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Abstract—This paper presents a performance modeling and optimization analysis tool to predict and optimize the performance of

sparse matrix-vector multiplication (SpMV) on GPUs. We make the following contributions: 1) We present an integrated analytical

and profile-based performance modeling to accurately predict the kernel execution times of CSR, ELL, COO, and HYB SpMV

kernels. Our proposed approach is general, and neither limited by GPU programming languages nor restricted to specific GPU

architectures. In this paper, we use CUDA-based SpMV kernels and NVIDIA Tesla C2050 for our performance modeling and

experiments. According to our experiments, for 77 out of 82 test cases, the performance differences between the predicted and

measured execution times are less than 9 percent; for the rest five test cases, the differences are between 9 and 10 percent. For

CSR, ELL, COO, and HYB SpMV CUDA kernels, the average differences are 6.3, 4.4, 2.2, and 4.7 percent, respectively. 2) Based

on the performance modeling, we design a dynamic-programming based SpMV optimal solution auto-selection algorithm to

automatically report an optimal solution (i.e., optimal storage strategy, storage format(s), and execution time) for a target sparse

matrix. In our experiments, the average performance improvements of the optimal solutions are 41.1, 49.8, and 37.9 percent,

compared to NVIDIA’s CSR, COO, and HYB CUDA kernels, respectively.

Index Terms—Performance modeling, sparse matrix-vector multiplication, GPU, CUDA

Ç

1 INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is an essen-
tial operation in solving linear systems and partial dif-

ferential equations. For many scientific and engineering
applications, the matrices can be very large and sparse. It
is a challenging issue to accurately predict and optimize
SpMV performance. This paper addresses this challenge
by presenting a performance modeling and optimization
analysis tool to predict and optimize SpMV performance
on GPUs.

Bell and Garland [1] proposed and implemented SpMV
CUDA kernels for multiple storage formats, including
CSR, ELL, COO, and HYB. Based on our experiments,
CSR usually has good performance on sparse matrices
with large number of non-zero elements; ELL is usually
good for a sparse matrix with nearly equal and small
number of non-zero elements per row; HYB has better
performance when the matrix has small number of non-
zero elements per row, and many rows are nearly equal
but there may be few irregular rows with many more
non-zero elements; COO is the most intuitive storage

format, but usually has worse performance than other for-
mats. We observed that different matrices may have their
own most appropriate single storage formats to achieve
the best performance. Besides, we also notice that there
exists a possibility, although not always, that when a
matrix is partitioned and each block is stored in an appro-
priate format, the performance achieved can outperform
that of any single storage format. All these observations
motivate us to design an automatic tool, to accurately pre-
dict the execution times of multiple SpMV kernels, fur-
ther, to help choose an SpMV optimal solution (i.e.,
storage strategy, storage format(s), and execution time)
for a target sparse matrix.

This paper makes the following contributions:

1. We present an integrated analytical and profile-
based performance modeling to accurately predict
the kernel execution times of CSR, ELL, COO, and
HYB SpMV kernels. Given a target sparse matrix
and storage format, its SpMV kernel execution time
can be reported.

2. Based on the performance modeling, we design an
SpMV optimal solution auto-selection algorithm to
automatically report an SpMV optimal solution for a
target sparse matrix. We aim to find a storage format
(single or multiple formats combined) from current
available ones to maximize performance improve-
ment, rather than devise a new single storage format
or an SpMV kernel.

Our performance modeling consists of two phases:
instrumenting and modeling. In the phase of instrument-
ing, benchmark matrices are generated according to GPU’s
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architecture features, then SpMV computations with these
benchmark matrices are conducted on the GPU to obtain
the execution times. The properties and the execution
times of benchmark matrices are recorded as the input
in the phase of modeling. In the phase of modeling, we
instantiate our parameterized performance models accord-
ing to the experimental results of benchmark matrices.
Finally, we utilize the instantiated models to estimate
SpMV kernel execution time for a target sparse matrix.

Our innovative performance modeling approach com-
bines two major techniques: profiling and analytics.
Dividing modeling into two phases follows the profile-
based technique; and it follows the analytical technique
to generate benchmark matrices and performance models
according to hardware properties. The integration of both
analytical and profile-based modeling has the following
advantages: 1) Compared to analytical models, our model
is easy to use. 2) Compared to traditional profile-based
models, which are usually inaccurate for parallel architec-
tures [2], our model can effectively capture the perfor-
mance effects of GPUs.

