
P&P: a Combined Push-Pull Model for Resource Monitoring in
Cloud Computing Environment

He Huang and Liqiang Wang

Department of Computer Science
University of Wyoming

{hhuang1, lwang7}@uwyo.edu

Abstract

Cloud computing paradigm contains many shared re-
sources, such as infrastructures, data storage, various
platforms and software. Resource monitoring involves
collecting information of system resources to facilitate
decision making by other components in Cloud environ-
ment. It is the foundation of many major Cloud computing
operations. In this paper, we extend the prevailing moni-
toring methods in Grid computing, namely Pull model and
Push model, to the paradigm of Cloud computing. In Grid
computing, we find that in certain conditions, Push model
has high consistency but low efficiency, while Pull model
has low consistency but high efficiency. Based on comple-
mentary properties of the two models, we propose a user-
oriented resource monitoring model named Push&Pull
(P&P) for Cloud computing, which employs both the
above two models, and switches the two models intelli-
gently according to users’ requirements and monitored
resources’ status. The experimental result shows that the
P&P model decreases updating costs and satisfies various
users’ requirements of consistency between monitoring
components and monitored resources compared to the
original models.

1. Introduction

Cloud computing paradigm makes huge virtualized
compute resources available to users as pay-as-you-go
style. Resource monitoring is the premise of many major
operations such as network analysis, management, job
scheduling, load balancing, event predicting, fault detect-
ing, and fault recovery in Cloud computing. Cloud compu-
ting is more complicated than ordinary network owing to
its heterogeneous and dynamic characteristics. Hence, it is
a vital part of the Cloud computing system to monitor the
existence and characteristics of resources, services, com-
putations, and other entities [1].

S. Zanikolas and R. Sakellariou present the taxonomy of
existing Grid monitoring systems [4]. It indicates that
some of the current Grid monitoring systems demonstrate
high performance in specific contexts. For example, the
widely-used distributed monitoring system, Ganglia [3], is

such a tool that can monitor compute resources in Clusters
and Grids.

However, monitoring resource in Cloud computing is
different from the same task in Cluster and Grid compu-
ting [2]. In Cloud computing, the users are exposed to dif-
ferent levels of virtualized services, and the lower levels of
resources can be invisible to the users. Even the users may
not have the liberty to deploy their own monitoring infra-
structure in Cloud computing, and many monitoring ap-
proaches developed for Cluster and Grid computing infra-
structure cannot work efficiently and effectively under
Cloud computing. The same problems may also exist for
the developers and administrators, as monitoring different
levels of virtualized resources are different. Resource
monitoring in Cloud computing requires a fine balance of
business application monitoring, enterprise server man-
agement, virtual machine monitoring and hardware main-
tenance, and will be a significant challenge for Cloud
computing. For many applications on Cloud computing, it
is critical to expose the monitoring and evaluation of un-
derlying resources to the users for appropriate use [1].

In Cluster and Grid computing, resource monitoring in-
frastructure consists of Producers, Consumers and Directo-
ry Services (or Registers). Producers generate status in-
formation of monitored resources. Consumers make use of
status information. The Directory Service is responsible
for locating Producers and Consumers, and enabling boot-
strap communication between the two sides. There are two
basic methods for communications between Consumers
and Producers: the Pull model and the Push model [4]. In
the Pull model, Consumers are responsible for “Pulling”
information from Producers to inquire status. However, in
the Push model, when updates occur at a Producer, under
some trigger conditions, the Producer “Pushes” the new
resources’ status to Consumers. The Push model is more
accurate when threshold, i.e., condition determines wheth-
er to trigger Push operation, is appropriate; while the Pull
model requires less transmission costs when inquiring in-
terval is proper. Cloud monitoring entities can also be
modeled as Producers, Consumers, and Directory Services.
However, in Cloud computing, especially at the Platform-
as-a-Service (PaaS) and the Software-as-a-Service (SaaS)
paradigms, the users just see one level of resources such as

a predefine API instead of the underlying resources. A
pure Push or Pull model is not suited for many different
kinds of virtualized resources.

