynamic,
and symbolic analyses to attack concurrency-related error
detection.

Combining static and dynamic analyses is an active re-
search area in program analysis. We are exploring different
approaches to integrate them. In our existing hybrid ap-
proach, the summaries from static analysis are instantiate
with runtime values during dynamic executions to specu-
latively approximate the behaviors of branches that are not
taken. Compared to dynamic analysis, the hybrid approach
is able to detect concurrency error in unexecuted parts of
the code. Compared to static analysis, the hybrid approach
produces fewer false alarms.

The future work includes but is not limited to develop-
ing a comprehensive approach to optimize performance, im-
prove accuracy, locate and confirm concurrency errors.

References

[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D.
Stoller. Optimized run-time race detection and atom-
icity checking using partial discovered types. In Proc.
20th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). ACM Press, Nov.
2005.

[2] Q. Chen, L. Wang, and Z. Yang. HEAT: A Combined
Static and Dynamic Approach for Escape Analysis. In
33rd Annual IEEE International Computer Software
and Applications Conference (COMPSAC2009), Seat-
tle, USA, July 2009. IEEE Press.

[3] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE:
Integrated dynamic and static analysis for atomicity
violations. In Proceedings of International Confer-
ence on Fundamental Approaches to Software Engi-
neering (FASE), volume 5503 of LNCS, pages 425–
439. Springer, 2009.

[4] B. Dutertre and L. de Moura. The yices smt solver.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf,
August 2006.

[5] A. Farzan and P. Madhusudan. Monitoring atomicity
in concurrent programs. In Proceedings of the 20th
international conference on Computer Aided Verifica-
tion (CAV). Springer-Verlag, 2008.

[6] C. Flanagan and S. N. Freund. Atomizer: A dy-
namic atomicity checker for multithreaded programs.
In Proc. ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 256–267. ACM
Press, 2004.

[7] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI). ACM Press, 2003.

[8] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting
atomicity violations via access interleaving invariants.
In Twelfth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS). ACM Press, 2006.

[9] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[10] L. Wang and S. D. Stoller. Static analysis for programs
with non-blocking synchronization. In Proc. ACM
SIGPLAN 2005 Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP). ACM Press,
June 2005.

[11] L. Wang and S. D. Stoller. Accurate and efficient run-
time detection of atomicity errors in concurrent pro-
grams. In Proc. ACM SIGPLAN 2006 Symposium
on Principles and Practice of Parallel Programming
(PPoPP). ACM Press, March 2006.

[12] L. Wang and S. D. Stoller. Runtime analysis of atom-
icity for multi-threaded programs. IEEE Transactions
on Software Engineering, 32(2):93–110, Feb. 2006.

[13] M. Xu, R. Bodik, and M. D. Hill. A serializability vi-
olation detector for shared-memory server programs.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM
Press, 2005.

4