Based on our accurate SpMV performance modeling, to
report optimal solutions and optimize performance, we
propose a dynamic-programming based algorithm. Given
a target sparse matrix, we partition it into strips by row.
The algorithm may involve combining some neighboring
strips into matrix blocks. According to the predicted exe-
cution times for all matrix blocks, the algorithm runs in a
bottom-up way and searches all potential storage strate-
gies. If the SpMV performance can be improved when the
target matrix is partitioned, the optimal solution, includ-
ing the storage strategy, the storage format for each block,
and the predicted overall execution time, will be reported;
otherwise, for the entire matrix, a single storage format
with the least predicted execution time will be reported as
the optimal solution.

In this paper, we use SpMV CUDA kernels developed
by NVIDIA [1] and NVIDIA Tesla C2050 for our perfor-
mance modeling and experiments. According to our
experiments on 22 matrices (totally 82 test cases), our per-
formance modeling is very accurate. Specifically, the aver-
age performance differences between the predicted and
measured execution times are 6.3, 4.4, 2.2, and 4.7 percent
for CSR, ELL, COO, and HYB SpMV CUDA kernels,
respectively. The SpMV optimal solutions of the 22 matri-
ces are reported by our tool, where six matrices are sug-
gested to be partitioned to obtain their optimal solutions.
The performance improvement of our algorithm is also
effective. Specifically, the average performance improve-
ments of the optimal solution suggested by our tool are
41.1, 49.8, and 37.9 percent, compared to NVIDIA’s CSR,
COO, and HYB CUDA kernels, respectively.

The proposed approach in this paper is general, and
neither limited by GPU programming languages nor
restricted to specific GPU architectures. Specifically, our
modeling approach is applicable to both CUDA-based
and OpenCL-based SpMV kernels and can achieve
desired accuracy. For different SpMV kernels on the
same GPU, no matter CUDA-based or OpenCL-based,
only the execution times of benchmark matrices need to
be retested. For different GPU architectures, additionally,

the benchmark matrices also need to be regenerated.
However, these changes only affect the phase of instru-
menting. Our parameterized performance models can be
reused in the phase of modeling.

2 RELATED WORK

This paper extends our previous work [3] and [4]. The cur-
rent paper includes: a refined formalization for performance
modeling, a new dynamic-programming based algorithm
for SpMV optimization analysis, and an extensive experi-
ment for the accuracy of performance modeling and the
benefit of performance optimization.

Bolz et al. [5] proposed one of the first SpMV CUDA
[6] kernel implementations. Bell and Garland [1] imple-
mented SpMV CUDA kernels for some well-known
sparse matrix formats. Our modeling approach utilizes
their implementation. Optimizing SpMV computation has
been a challenge because SpMV computation is irregular
and the fine-grained parallelism is hard to explore [7].
Im et al. [8] described optimization techniques to improve
memory efficiency in SpMV for one or more vectors.
Baskaran and Bordawekar [9] proposed optimizations
including: synchronization-free parallelism, optimized
thread mapping, optimized off-chip memory access, and
data reuse, to speed up SpMV kernel. Demmel et al. [10]
explored AEOS approach to automate the kernel optimi-
zation. We [11] proposed an auto-tuning framework that
can automatically compute and select CUDA parameters
for SpMV to obtain the optimal performance on specific
GPUs. Vazquez et al. [12] proposed a new format, called
ELLR-T, to achieve high performance on GPUs. Monakov
et al. [13] proposed a sliced ELL format and used auto-
tuning to find the optimal configuration, for example, the
number of rows in a slice, to improve SpMV performance
on GPUs. Grewe and Lokhmotov [14] presented a frame-
work consisting of three components: a high-level repre-
sentation for describing sparse matrix formats, a compiler
for generating low-level code, and an automatic tuner, to
improve SpMV performance. Wang et al. [15] outlined
three optimizations including: optimized CSR storage for-
mat, optimized threads mapping, and avoid divergence
judgment. Pichel et al. [16] explored the performance
optimization of SpMV on GPUs using reordering techni-
ques. Yang et al. [17] presented a novel non-parametric
and self-tunable approach to data representation for com-
puting SpMV, particularly targeting sparse matrices rep-
resenting power-law graphs.