Motivated by the complementary properties of the Push
and Pull models in Cluster and Grid computing, we pro-
pose a hybrid resource monitoring model called P&P
model for Cloud computing. Our P&P model consists of
Push algorithm and Pull algorithm. The two algorithms are
deployed in Consumers and Producers respectively and
run simultaneously. The main features include: (1) it has
better performance because the P&P model can intelligent-
ly switch between Push and Pull styles according to users’
requirements and resources’ status; (2) It is more appropri-
ate to Cloud computing than the pure Push and the Pull
models, which are widely used in Cluster and Grid compu-
ting, because virtualized resources may have different pri-
vileges and access styles. For example, the applications
like alert system are appropriate for the Push manner, ap-
plications like database are appropriate for the Pull manner,
and the applications like scientific computation may be the
combination of the two manners. The experimental results
demonstrate this potential and show that the P&P model
can provide different consistency between monitoring
component and monitored resources and reduce the updat-
ing cost considerably compared to the pure Push model
and pure Pull model. Note that our P&P model is relative-
ly general and can be easily adopted to other distributed or
service-oriented systems, such Cluster and Grid computing
environment.

The rest of the paper is organized as follows. Section 2
introduces relevant work concerning Cloud and Grid mon-
itoring. Section 3 discusses the motivation for combination
of the two traditional methods. In Section 4, we present
the principle and details of the P&P model. Section 5
shows the experimental results of the P&P model. Finally,
we summarize conclusions and discuss future work.

2. Related work

The Grid Monitoring Architecture (GMA) [5] proposed
by Global Grid Forum, is the prevailing principle adopted
by many types of Grid monitoring systems. GMA contains
three principal roles: Producers, Consumers, and Directory
Services (or termed Registers). Once the contact between
Producers and Consumers is established, Consumers can
collect information directly from Producers. One main
purpose of Directory Services is to facilitate Consumers
and Producers to find each other. Another purpose is that
Producers or Consumers may be notified if changes hap-
pen at the related Producers and Consumers.

Many existing Grid monitoring system is based on
GMA. Relational Grid Monitoring Architecture (RGMA)
[6][7] offers a global view of the information as if each
Virtual Organization is a large relational database. Net-
work Weather Service (NWS) [8], is a distributed system

that provides portable and non-intrusive performance mon-
itoring and forecasting, mainly intending to support sche-
duling and dynamic resource allocation. Globus: Monitor-
ing and Discovery System (MDS) [9], is the information
services component of the Globus Toolkit and provides
information about the available resources on the Grid and
their status.

Foster et al. compare the difference for the resource
management and monitoring between Grid and Cloud [2].
Because of the major differences on compute model, data
model, resource virtualization and sharing, the approaches
of resource monitoring for Grid computing has to be re-
vised for Cloud environment. This motivates us to design
a hybrid monitoring models to deal with different Cloud
computing types such as Infrastructure-as-a-Service (IaaS),
PaaS, and SaaS.

Brandt et al. propose a tool called OVIS for monitoring
resources to enable high-performance computing (HPC) in
Cloud computing environment [1]. Since intelligent re-
source utilization is critical to enable efficient HPC appli-
cations, OVIS can dynamically characterize the resource
and application state, and optimally assign and manage
resources based on the monitored information. OVIS
mainly uses statistical analysis to scale data collection and
resource allocation.

One common concern for Grid and Cloud resource
monitoring is the relationship between consistency and
efficiency. On one hand, a monitoring system must collect
resources’ status as frequently as possible in order to keep
Consumers’ information consistent with Producers. On the
other hand, the frequency of communications is directly
related to network consumption. Therefore, a trade-off
between consistency and efficiency is required. For exam-
ple, GHS [10] uses an adaptive measurement methodology
to monitor resource usage patterns, where the measure-
ment frequency is dynamically updated according to the
previous measurement history. This method obtains rela-
tively accurate patterns and reduces monitoring overhead
considerably.

