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Abstract

The growth of data used by data-intensive computations,
e.g. Geographical Information Systems (GIS), has far out-
paced the growth of the power of a single processor. The
increasing demand of data-intensive applications calls for
distributed computing. In this paper, we propose a high
performance workflow system MRGIS, a parallel and dis-
tributed computing platform based on MapReduce clusters,
to execute GIS applications efficiently. MRGIS consists of
a design interface, a task scheduler, and a runtime support
system. The design interface has two options: a GUI-based
workflow designer and an API-based library for program-
ming in Python. Given a GIS workflow, the scheduler ana-
lyzes data dependencies among tasks, then dispatches them
to MapReduce clusters based on the current status of the
system. Our experiment demonstrates that MRGIS can sig-
nificantly improve the performance of GIS workflow execu-
tion.

1 Introduction

As sensor and storage technologies continue to improve,
they make it possible to collect and store previously in-
conceivable amounts of data. Scientific research increas-
ingly relies on computing over massive datasets. How-
ever, data collection rates exceed our ability to process it,
as CPU frequency has been staggering. This challenge calls
for massive parallelism for scientific computing. Cluster
and grid are traditional parallel computing platforms. The
innovations of multi-core architectures make parallel pro-
gramming more pervasive. The emerging cloud comput-
ing is delivering even larger-scale parallel and distributed
data processing. Although for the past decade we have
witnessed incrementally more programmers writing paral-
lel programs, the vast majority of applications today are still
single-threaded because of the difficulty of designing paral-
lel programs.

To alleviate the complexity of parallel programming,

many programming models have been proposed. One of the
most successful frameworks is MapReduce [5], which pro-
cesses massive datasets in parallel manner with supporting
load balancing and fault tolerance, etc. MapReduce pro-
grams can be automatically parallelized and executed on a
large cluster of computers. The MapReduce runtime sys-
tem takes care of data partitioning, task scheduling, failure
handling, and communication managing. This allows pro-
grammers with no parallel programming experience to eas-
ily utilize cluster for data-intensive computing.

In this paper, we propose a MapReduce-enabled high
performance workflow system for applications of Geo-
graphical Information System (GIS). The system is called
MRGIS, which stands for MapReduce-enabled GIS. As
GIS data grow significantly and computations become
much more complex, current GIS products (e.g. ESRI Ar-
cGIS [1] and GRASS [2]) are very inefficient in executing
such computing jobs, largely because GIS systems are de-
signed for executing sequentially on a single workstation.
Based on MapReduce cluster, MRGIS provides a massive
parallel computing platform to execute and manage data-
intensive GIS applications more efficiently and effectively.

Although a few workflow management systems have
been developed over the past several years, they either do
not support parallel computing, or are inefficient and inef-
fective for GIS applications. First, GIS applications often
operate on large-scale datasets. In support of better per-
formance, the datasets should be dynamically partitioned
for parallel executions. However, how to partition and
how many chunks to split are difficult problems, which
depend on many factors, such as the current GIS opera-
tion, data type, the workflow execution status, and even
the current parallel system status. The workflow scheduling
and data partitioning are closely related and should be de-
signed specifically for GIS workflows. Second, GIS work-
flows involve many specific GIS operations not supported
by general workflow systems. MRGIS provides a special-
ized GUI-based user interface in support of these GIS op-
erations. Finally, MRGIS supports data reliability and fault
tolerance using MapReduce architecture, which most exist-
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ing workflow systems often do not support or just have a
limited support.

We evaluated MRGIS on two real-world GIS computa-
tion workflows. Our experiment demonstrates that MRGIS
can significantly speed up the execution time of GIS work-
flows, as compared to the current popular GRASS [2] on a
single machine.

This paper is organized as follows. Section 2 presents the
details of the design and implementation of MRGIS. The
experiments in Section 3 demonstrate the efficiency of MR-
GIS. Section 4 reviews the related work. In Section 5, we
summarize the contributions of our work and describe the
future work.

2 The Design and Implementation of MRGIS

Geographical Information System (GIS) is an informa-
tion system for capturing, storing, analyzing, managing,
and presenting spatial data. GIS has been increasingly used
in resource management, scientific research, and even our
daily life. As current GIS tools(e.g. ESRI ArcGIS [1])
are mainly designed for executing sequentially on a single
workstation, a GIS becomes much less efficient when deal-
ing with tremendous data and complex computations.