There are extensive work on performance models. Ryoo
et al. [18] introduced two metrics (i.e., efficiency and utiliza-
tion) to reduce optimization space. Their model focuses on
pruning optimization space to reduce tuning time for a pro-
gram. Choi et al. [19] designed a blocked ELLPACK format
and proposed a model to predict matrix-dependent tuning
parameters. Schaa and Kaeli [20] designed a methodology
to accurately predict the execution time for a multi-GPU
system according to that of a single GPU. Xu et al. [21] pro-
posed the optimized SpMV based on ELL format and a
SpMV CUDA performance model. Zhang and Owens [22]
adopted a microbenchmark-based approach to develop a
throughput model. Their model focuses on identifying
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performance bottlenecks and guiding programmers for
optimization; our model focuses on predicting the execution
time, which is similar to [23], [24], [25]. Baghsorkhi et al. [23]
presented a compiler-based GPU performance modeling
approach with accurate prediction using program analysis
and symbolic evaluation techniques. Hong and Kim [24]
proposed a simple analytical GPU model to estimate the
execution time of massively parallel programs. Their model
estimates the number of parallel memory requests by taking
into account the number of running threads and memory
bandwidth. Kothapalli et al. [25] presented a performance
model by combining several known models of parallel com-
putation: BSP, PRAM, and QRQW. However, their pro-
posed analytical models are based on the abstraction of
GPU architecture. Unlike these analytical performance
models, our model is based on both analytical and profile-
based modeling techniques.

3 SPMV PERFORMANCE MODELING

The modeling workflows for CSR & ELL, COO, and HYB
SpMV kernels are shown in Figs. 1, 2, and 3, respectively.
As introduced in Section 1, our performance modeling
consists of two phases:

Phase 1. Instrumenting:

� Compute the size of matrix strip (Section 3.1).

� Generate the benchmark matrices (Section 3.2).

� Test the execution times of the benchmark matrices
(Section 3.3).

� Compute the number of matrix strips and non-zero
elements per row (it is not applicable to COO) for a
target matrix (Section 3.4).

Phase 2. Modeling:

� Instantiate parameterized models according to the
experimental results of benchmark matrices.

� Estimate SpMV kernel execution times for a target
matrix using performance models (Section 3.5).

The symbols used in our model are shown in Table 1.

3.1 The Size of Matrix Strip (SS)

A strip is a maximum submatrix that can be handled by
a GPU with a full load of thread blocks within one itera-
tion [19]. For a large matrix, it may contain multiple
strips. The size of matrix strip is determined by the
physical limitations of GPUs (i.e., NVIDIA GPUs: #
Warps/Multiprocessor and # Threads/Multiprocessor; AMD

Fig. 1. Modeling workflow for SpMV CSR & ELL kernels.

Fig. 2. Modeling workflow for SpMV COO kernel.

Fig. 3. Modeling workflow for SpMV HYB kernel.

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



(ATI) GPUs: # Wavefronts/ComputeUnit and # WorkItems/
ComputeUnit) and SpMV kernel granularity, as shown in
Table 2. The modeling approach presented in the
remainder of Section 3 is general and can be applied to
both NVIDIA and AMD GPU architectures. For SpMV
CSR, ELL, and COO kernels, the sizes of matrix strip are
computed as follows:

SCSR ¼
NSM �Warps=Multiprocessor
NCU �Wavefronts=ComputeUnit:

�

SELL ¼ SCOO ¼
NSM � Threads=Multiprocessor
NCU �WorkItems=ComputeUnit:

�

3.2 The Benchmark Matrices

3.2.1 The Criteria for Generating Benchmark Matrices

� The number of rows (R): R ¼ S � I

- CSR: S ¼ SCSR, I 2 N
- ELL: S ¼ SELL, I 2 N
- COO: S ¼ SCOO, I 2 N

� The number of columns (C): C > PNZ is required

- The value of C does not affect the performance
since the sparse matrices are stored in com-
pressed formats.