3. Motivation for combining Push model and

Pull model

As we mentioned in Section 1, there are two basic me-
thods for communications between Consumers and Pro-
ducers: the Pull model and the Push model [4].

In the Push model, the initiator is the Producer. The
Producer sends status information when it detects that the
status changes are greater than the threshold. It is ideal for
keeping maximum consistency between the Producer and
the Consumer if threshold is proper. However, if threshold
is small, minor changes result in too much information
transmission, which may place strain on the network. If
threshold is large, important updating may be lost. Based
on Push model, Wu-Chun Chung and Ruay-Shiung Chang

[13], attempt to minimize the useless updating, and max-
imize information consistency between Consumers and
Producers. They propose three approaches, which are the
Offset-sensitive mechanism (OSM), the Time-sensitive
mechanism (TSM), and the Hybrid mechanism incorporat-
ing OSM and TSM. These mechanisms partially improve
performance of the Push model.

In the Pull model, the Consumer is the initiator. As such,
the low Pulling rate consumes little network bandwidth,
but may imply missing important updating during the Pull-
ing interval, which is undesirable for Consumers. However,
information at high Pulling rate is “fresher” but heavily
intrusive to the original system. Based on the Pull model,
R. Sundaresan et al. [14][15] propose an adaptive polling
using the time series information obtained from the sen-
sors to estimate the time of the next significant update.
This model, to some extent, improves accuracy. However,
it is based on Pull model in nature, and it still cannot avoid
Pull model’s drawbacks completely.

M. Bhide et al. [16] study adaptive Push-Pull strategy to
disseminate dynamic web data. They combine the two
methods in the Web research area and present “Push and
Pull” (PaP) method as well as “Push or Pull” (PoP) me-
thod. The PaP method simultaneously employs both Push
and Pull methods to exchange data, but has tunable para-
meters which determine the degree to which Push and Pull
are used. The PoP method allows servers to adaptively
choose between Push and Pull methods for each connec-
tion. Disseminating web data has many similarities with
Cloud resource monitoring. Hence the idea of combining
Push and Pull methods can also be extended to research in
Cloud resource monitoring.

Pay-as-you-go is one of important features for Cloud
computing, and this feature relies on virtualization of the
computing facilities. Virtualization middleware requires
real-time system status monitoring for decision making
and optimization. But large-scale virtualization usually
involves thousands of nodes, and frequent status informa-
tion transmission will greatly degrade network efficiency.
The Push model is more accurate when threshold is appro-
priate, while the Pull model performs less transmission
costs when inquiring interval is proper. Since the two
models have complementary properties under specific
condition, a reasonable trade-off between the two models
becomes possible. Thereby, we propose a combined Push
and Pull model for Cloud computing.

4. The P&P resource monitoring model

4.1. Overview

The P&P model is responsible for interaction between

the Producer and Consumer in each pair. The Push and
Pull operations are mutual exclusive. By comparing status

of the monitored resources and user’s requirement, the
Push and Pull models are alternated in our P&P model.

The change degree, defined in (1), describes the extent
of change between the current status of a Producer and the
status preserved in the corresponding Consumer. Every
status’ information contains a time stamp which records
the time at which a Producer collects status information.
The tp represents a Producer’s closest time stamp prior to
time t, and similarly, tc represents a Consumer’s closest
time stamp prior to time t. We have tp ≥tc because a Pro-
ducer’s update is always prior to a Consumer’s update.
Therefore, P(tp) denotes the “real” status of the Producer at
time t and C(tc) denotes the status information that the
Consumer holds at time t. In fact, C(tc) represents the last
update that the Consumer receives. MAX and MIN are the
maximal and minimal possible value of status.

p c
p c

|P(t)-C(t)|
change_degree UTD (t t)

MAX-MIN
= ≤ ≥ (1)

The requirements of users are expressed by the concept
of User Tolerant Degree (UTD), which describes how to-
lerant a user is to the status inaccuracy. A small UTD indi-
cates that the user has strict accuracy requirements. On the
opposite, a large UTD indicates that the user is prepared to
tolerate a significant level of inaccuracy. The P&P model
aims to keep the change degree not greater than the UTD.
Note that the UTD is a value depending on specific appli-
cation environment and requiring users’ prior experiences.
The UTD can be set on-the-fly in the similar approach as
the setting of threshold in [13], which is given by users or
administrator’s according to their preference.