We designed and implemented a distributed and paral-
lel GIS computing platform, MRGIS, based on an open
source implementation of MapReduce - Hadoop [3] and an
open source GIS tool - GRASS [2]. Figure 1 shows the
architecture of MRGIS. MRGIS consists of a design inter-
face, a scheduler, and a runtime support system. There are
two options for the user design interface: a GUI-based GIS
workflow designer and a workflow scripting language im-
plemented as a Python library, since Python is a dominating
scripting language used for GIS applications. The interface
enables programmers to easily design complex workflows
using specialized toolbox for GIS operations without know-
ing details of the underlying parallel computing platform.
Given a GIS workflow, the scheduler analyzes data depen-
dencies among tasks, then dispatches tasks to MapReduce
cluster based on the current status of the system to mini-
mize execution time. Built over MapReduce architecture,
the runtime system supports and manages GIS operations
on each computer node.

2.1 MapReduce and Hadoop

MapReduce [5] is a programming model for data-
intensive computing, which consists of two functions: a
map function applies a specific operation to a set of items,
and produces a set of intermediate key/value pairs on a
group of distributed computer nodes, and a reduce function
merges all intermediate values associated with the same key
on distributed computer nodes. The runtime system takes
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Figure 1. The architecture of MRGIS.

care of data partitioning, scheduling, load balancing, fault
tolerance, and network communications. The simple inter-
face of MapReduce allows programmers to easily design
parallel and distributed applications.

Hadoop [3] is an open-source implementation of
MapReduce in Java. It is composed of MapReduce run-
time system and a distributed file system (HDFS), which
provides data redundancy support and makes the data dif-
fusion transparent among each node in the cluster. Both
MapReduce and the distributed file system are designed to
automatically handle node failures. One of Hadoop nodes
works as a master, which dispatches tasks and controls the
executions of the other Hadoop nodes, i.e., slaves.

2.2 A GIS Workflow Example

A typical GIS application needs to process various raster
and vector images which are usually in the scale of 100 MiB
- 1 GiB (of each file). For example, it takes more than 10
minutes to perform a plus GIS operation on two typical GIS
raster dataset files in the size of 1 GiB on a typical desktop
computer.

To process and analyze massive spatial datasets, the op-
erations of GIS are usually organized as a workflow. A
GIS workflow is a directed acyclic graph (DAG), which
consists of nodes and edges. A node denotes a task or an
input/output/intermediate data file; and an edge denotes a
relationship (i.e., input/output) between a task and a data
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Figure 2. A GIS workflow to classify land into
four different vegetation groups, where cir-
cles denote datasets and rectangles denote
GIS operations. A zoom-in view is shown on
the top.

import RasterMapAlgebra, MRGIS
input[] = [input1, input2]
output[] = [output]
MRGIS.task(RasterMapAlgebra.times, input, output)

Figure 3. A code block showing the definition
of a task.

file. Figure 2 shows a real-world GIS workflow on the
raster data. With the input of environmental dataset col-
lected by Wyoming Geographic Information Science Center
(WyGISC), the workflow is to classify land into four differ-
ent vegetation groups: forest, grass, shrub, and desert.

Figure 3 shows an example of a task defined using MR-
GIS python library. Task operations are implemented as
wrappers with calling for GIS operations in GRASS [2].

2.3 Workflow Model and Scheduling

Formally, a workflow w = 〈T, D,Ein, Eout〉 consists
of a set T of tasks, a set D of datasets, a set Ein of input
edges, and a set Eout of output edges between tasks and data
nodes. Let t1 →out d →in t2 denote that task t1 produces
a data set d, and task t2 consumes it as an input. For such

a relationship between t1 and t2, we say that t2 depends on
t1, denoted t1 ⇒ t2. Task dependencies are transitive, i.e.,
if t1 ⇒ t2 and t2 ⇒ t3, then we have t1 ⇒ t3. There is
no cyclic transitive dependency on tasks, since all MRGIS
workflows are DAGs.

Given a work w = 〈T, D,Ein, Eout〉, for a task t ∈ T ,
let depd-ancestorsw(t) = {t′|t′ ⇒ t∧ t′ ∈ T} (i.e., all tasks
that task t depends on) and depd-descendentsw(t) = {t′|t⇒
t′ ∧ t′ ∈ T} (i.e., all tasks that depend on task t).