� The number of non-zero elements per row (PNZ):

- CSR: PNZ 2 ½1; GM�sizeofðintÞ�ðRþ1Þ
ðsizeofðfloatÞþsizeofðintÞÞ�RÞ

- ELL: PNZ 2 ½1; GM
ðsizeofðfloatÞþsizeofðintÞÞ�RÞ

- COO: PNZ 2 ½1; GM
ðsizeofðfloatÞþ2�sizeofðintÞÞ�RÞ

In benchmark matrices, we let each row have the
same number of non-zero elements. In the above
equations, we assume that the non-zero elements
are in single-precision (float). For double-precision,
the equations are similar. The maximum PNZ is
derived according to the maximum non-zero ele-
ments that can be stored in the GPU global memory
in the corresponding sparse matrix format. The

actual values of PNZ used in our benchmarks are
introduced in Section 3.2.2.

� The value of each non-zero element is random.

3.2.2 The Experimental Setup

To obtain accurate performance models, we generate a
series of benchmark matrices. A benchmark matrix is deter-
mined by R and PNZ . Since R ¼ S � I, where S is fixed, we
just enumerate values of I and PNZ according to the above
criteria to obtain combinations. Each combination indicates
a benchmark matrix.

� The number of strips (I):

- CSR and ELL: Let I ¼ 1; 2; 3; . . . ; 10
In our experiment, the largest benchmark matrix
contains 10 strips, which is accurate enough to
measure the performance.

- COO: Let I ¼ 1
Since each non-zero element is handled by one
thread, we just need to increase the number of
non-zero elements per row for different bench-
mark matrices to duplicate strips instead of
increasing the values of the number of strips.

� The number of non-zero elements per row (PNZ):

- CSR and ELL: Let PNZ ¼ 4; 16 . . . 1024; 2048 . . .
- COO: Let PNZ ¼ 10; 20; 30 . . . 100
In our experiments, the above values are chosen
for generating linear relationships introduced in
Section 3.5.

3.3 The Execution Times of Benchmark Matrices (TT )

We remove the effect of long initialization delay and aver-
age the execution time of a benchmark matrix as follows,
where a and b are the number of executions, and a < b.

T ¼
Pb

j¼1 fððMR�C Þ�VC Þ �
Pa

j¼1 fððMR�C Þ�VC Þ

b� a
:

3.4 The Target Matrix

3.4.1 The Number of Strips (I)

Given a target matrix with NR rows and NNZ non-zero ele-
ments, the number of strips can be computed as follows:

ICSR ¼
NR

SCSR

� �

IELL ¼
NR

SELL

� �

ICOO ¼
NNZ

SCOO

� �

TABLE 1
Symbols Used in Our Performance Modeling

TABLE 2
SpMV Kernel Granularity
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3.4.2 Number of Non-Zero Elements Per Row (PNZ)

Let D be a set consisting of the number of non-zero elements
in each row of a target matrix.

� CSR: PNZ is set to be mode (in statistics) of a set D.

� ELL: PNZ is set to be maximum value of a set D.

3.5 Performance Modeling and Estimating

There exists relationships between the number of strips,
the number of non-zero elements per row, and the execu-
tion times of the benchmark matrices. Hence, we can esti-
mate the SpMV kernel execution time of a target matrix
according to these relationships.

3.5.1 CSR Kernel

Our method contains the following steps:
Step 1. Establish the following relationships:

� Relationship-1 (T ¼ EðxÞ): For a set of benchmark
matrices with the same number of strips (it can be
any arbitrary value within the range defined in Sec-
tion 3.2), we establish the relationship between the
number of non-zero elements per row (x) and the
execution time of the benchmark matrices (T ), as
shown in Figs. 4a and 4b.

� Relationship-2 (T 0 ¼ E0ðyÞ): For a set of benchmark
matrices with the same number of non-zero elements
per row, we establish the relationship between the
number of strips (y) and the execution time of the
benchmark matrices (T 0), as shown in Figs. 5a and 5b.

By studying the physical limitations of NVIDIA Tesla
C2050, we discovered that its number of max threads per
block, i.e., 1,024, is exactly a threshold: when the number
of non-zero elements per row is smaller or larger than it,
the linear relationships are different.