For every Consumer-Producer pair, the most appropri-
ate monitoring model depends on the value of UTD. The
strategy for three possible cases is shown in (2).

push-based dominates (UTDis relatively small)

monitoring
= pull-based dominates (UTDis relatively large)

strategy
none dominates (UTDis relatively moderate)

⎧
⎪
⎨
⎪
⎩

 (2)

In the first case, the user has strict requirements for the

monitored resources. For example, a user assigns compu-
tational tasks on some resources, and it requires up-to-date
knowledge of these resources’ status. The user is very sen-
sitive to small changes which may occur at the resources.
Once the status’ change of a Producer is larger than the
threshold predefined according to UTD, the Producer
“pushes” the status information to the Consumer. In some
rare situations, the status’ changes are too small to trigger
the Push operation, but the Pull method will be activated
periodically to avoid the Producer’s unavailability for a
long period. Consequently, from the global view, the Push
method dominates the monitoring strategy in this case.

In the second case, the user desires only coarse informa-
tion regarding the resources. For instance, a user may wish

to know the approximate load information about some
resources on particular days to decide whether to choose
these resources for specific tasks. The user only needs to
Pull the resources periodically such as on hourly basis.
Also, in very few case, the status of monitored resources
changes noticeably, and Push operations are needed during
the two Pull operations. But in all, the number of Pull op-
erations greatly outweighs that of Push operations when
UTD is relatively large.

In the last case, the Consumer’s requirement is relative-
ly moderate. The “correct” decision is ambiguous, because
the strictness of the user’s requirement is between the two
above cases. Depending on specific circumstance, either
Push or Pull operations are triggered irregularly. Neither
Push nor Pull operation overwhelms the other one.

4.2. Algorithm description and analysis

The P&P model is composed of P&P-Push algorithm
and P&P-Pull algorithm. Figure 1 and Figure 2 show de-
tails of the P&P-Push and P&P-Pull algorithms.

1 WHILE TRUE
2 set Pull operation identifier isPulled FALSE
3 waiting for Push_interval
4 IF isPulled equals to TRUE during Push_interval
5 update status information (c_now) that Consumer cur-

rently holds
6 ELSE //examine whether need to Push
7 get sensor's current value (sensor_now) at Producer
8 IF |sensor_now-c_now|/(MAX-MIN)≥UTD 1
9 isPushed TRUE, c_now sensor_now,

10 Push c_now to the Consumer
11 ENDIF
12 ENDIF
13 ENDWHILE

Figure 1. P&P-Push algorithm

The P&P-Push algorithm runs at the Producer and the
P&P-Pull algorithm runs at the Consumer simultaneously.
The two algorithms try to make the resource monitoring
system intelligently switch between Push and Pull opera-
tions according to user’s requirements and status’ changes
of monitored resources. Now we analyze the algorithms in
four aspects.

(a) The Pull operation identifier “isPulled” and Push
identifier “isPushed” are set to be mutual exclusive to
avoid Push and Pull operations concurrently happen in the
same period, which may further reduce updating times, i.e.
if Pull happens, Push operation in the corresponding inter-
val is abandoned, and vice versa. Therefore, when UTD
equals to 0, all Pull operations are forbidden, and the P&P
model degrades to the pure Push model. Similarly, when
UTD equals to 1, all Push operations are forbidden, and

1 sensor_now corresponds to P(tp), c_now corresponds to C(tc) in (1).

P&P model degrades to pure Pull model. Also, “isPulled”
and “isPushed” should be controlled by synchronization
model to avoid inconsistency when concurrently reading
or writing.