Let c(t, Dtin , Dtout) denote the execution cost (in this
paper, only execution time is considered) of a task t,
where Dtin

and Dtout
denote the input datasets and out-

put datasets of t, respectively. In other words, the
execution cost of a task is related to what operation
it performs and the sizes of input and output datasets.
For a task t, its finishing cost is defined as fc(t) =∑

ti∈{depd-descendents
w

(t)} c(ti, Dti
in

, Dti
out

).
Given a workflow in Python script designed by a GIS

tool (e.g.ArcGIS) or our GUI-based designer , MRGIS can
parse it into a DAG in the format described above. The DAG
contains all the necessary information to guide scheduling
and execute the tasks. Our parser is implemented using an
Eclipse plug-in for Python [4].

MRGIS scheduler exploits two kinds of parallelism. The
first parallelism is on the task level based on the fact that
many operations in the workflow can be executed in paral-
lel if they do not have data dependency relationships. When
the number of ready-to-run tasks is more than the available
compute nodes, the scheduler chooses the tasks with higher
priority to execute. The priority of a task is computed based
on a simulation: for each task, we estimate its execution
time for a given size of input data based on previous statis-
tical results of executions; the finishing cost of a task is the
total execution time of all dependent tasks; thus, a task has
a higher priority if it has a higher finishing cost.

The other kind of parallelism is on the data level, i.e.,
by data partitioning. Most GIS operations work block by
block. Thus, a large dataset can be split into multiple in-
dependent partitions on which a task can work in parallel.
Given a workflow, a difficult problem is to estimate how
many chunks to split. Our approach is based on a simula-
tion: based on our estimation for the execution time of each
task, we simulate the execution of the workflow and com-
pare the execution times for different numbers of chunks.
Usually, the overall execution time of a workflow initially
drops down along the number of chunks increasing; after
reaching a turning point, it will go up even the number of
chunks continuously increases because the data communi-
cation cost goes up and there are not enough compute nodes
to process the chunks. The optimal data partitions will min-
imize the overall execution time of the workflow.

Even there is not parallelism on workflow level, the data
partition approach can still improve performance against the
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old sequential computing.
Our scheduling algorithm is shown in Algorithm 1,

which is also used for the simulations to find task with the
highest priority and compute the optimal data partition.

Input: ( w: a GIS workflow)

T := the set of all tasks in the workflow w;
F := ∅; /* the set of finished tasks */

FetchTaskToRun(){
maxFC := 0; /* the max finishing cost */
taskToRun := null; /* the next task selected to run

which has the max finishing cost in the set
of non-scheduled tasks */

while F + T do
for each t ∈ T − F do

if depd-ancestorsw(t) 6= ∅ ∧
depd-ancestorsw(t) * F then

continue;
end
if fc(t) > maxFC then

maxFC := fc(t);
taskToRun := t;

end
end
if maxFC == 0 then

return wait;
end
else

return taskToRun;
end

end
return done;
}

/* Exec() is called by a set of threads on a Hadoop
master node, each of which services a Hadoop slave
node */
Exec() {
while there is an idle Hadoop node do

switch FetchTaskToRun() do
case done: return;
case wait: sleep(some time) ;
case task t to run:

submit t to Hadoop;
wait for finishing;
F := F ∪ {t};

end
end
}

Algorithm 1: The scheduling algorithm.
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Figure 4. The workflow for benchmark 1.

2.4 Runtime Support System

Our runtime support is responsible to bridge task opera-
tions in MRGIS and the corresponding functions in GRASS
GIS [2]. We implement our library by wrapping GRASS
GIS operations that can be easily called by tasks dispatched
on MapReduce platform. Currently our library supports ba-
sic GIS raster map operations. The library will be extended
to support more GIS operations in our future work.

3 Experiments

We evaluate our system against two typical GIS applica-
tions that are representative of the data-intensive nature of
GIS applications.

The computing environment is a Hadoop MapReduce
cluster consisting of 32 desktop computers running Linux
CentOS 5. Each machine has a Intel dual-core 2GHz CPU
and 2 GiB RAM. We compare the performance of running
the two GIS workflows on a single machine (i.e., any node
in the cluster) to the performance of running them on the
cluster.

The first benchmark is shown in Figure 4, which is a
typical GIS workflow that involves basic GIS algebraic op-
erations. Its input involves only a single data set whose size
is around 700 MiB. The data is in Arc/ASCII format1.