Step 2. Estimate the execution time of a target matrix:

� According to the derived number of non-zero ele-
ments per row of the target matrix (denoted by x0),
derive T1 by T1 ¼ Eðx0Þ from Relationship-1, and the
execution time T2 of any previously tested bench-
mark matrix M.

� According to the number of strips of the target
matrix (denoted by y0), derive T3 by T3 ¼ E0ðy0Þ
from a corresponding linear equation in Relation-
ship-2. Note that, the number of non-zero elements
per row of matrix M is set to be the number of non-
zero elements per row in Relationship-2.

� Estimate the execution time of the target matrix (T0)
by T0 ¼ ðT1=T2Þ � T3.

3.5.2 ELL Kernel

Our method works as follows:
Step 1. Establish the following relationships:

� Relationship-1 (T ¼ fðy1Þ � xþ gðy1Þ): For a set of
benchmark matrices with the same number of strips
(it can be any arbitrary value within the range
defined in Section 3.2 and denoted by y1), we estab-
lish the relationship between the number of non-
zero elements per row (x) and the execution time of
the benchmark matrices (T ), as shown in Fig. 4c.

Fig. 4. The number of non-zero elements per row versus the execution time when I is fixed ((a)(b): I ¼ 5, (c): I ¼ 1).

Fig. 5. The number of strips versus the execution time when PNZ is fixed ((a): PNZ ¼ 4, (b): PNZ ¼ 1;024, (c): PNZ ¼ 4).
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� Relationship-2 (fðyÞ): For sets of benchmark matri-
ces with different number of strips, we establish
the relationship between the number of strips of
the benchmark matrices (y) and the corresponding
coefficient of the linear equations (f) in Relation-
ship-1, as shown in Fig. 6.

� Relationship-3 (eðyÞ ¼ fðyÞ � x1 þ gðyÞ): For a set of
benchmark matrices with the same number of non-
zero elements per row (it can be any arbitrary value
within the range defined in Section 3.2 and denoted
by x1), we establish the relationship between the
number of strips (y) and the execution time of the
benchmark matrices (e), as shown in Fig. 5c. Thus,
gðyÞ ¼ eðyÞ � fðyÞ � x1.

Step 2. Estimate the execution time of a target matrix:

� Given a target matrix, in order to estimate its execu-
tion time, we need to obtain the coefficient fðY Þ and
the intercept gðY Þ of the linear equation, where Y is
the number of strips of the target matrix. This can be
done as follows:

- According to the number of strips (Y ) of the tar-
get matrix, obtain the coefficient of the linear
equation from Relationship-2, i.e., fðY Þ.

- To obtain the intercept of the linear equation of
the target matrix (i.e., gðY Þ), we find the execu-
tion time (e) from Relationship-3 according to
Y . Thus, gðY Þ ¼ eðY Þ � fðY Þ � Y .

� Estimate the execution time of the target matrix
(T0) by T0 ¼ fðY Þ �X þ gðY Þ, where X and Y are
the number of non-zero elements per row and the
number of strips of the target matrix, respectively.

3.5.3 COO Kernel

Our method contains the following steps:
Step 1. Establish the following relationships:

� Relationship-1 (T ¼ EðxÞ): We establish the rela-
tionship between the number of strips (x) and the
execution time of the benchmark matrices (T ), as
shown in Fig. 7.

Step 2. Estimate the execution time of a target matrix:

� Count the total number of non-zero elements of the
target matrix, then calculate the number of strips (x0)
according to Section 3.4.1.

� Estimate the execution time of the target matrix (T0)
using Relationship-1 by T0 ¼ Eðx0Þ.

3.5.4 HYB Kernel

Our method works as follows:
Step 1. Establish the following relationships:

� Since HYB kernel is the combination of ELL and
COO kernels, as shown in Fig. 3, we can reuse the
relationships in Sections 3.5.2 and 3.5.3.

Step 2. Estimate the execution time of a target matrix:

� Compute HYB threshold [1] to divide the target
matrix into two parts: ELL and COO.

� Count the total number of non-zero elements of COO
part of the target matrix.

� Calculate the number of strips of ELL (x1) and COO
parts (x2) of the target matrix, respectively.

� Use HYB threshold (z0) as the number of non-zero
elements per row of ELL part (y1) of the target matrix
by y1 ¼ z0.