1 Initialize Pull operation's initial query interval:
PULL_INIT_INTERVAL, minimal possible inquiry in-
terval: PULL_INTERVAL_MIN and maximal possible
inquiry interval: PULL_INTERVAL_MAX

2 Pull_interval PULL_INIT_INTERVAL
3 WHILE (TRUE)
4 set Push operation identifier isPushed FLASE
5 waiting for Pull_interval
6 IF isPushed equals to TRUE
7 update status information (c_now) that Consumer cur-

rently holds
8 ELSE
9 isPulled TRUE, Pull the Producer

10 update c_now
11 ENDIF
12 change_degree=|c_now-c_last|/(MAX-MIN) 2
13 IF (change_degree≤UTD)
14 IF increased_Pull_interval ≤

 PULL_INTERVAL_MAX
15 Pull_interval=increased_Pull_interval
16 ELSE

 keep current Pull_interval
17 ENDIF
18 ELSE IF (change_degree>UTD)
19 IF decreased_Pull_interval≥PULL_INTERVAL_MIN
20 Pull_interval=decreased_Pull_interval
21 ELSE

 keep current Pull_interval
22 ENDIF
23 ENDIF
24 c_last c_now
25 ENDWHILE

Figure 2. P&P-Pull algorithm

 (b) When the value of UTD is relatively small, the Push
method dominates. As shown in Figure 1, because the
condition at line 8 in the P&P-Push algorithm is easily to
be met, Push operations are frequently triggered. On the
other side, although the P&P-Pull algorithm is trying to
minimize Pull interval’s value (line 20 in Figure 2), the
PULL_INTERVAL_MIN blocks this trend when Pull in-
terval becomes very small (lines 19 and 21 in Figure 2). In
most situations, Push operation runs before Pull operation.
Hence, the Push-based method becomes dominant. An
extreme case is that there are very few status changes hap-
pening at the Producer, so Push operation is not triggered
for a long time, but the P&P-Pull algorithm still Pulls the
Producer at most PULL_INTERVAL_MAX periods to
inform availability of the Producer to the Consumer.

2 c_now corresponds to P(tp) in (1), because Consumer cannot obtain
real-time status of Producer. c_last is the status information that Con-
sumer holds after last update, and it corresponds to C(tc) in (1).

(c) When the value of UTD is relatively large, the Pull-
based method dominates. Because the condition of line 8
in Figure 1 is hard to meet, Push operation is seldom trig-
gered. However, the P&P-Pull algorithm adjusts its Pull
interval (lines 8-23 in Figure 2) according to status
changes. In this case, the Pull-based method becomes do-
minant. The extreme situation is that when the Pull inter-
val is very large, a dramatic change violating UTD hap-
pens during the very large Pull interval. The Push opera-
tion is triggered at this moment and Pushes the unusual
status to the Consumer. Meanwhile, the P&P-Pull algo-
rithm tries to decrease Pull interval because the Push oper-
ation commonly indicates Figure 2: line 13’s condition is
met.

(d) When the value of UTD is relatively moderate, none
of Push and Pull dominates. This situation is just in the
middle of the above two cases, and both Push and Pull
methods both act frequently.

4.3. An example

Table 1 gives an example using the P&P model with a

moderate UTD that equals to 0.25. Initially, the Pull inter-
val is set to 50s and Push interval is set to 10s. During the
first Pull interval, at 10:46:30, the Producer Pushes the
status since the change degree of Push is 0.31>UTD. At
10:46:50, when the first Pull interval expires, Pull opera-
tion in this interval is forbidden since Push operations
happen. When the change degree of Pull is 0.31>UTD, the
Consumer decrease its next Pull interval to 40s. During the
second Pull interval, there was no Push operation. Thus, at
the end of the second Pull interval (time stamp: 10:47:30),
the Consumer executes Pull operation and increases its
third Pull interval to 50s. The next two Pull intervals also
follow the rules explained above. The total updating cost
is 5 including both Push and Pull operations compared to
the cost 19 in the pure Push method.