The second benchmark is already shown in Figure 2. The
input datasets are obtained from remote sensing on a 30m
resolution scale. The details of the input datasets are shown
in Table 1. The workflow implements a decision tree classi-
fication algorithm consisting of 18 tasks which are all basic
operations to GIS.

Figure 5 shows the normalized comparison of the above
two benchmarks running on a MapReduce cluster and a sin-
gle machine.

1The Arc/ASCII is a popular GIS data exchange format. We chose it
because of its simple structure to split the data.
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Figure 5. The performance comparison.

Type of data format Size
The precipitations in
July

Arc/ASCII 2 GiB

The annual precipita-
tions

Arc/ASCII 1.2 GiB

The maximum tem-
perature in a year.

Arc/ASCII 1 GiB

Table 1. Details of the input data for bench-
mark 2

For benchmark 1, the executions on our MapReduce-
enabled platform are much faster than the execution on
a single machine. As the number of data partition in-
creases from 3 to 11, the performance continuously im-
proves. However, when the number of partitions reaches
15, the performance drops. The reason is that the number
of ready tasks exceeds the number of idle machines in the
cluster which causes some ready tasks to wait, and deploy-
ing more tasks induces more overhead.

For benchmark 2, the executions on our MapReduce-
enabled platform are also much faster than the sequential
execution. However, as the number of data partition in-
creases, the performance does not improve significantly as
in benchmark 1. It is because the number of ready tasks

quickly exceeds the number of available machines, since
benchmark 2 has more tasks than benchmark 1.

4 Related Work

There are some extensions for MapReduce. Map-
Reduce-Merge [11] adds an additional merge phase that can
efficiently merge data already partitioned and sorted by map
and reduce operations. However, it is only applicable to
a specific type of programs that demand such operations.
GridBatch [8] breaks down MapReduce into elementary op-
erators and introduces additional operators, which include
map, distribute, recurse, join, cartesian, and neighbor.

A bunch of workflow tools for parallel programming
have been developed. Dryad [7] is a general-purpose ex-
ecution engine for distributed and parallel applications. All
jobs and their dataflows are expressed as a directed acyclic
graph (DAG). Unlike MapReduce requires a sequence of
map/distribute/sort/reduce operations, Dryad supports an
arbitrary sequence of operations defined as a DAG. Sawzall
[10] is a scripting language over MapReduce to provide an
easier interface for data processing. Like MapReduce, a
Sawzall program consists of a filtering phase (the map step)
and an aggregation phase (the reduce step). Besides these,
Sawzall provides an efficient way to format data using pro-
tocol buffers and supports scheduling jobs on a cluster of
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machines. Built on Hadoop, Pig Latin [9] is a data pro-
cessing language like Sawzall. While Pig Latin has the
similar higher level primitives like filtering and aggrega-
tion provided by Sawzall, it supports additional primitives
such as cogrouping, which can be used for join operation.
The primitives are allowed to be chained in Pig Latin. In
addition, Sawzall is a script language and more like proce-
dural languages such as Java, whereas Pig is more like an
extension of SQL. Swift [12] is another parallel program-
ming tool that supports defining a workflow in a scripting
language and dispatches the workflow onto multiple Grid
sites. The Pegasus system [6] provides a framework which
maps complex scientific workflows onto distributed grid re-
sources. Artificial intelligence planning techniques are used
in Pegaus for workflow composition.

Our MRGIS is also a scripting-based parallel program-
ming tool, similar to the above systems. However, our sys-
tem is specialized for GIS applications, and optimized to
MapReduce computing infrastructure. Without requiring
users’ definition, data partitioning and merging are com-
puted and performed automatically based on simulation.
Tasks are scheduled dynamically by analyzing the status of
the current workflow and cluster.

5 Conclusions and Future Work

Data-intensive GIS applications are beyond the capac-
ity of what a single processor can process in a reasonable
amount of time. The challenge requires us to resort to some
form of parallel computing. Unfortunately, writing parallel
programs is inherently difficult especially for those scien-
tific programmers most of who have not been well trained.
MapReduce architecture provides a promising way to par-
allelize the existing applications. We presented an platform
for running distributed GIS applications over MapReduce
clusters. The experiments show that MRGIS can improve
the performance significantly.

In future, we plan to extend our current system to support
more GIS operations and applications. We will improve the
scheduling algorithm using better data locality. The user-
interface will also be improved to be more user-friendly.
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