� Estimate the execution times of ELL (T1) and COO
parts (T2) of the target matrix by T1 ¼ fðy1Þ � x1þ
gðy1Þ and T2 ¼ Eðx2Þ, respectively.

� Estimate the execution time of the target matrix (T0)
by T0 ¼ T1 þ T2.

4 SPMV OPTIMIZATION ANALYSIS

Based on the accurate performance modeling, we design
a dynamic-programming based SpMV optimal solution
auto-selection algorithm to automatically report an
SpMV optimal solution for a given target sparse matrix.
Specifically, given a target matrix, our algorithm searches
its all potential storage strategies and checks whether the
SpMV performance can be improved when the target
matrix is partitioned into more than one matrix blocks
and each one is stored in an appropriate storage format.
If such a situation exists, the optimal solution, including
the storage strategy, the storage format for each matrix
block, as well as the predicted overall execution time,
will be reported by the algorithm; otherwise, for the
entire matrix, if a single storage format has the best
SpMV performance, such a storage format, as well as its
corresponding predicted overall execution time, will be
reported as the optimal solution.

Fig. 6. The number of strips versus the linear coefficient (ELL).
Fig. 7. The number of strips versus the execution time (COO).

GUO ET AL.: A PERFORMANCE MODELING AND OPTIMIZATION ANALYSIS TOOL FOR SPARSE MATRIX-VECTOR MULTIPLICATION ON... 1117



Recall a target matrix can be partitioned into strips by
rows. In the dynamic-programming based SpMV optimal
solution auto-selection algorithm, one matrix block may
contain one or more neighboring strips. Given a matrix
M, let N and ½i; i� denote its number of strips and the ith

strip, respectively. Thus, the matrix block ½i; j� consists of
continuous #ðj� iþ 1Þ matrix strip(s), i.e., ½i; i�, ½iþ 1;
iþ 1�; . . . ; ½j; j�, where i ¼ 1; 2; . . . ; N and j ¼ i; iþ 1; . . . ;
N . Given a matrix with N strips, there are at most 1=2�
½N � ðN þ 1Þ� matrix blocks in total. In our experiments,
we adopt 672 rows (i.e., SCSR for NVIDIA Tesla C2050)
as the size of a strip. However, if the number of rows of
a target matrix is very large, instead, we can use
672� 32 rows (i.e., SELL for NVIDIA Tesla C2050) as an
alternative size to avoid huge number of matrix blocks.
For each matrix block ½i; j�, we first predict the kernel
execution times for SpMV CSR, ELL, COO, and HYB
kernels by our performance modeling, respectively.
Here, each matrix block is used as a target matrix in the
performance modeling approach presented in Section 3.
Then, we store the least predicted execution time and its
corresponding storage format into E½i; j� and F ½i; j�,
respectively, which will be used as input of the algo-
rithm to report an SpMV optimal solution for the entire
target matrix.

The recursive equation is shown in Fig. 8. It defines
the value of an optimal solution recursively in terms of
the optimal solution to subproblems. Deriving recursive
solution is an important step in developing a dynamic-
programming based algorithm. Let T ½1; j� denote the pre-
dicted best performance of #j matrix strips starting from
½1; 1� to ½j; j�. To keep track of how to construct an opti-
mal solution, we define S½1; j� to store the value k at
which #j matrix strips are split into two matrix blocks
such that T ½1; j� ¼ T ½1; k� þ E½kþ 1; j�.

Based on the recursive equation, we could easily write
an exponential-time recursive algorithm to compute opti-
mal solution. However, the recursive algorithm repeat-
edly solves each subproblem, which involves lots of
redundant computations. For example, in the recursive
tree for computing T ½1; 4�, as shown in Fig. 9, T ½1; 2� is
computed twice and T ½1; 1� is computed four times. The

total time to compute T ½1; N� is Oð2N�1Þ, which is expo-
nential in N . The cost of such a recursive algorithm is
very expensive when #N becomes large.