Table 1. An example employs P&P model3
Time
stamp

sensor
CPU

Load (%)

Push
change
degree

Pull
change
degree

Push/Pull
operation

Push/Pull
value

remaining
Pull

interval
10:46:00 53 0.53 \ Push 53 50
10:46:10 48 0.05 \ \ 53 40
10:46:20 39 0.14 \ \ 53 30
10:46:30 22 0.31 \ Push 22 20
10:46:40 27 0.05 \ \ 22 10
10:46:50 18 0.04 0.31 \ 22 40
10:47:00 30 0.08 \ \ 22 30
10:47:10 15 0.07 \ \ 22 20
10:47:20 8 0.14 \ \ 22 10

3 UTD=0.25, Push interval =10s, PULL_INIT_INTERVAL=50s,
PULL_INTERVAL_MIN=30s, PULL_INTERVAL_MAX=120s,
Pull interval=Pull interval+/-10s

10:47:30 14 0.08 0.08 Pull 14 50
10:47:40 44 0.30 \ Push 44 40
10:47:50 38 0.06 \ \ 44 30
10:48:00 24 0.20 \ \ 44 20
10:48:10 38 0.06 \ \ 44 10
10:48:20 20 0.24 0.3 \ 44 40
10:48:30 36 0.08 \ \ 44 30
10:48:40 49 0.05 \ \ 44 20
10:48:50 22 0.22 \ \ 44 10
10:49:00 41 0.03 0.03 Pull 41 50

5. Experiment

5.1. Experimental environment

Every transmission pair works independently. In every
pair, the Consumer and Producer only communicate with
its partner within the pair. So we choose two PCs as a
transmission pair to evaluate the performance of the P&P
model. One PC plays as a Producer and the other plays as
a Consumer. Each PC is equipped with Intel Celeron CPU
420@1.60GHz, 2 GB memory and Windows XP operating
system. We adopt Microsoft Management Console 2.0:
Performance Logs and Alerts as sensors in Producers. To
simplify the experiment, we use only one of the resource
parameters, i.e. the CPU load percentage, instead of other
parameters to test performance of the P&P model. The
Producer and Consumer are implemented by Java pro-
gramming language with Java’s synchronization and mul-
tithread mechanisms.

According to [1], high accuracy and low intrusiveness
are two important metrics for distributed monitoring sys-
tem. So our experiments will analyze and evaluate the
P&P model in the above two aspects.

5.2. Experimental results

We conducted two groups of experiments in the trans-
mission pair. The first group of experiments aims to reveal
the relation between updating number and UTD, and com-
pare updating number of the P&P model with the pure
Push and pure Pull models. We set sensor’s updating pe-
riod to 1s. It began at 03/11/2010, 18:02:52.093 and ended
at 03/11/2010, 19:33:01.421 with 5,315 times of updating
totally. Producer’s Push interval was set to 1s, and Con-
sumer’s PULL_INIT_INTERVAL, PULL_INTERVAL_
MIN, and PULL_INTERVAL_MAX were set to 5s, 3s
and 12s, respectively. The Pull interval increased or de-
creased 1s each time.

The total updating number includes both the numbers of
Push and Pull operations. As shown in Figure 3, the total
updating number, Push operations’ number, and Pull oper-
ations’ number are closely relevant to UTD. As UTD rises,

the total updating number decreases, and the number of
Push operation drops dramatically, but the number of Pull
operation grows slightly. The reason for this phenomenon
is that the speed at which the number of Pull operations
increases is much less than the speed at which the number
of Push operations decreases. Another phenomenon is the
proportion of Push operation decreases, while Pull opera-
tion accounts for more of the total as UTD grows. When
UTD is 0, the P&P model degenerates to the pure Push
model. When UTD is relatively low, take 0.15 or 0.2 for
example, most of the operations are Push, whereas Pull
operations only occupy a little percentage. So Push is do-
minant. If UTD (0.45 or 0.5) is relatively moderate, nei-
ther Push nor Pull operations exceed the other too much.
When UTD (0.7 or 0.75) is relatively high, the number of
Pull operations is dominant. Finally, the P&P model be-
comes the pure Pull model when UTD is 1.