Fig. 11 shows our dynamic-programming based SpMV
optimal solution auto-selection algorithm. The procedure
SPMV_OPTIMAL_SOLUTION works as follows: Lines
ð01Þ-ð02Þ compute T ½1; 1� and S½1; 1�. Then the for loop of
lines ð03Þ-ð13Þ computes T ½1; j� and S½1; j� for j ¼ 2;
3; . . . ; N . Initially, T ½1; j� and S½1; j� are set to be E½1; j�
and j in lines ð04Þ-ð05Þ, respectively. Then, lines ð06Þ-ð12Þ
replace the value of T ½1; j� and S½1; j� with the minimum
value of T ½1; k� þ E½kþ 1; j� and its corresponding k,

Fig. 8. The recursive equation for computing T ½1; j�.

Fig. 9. The recursive tree for computing T ½1; 4�.

Fig. 10. Eight possible strategies for computing T ½1; 4�.

Fig. 11. SpMV optimal solution auto-selection algorithm.
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respectively, if the minimum value of T ½1; k� þ E½kþ 1; j�
is less than the value of T ½1; j�. Finally, lines ð14Þ-ð15Þ print
the best performance T ½1; N� and its corresponding stor-
age strategy, using the procedure PRINT_OPTIMAL_

STRATEGY. The time complexity of the entire procedure
SPMV_OPTIMAL_SOLUTION is OðN2Þ.

Compared to the recursive algorithm, which is in top-
down fashion, the bottom-up dynamic-programming

Fig. 12. The demo diagram of SpMV optimal solution auto-selection algorithm for computing T ½1; 4�.

TABLE 3
Optimal Solutions of 22 Sparse Matrices

Fig. 13. Accuracy evaluation on CSR kernel.
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based algorithm is more efficient because it solves each
subproblem exactly once. Fig. 12 shows an example
of computing T ½1; 4� using the bottom-up dynamic-
programming based algorithm. As shown in Figs. 12a,
12b, and 12c, before computing T ½1; 4�, the values of
T ½1; 1�, T ½1; 2�, and T ½1; 3� should be computed exactly
once and stored in table T . Hence, we can determine the
value of T ½1; 4� by looking up table T , as shown in
Fig. 12d. Compared to the enumerative algorithm, the
dynamic-programming based algorithm is more efficient
since it searches for the optimal solution from N parti-
tioning strategies for a matrix with #N matrix strips,
instead of searching all of 2N�1 possible strategies. For
example, given T ½1; 1�, T ½1; 2�, and T ½1; 3�, to compute
T ½1; 4�, the dynamic-programming based algorithm only
needs to check four partitioning strategies, i.e.,
T ½1; 1� þE½2; 4�, T ½1; 2� þ E½3; 4�, T ½1; 3� þE½4; 4�, and
E½1; 4�, as shown at the bottom of Fig. 12d, instead of
check all of eight possible strategies, as shown in Fig. 10.

5 EXPERIMENTAL EVALUATION

Our experimental evaluation focuses on two aspects:
1) the accuracy of performance modeling; 2) the benefit of
SpMV optimization analysis tool. Our experiments are

performed on NVIDIA Tesla C2050 with 3 GB global
memory. The version of CUDA library we use in our
experiments is 4.1. We evaluate our tool on 22 matrices
from the sparse matrices collection [26], [27], as shown in
Table 3. All SpMV CUDA kernels are based on NVIDIA’s
implementation [1]. However, the experiments of ELL
SpMV CUDA kernel are conducted only on 10 out of 22
sparse matrices on NVIDIA Tesla C2050 because of the
limitation of “num cols per row” in the code.

5.1 Accuracy of Performance Modeling

The accuracy of performance modeling is critical since it
is the basis for accurately reporting optimal solutions
and performance optimization. To evaluate it, we focus
on two aspects: the execution time and the performance
difference rate. Figs. 13, 14, 15, and 16 show the compar-
isons between the measured execution times of CSR,
ELL, COO, and HYB SpMV kernels and the times pre-
dicted by our performance models, respectively. The
measured execution times are obtained by averaging the
total measured execution times of the SpMV kernel for
500 times. Note that, in our experiments, the GPU’s
warm up time is excluded. Therefore, the measured exe-
cution times are relative stable and accurate. The mea-
sured and predicted execution times of optimal solutions
(denoted by OPT, which is elaborated in Section 5.2) are
shown in Fig. 18. Fig. 17 shows the absolute performance
difference percentage rates (i.e., the difference between
the predicted and measured execution times divided by
measured execution times). There are totally 82 test
cases, which include the evaluation of CSR, COO, and
HYB kernels on a collection of 22 sparse matrices, the
evaluation of ELL kernel on 10 sparse matrices within
the collection, and the evaluation of optimal solutions on
six sparse matrices within the collection. The execution
times predicted by our model match the measured times
very well. Specifically, for 77 out of 82 test cases, the per-
formance differences between the predicted and mea-
sured execution times are less than 9 percent. For the
rest five test cases, the differences are between 9 and 10

Fig. 14. Accuracy evaluation on ELL kernel.

Fig. 15. Accuracy evaluation on COO kernel.
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percent. For CSR, ELL, COO, and HYB SpMV kernels,
the average differences are 6.3, 4.4, 2.2, and 4.7 percent,
respectively. For the optimal solutions, the average dif-
ference is 5.1 percent.

5.2 Benefit of SpMV Optimization Analysis Tool

5.2.1 Reporting Optimal Solutions

Table 3 shows OPT (i.e., optimal storage strategy and
storage format(s)) for 22 target matrices, which are pre-
dicted by the SpMV optimal solution auto-selection algo-
rithm in Fig. 11. In the reported optimal solutions,
matrices “finan512”, “nasasrb”, “hcircuit”, “OPF_6000”,
“OPF_10000”, and “FEM/Accelerator” are partitioned
into two blocks. For example, matrix “OPF_10000” has
66 matrix strips in total. Our tool suggests partitioning it
into two blocks: [1, 59] and [60, 66], where the partition-
ing position is the last row of the 59th matrix strip. In
addition, the optimal formats reported by our tool for

Fig. 16. Accuracy evaluation on HYB kernel.

Fig. 17. Comparision of performance difference rates.

Fig. 18. Accuracy evaluation on OPT.
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blocks [1, 59] and [60, 66] are ELL and CSR, respectively.
Except for the above six matrices, our tool reports that all
other matrices only have a single storage format as their
own optimal solutions. Specifically, for matrices “Dense”,
“Protein”, “FEM/Harbor”, and “LP”, the optimal storage
format is CSR; for matrix “neos”, “FEM/Ship”, “Wind
Tunnel”, “Economics”, “Circuit”, and “Webbase”, it is
HYB; for matrices “linverse”, “FEM/Spheres”, “QCD”,
and “Epidemiology”, it is ELL or HYB (denoted by ELL/
HYB); for matrices “ex11” and “FEM/Cantilever”, it is
ELL. Note that, for matrix “FEM/Ship”, because the per-
formance difference between the measured execution
times of ELL and HYB kernels is very small, and addi-
tionally, there exists small difference between the mea-
sured and predicted execution times, although its optimal
storage format reported by our tool is HYB, ELL has the
best performance in the real execution. However, the real
performance difference for ELL and HYB is very small,
i.e., 5.5 versus 6.2 percent.

5.2.2 Optimizing SpMV Performance

Fig. 19 shows the performance improvement evaluation on
matrices “finan512,” “nasasrb,” “hcircuit,” “OPF_6000,”
“OPF_10000,” and “FEM/Accelerator” by comparing the
measured execution times of optimal solutions and CSR,
COO, and HYB kernels. For example, the optimal solution
on matrix “hcircuit” can achieve 62.3, 34.0, and 28.4 percent
performance improvement, respectively, compared to the
measured execution times of CSR, COO, and HYB kernels.
Generally, the average performance improvements on six
matrices are 41.1, 49.8, and 37.9 percent, respectively.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a performance modeling and
optimization analysis tool to predict and optimize
SpMV performance on GPUs. Our tool includes four
performance models, CSR, ELL, COO, and HYB models,
to accurately predict the execution times of SpMV ker-
nels by utilizing an integrated analytical and profile-
based performance modeling approach. It also includes
an efficient dynamic-programming based SpMV optimal
solution auto-selection algorithm to automatically report
an SpMV optimal solution (i.e., optimal storage strategy,

storage format(s), and execution time) for a target
matrix. The proposed approach in our tool is general,
and neither limited by GPU programming languages
nor restricted to specific GPU architectures. In the future
work, we will extend the current SpMV performance
modeling to handle multi-GPU SpMV kernels.
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