Figure 3. Updating number of P&P model at different
UTDs (1st group)

Also we observe that the updating number in the P&P
model is much smaller than the updating number in the
pure Push method (UTD=0), or the value of UTD is rela-
tively small. This is because the threshold of the P&P-
Push algorithm depends on the users’ requirements and
reduces unnecessary Push operations. On the other side,
the updating number of the P&P model is slightly greater
than that of pure Pull method (UTD=1) when UTD is rela-
tively large since it involves a small number of Push oper-
ations.

In the second group of experiments, the sensor’s updat-
ing period was 10s. It began at 03/11/2010, 20:08:47.734
and ended at 03/1/2010, 20:41:57.765 with 200 times of
updating in total. The Producer’s Push interval was set to
10s, and the Consumer’s PULL_INIT_INTERVAL,
PULL_INTERVAL_MIN, and PULL_INTERVAL_MAX
were set to 50s, 30s and 120s, respectively. The Pull inter-
val increased or decreased 10s each time. The goal of this
group experiments is to test the coherency between the
P&P model and the pure Push or Pull methods at different
UTDs.

Figure 4 shows the updating number of the second
group of experiments with the P&P model at different
UTDs. Figure 5 shows the comparison between the result
for the P&P model with relatively small UTD and the pure
Push model. The P&P model performs strong coherence
with the pure Push method when UTD is relatively low
(0.1), but only has half number of updating. Figure 6
(UTD=0.25, moderate) gives detailed operations of the
P&P model. The diamond points are Pull operations, and
the square points are Push operations. Figure 6 loses more
minor details, but is still much similar to Figure 5 with less
number of updating. From the graphs we can see that the
Pull operations are comparably more regular, while Push
operations happen somewhat randomly. This is because
Push operations are usually triggered at points that have
remarkable status changes.

Figure 7 (UTD=0.4, large) is an outline of the pure Push
model in Figure 5, but has more details than the pure Pull
model (Figure 8) with increasing a small number of updat-
ing. Most of the additional updatings are Push operations
caused by dramatic status changes. So UTD=0.4 is accept-
able too for users who only desire coarse status trend
about resources.

6. Conclusions and future work

In order to make resource monitoring in Cloud envi-
ronment more flexible and efficient, we propose the P&P
model which inherits the advantages of Push and Pull
models. It can intelligently switch between Push and Pull
models and adjust the number of updating according to the
requirements of the users. The experimental results show
that, compared with the pure Push model and pure Pull
mode, the P&P model can effectively reduce updating
number and maintain various levels of coherence in accor-
dance with the users’ requirements.

In the future, we will study the method to measure the
value of UTD based on users’ experiences. Also, we plan
to study how to increase or decrease the Pull interval value
effectively to adapt to status changes. Then, we would like
to synthesize more types of parameters of monitored re-
sources, such as memory, disk capacity, network band-
width, etc., to reflect more authentic status of resources.
Finally, we plan to implement the new model, and test its
performance in large scale Cloud computing or other dis-
tributed environment.

Acknowledgment

This work was supported in part by the Graduate Assis-

tantship of the School of Energy Resources at the Univer-
sity of Wyoming.

0

1000

2000

3000

4000

5000

u
p
d
a
t
i
n
g
 t
i
m
e
s

.

UTD

pull

push

References

[1] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D.
Thompson, and M. Wong. “Resource monitoring and
management with OVIS to enable HPC in Cloud compu-
ting”, Proc. of the 23rd IEEE International Parallel & Dis-
tributed Processing Symposium (5th Workshop on System
Management Techniques, Processes, and Services), Rome,
Italy.2009.
[2] I. Foster, Y. Zhao, I. Raicu, S. Lu. “Cloud computing
and Grid computing 360-degree compared”, Grid Compu-
ting Environments Workshop, 2008.
[3] Ganglia, http://ganglia.sourceforge.net/, 2010.
[4] S. Zanikolas and R. Sakellariou, “A taxonomy of
Grid monitoring systems,” Future Generation Computer
Systems 21 (1): pp. 163–188, 2005.
[5] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swa-
ny, V. Taylor, and R. Wolski, “A Grid Monitoring Archi-
tecture,” The Global Grid Forum Draft Recommendation
(GWD-Perf-16-3), August 2002.
[6] A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan,
M. Oevers, P. Taylor, “R-GMA: an information integra-
tion system for Grid monitoring,” in Proc. 10th Interna-
tional Conference on Cooperative Information Systems,
2003.
[7] A. Cooke, A.J.G. Gray, W. Nutt, J. Magowan, M.
Oevers, P. Taylor, “The relational Grid monitoring archi-
tecture: Mediating information about the Grid,” Journal of
Grid Computing, 2(4): pp. 323-339, 2004.
[8] R.Wolski, N. Spring, J. Hayes, “The network weather
service: a distributed resource performance forecasting
service for metacomputing,” Future Generation Computer
Systems 15 (5/6): pp. 757–768, 1999.

[9] Globus: Monitoring and Discovery System (MDS).
Available: http://www.globus.org/toolkit/mds/
[10] M. Wu, X.H. Sun. “Grid harvest service: a perfor-
mance system of Grid computing,” Journal of Parallel and
Distributed Computing, 66(10): pp. 1322-1337, 2006.
[11] H. Eichenhardt, R. Muller-Pfefferkorn, R. Neumann,
and T. William. “User-and job-centric monitoring: analys-
ing and presenting large amounts of monitoring data,” In
the 9th IEEE/ACM International Conference on Grid
Computing (Grid 2008), Tsukuba, Japan, pp. 225-232,
2008.
[12] D. Cesini, D. Dongiovanni, E. Fattibene, and T. Fer-
rari. “WMSMonitor: A monitoring tool for workload and
job lifecycle in Grids,” In the 9th IEEE/ACM International
Conference on Grid Computing (Grid 2008), Tsukuba,
Japan, pp. 209-216, 2008.
[13] Wu-Chun Chung and Ruay-Shiung Chang, “A new
model for resource monitoring in Grid computing,” Future
Generation Computer Systems, 25(1): pp. 1–7, 2009.
[14] R. Sundaresan, Tahsin Kurcy, Mario Lauriaz, Srini-
vasan Parthasarathyz and Joel Saltz, “Adaptive polling of
Grid resource monitors using a slacker coherence model,”
In Proc. 12th IEEE International Symposium on High Per-
formance Distributed Computing, pp. 260–269, June 2003.
[15] R. Sundaresan, T. Kurc, M. Lauria, S. Parthasarathy,
and J. Saltz, “A slacker coherence protocol for Pullbased
monitoring of on-line data sources,” In Proc. CCGrid 2003
Conference, May 2003.
[16] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham, and P. J. Shenoy. “Adaptive Push-Pull:
disseminating dynamic web data,” In World Wide Web,
pp. 265–274, 2001.

Figure 4. Updating times of P&P model at different

UTDs (2nd group)

Figure 5. Result of P&P model (small)

Figure 6. Detail operations of P&P model (moderate,

UTD=0.25)

Figure 7. Result of P&P model (large)

Figure 8. Result of P&P model (pure Pull)

0

50

100

150

200

0 0.1 0.25 0.4 1

u
p
d
a
t
i
n
g
 t
i
m
e
s

UTD

push

pull

total

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81 101 121 141 161 181

C
P
U
 l
o
a
d
 (
%
)

time

UTD=0

UTD=0.1

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

time

C
P

U
 lo

ad

UTD=0.25

P&P
Push
Pull

0

20

40

60

80

100

1 21 41 61 81 101 121 141 161 181

C
P
U
 l
o
a
d
 (
%
)

time

UTD=0.4

0

10

20

30

40

50

60

70

80

90

100

1 21 41 61 81 101 121 141 161 181

C
P
U
 l
o
a
d

(
%
)

time

UTD=1 (pure pull)

