
A Model-Driven Partitioning and Auto-tuning Integrated
Framework for Sparse Matrix-Vector Multiplication on

GPUs∗

Ping Guo, He Huang, Qichang Chen,
Liqiang Wang

Department of Computer Science
University of Wyoming, USA

{pguo, hhuang1, qchen2, lwang7}@uwyo.edu

En-Jui Lee, Po Chen
Department of Geology and Geophysics

University of Wyoming, USA
{elee8, pchen}@uwyo.edu

ABSTRACT
Sparse Matrix-Vector Multiplication (SpMV) is very com-
mon to scientific computing. The Graphics Processing Unit
(GPU) has recently emerged as a high-performance comput-
ing platform due to its massive processing capability. This
paper presents an innovative performance-model driven ap-
proach for partitioning sparse matrix into appropriate for-
mats, and auto-tuning configurations of CUDA kernels to
improve the performance of SpMV on GPUs. This paper
makes the following contributions: (1) Propose an empirical
CUDA performance model to predict the execution time of
SpMV CUDA kernels. (2) Design and implement a model-
driven partitioning framework to predict how to partition
the target sparse matrix into one or more partitions and
transform each partition into appropriate storage format,
which is based on the fact that the different storage formats
of sparse matrix can significantly affect the performance
of SpMV. (3) Integrate the model-driven partitioning with
our previous auto-tuning framework to automatically ad-
just CUDA-specific parameters to optimize performance on
specific GPUs. Compared to the NVIDIA’s existing imple-
mentations, our approach shows a substantial performance
improvement. It has 222%, 197%, and 33% performance im-
provement on the average for CSR vector kernel, ELL kernel
and HYB kernel, respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.2.8
[Software Engineering]: Metrics—performance measures

∗The work was supported in part by NSF under Grants
0941735, 0930040, CAREER-1054834, and by the Gradu-
ate Assistantship of the School of Energy Resources at the
University of Wyoming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TeraGrid ’11, July 18-21, 2011, Salt Lake City, Utah, USA
Copyright 2011 ACM 978-1-4503-0888-5/11/07 ...$10.00.

General Terms
Measurement, Performance

Keywords
GPU, performance modeling, auto-tuning, Sparse Matrix-
Vector Multiplication

1. INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is an essen-

tial operation in solving linear systems and partial differ-
ential equations in many scientific and engineering applica-
tions. For many applications, the matrices can be very large
and sparse. Optimizing SpMV performance is a challenging
problem because data access locality is often not observed
and fine-grained loop parallelism is hard to explore [1]. Re-
searchers have investigated many ways to speed up SpMV
using hardware advances, such as multi-core processors [2]
and many-core Graphics Processing Units (GPUs) [3].

GPUs are specifically designed to provide high throughput
on parallel computations using many-core chips. GPU sup-
ports graphics-related computations, which can be adopted
for numerical analysis in scientific computations. Due to
the high computation power, GPU has become an attractive
coprocessor for general purpose computing. GPGPU (Gen-
eral Purpose Computation on Graphics Processing Units) is
especially well-suited to address problems that can be ex-
pressed as data-parallel computations, i.e., the same pro-
gram is executed on many data elements in parallel. Be-
cause the same program is executed on many data elements
and the kernel has high arithmetic intensity, the memory ac-
cess latency can be hidden with calculations instead of big
data caches. The kernel does not automatically have high
arithmetic intensity. It should have high intensity to mask
data load latency. If the kernel is not arithmetically intense,
the load latency will be exposed and kernel performance will
suffer.

Recently, Bell and Garland [3], and Baskaran and Bor-
dawekar [4] proposed and implemented SpMV kernels using
CUDA [5] for different sparse matrix formats, including DIA,
ELLPACK, CSR, COO, and a hybrid ELL/COO format.
The information in detail about these matrix formats is in-
troduced in Section 3. Based on our experiments on unstruc-
tured sparse matrices, CSR usually has the best performance
on sparse matrices with large number of non-zero elements.
ELLPACK is usually good for a sparse matrix with nearly

Run predefined

matrix benchmark to

obtain a specific

performance model

for the current GPU

Cutomized SpMV

performace model

for specific GPU

Permute all

partitions and find

the one with best

performance

Sorted matrix

for compute

Partitioned

matrix

Autotune

performance by

permutating related

CUDA kernel

parameters

Sparse matrix

for compute

Reorder the

result as needed

Figure 1: The workflow of our tool to automatically partition and tune SpMV CUDA kernels. A rectangle
represents a certain operation in our framework; all the rest represent the input matrix or intermediate
results.

equal and small number of non-zero elements per row. The
hybrid ELL/COO format has better performance when the
matrix has small number of non-zero elements per row, and
many rows are nearly equal but there may be few irregular
rows with much larger non-zero elements. The above ob-
servation motivates us to design an automatic approach to
improve SpMV performance by partitioning and formatting
sparse matrices. Specifically, we design a GPU-specific per-
formance model to estimate the running time for a matrix in
a specific storage format. Thus, given a sparse matrix, we
may partition it, then predict the execution time for each
matrix strip in different formats. Hence, we are able to ob-
tain the optimal partitioning and formatting to optimize the
performance.

The workflow of our tool is shown in Figure 1. Specifi-
cally, it contains the following steps. Given a specific GPU,
we execute a series of matrix benchmarks predefined in our
performance model. The experimental results are used to in-
stantiate the parameters of our performance model. Thus,
the customized performance model can be used for predict-
ing the execution time of SpMV in CSR, ELL, and HYB for-
mats on the given GPU. Given a matrix, we first sort it based
on the number of non-zero elements per row. Then we use
the above performance model to find an optimal partitioning
and transform each partition into a specific sparse storage
format. During the computation, the tool automatically ad-
justs CUDA parameters (e.g., Num Threads, Block Size,
and Warp size) to optimize performance. The final results
can be adjusted back as needed according to the original or-
der of rows. Actually, this step is often unnecessary because
we usually do not care about the order of row, where a row
often represents an equation in the linear system.

This paper makes the following contributions: (1) Propose
an empirical CUDA performance model to predict the exe-
cution time of SpMV CUDA kernels. (2) Design a model-
driven partitioning framework to predict how to partition
the target sparse matrix into one or more partitions and
transform each partition into appropriate storage format,
which is based on the fact that the different storage for-
mats of sparse matrix can significantly affect the perfor-
mance of SpMV. (3) Integrate the model-driven partitioning
with our previous auto-tuning framework to automatically
adjust CUDA-specific parameters to optimize performance
on specific GPUs. We evaluated our implementation on a
collection of widely-used sparse matrix benchmarks. Com-
pared to NVIDIA’s CSR, ELL, and HYB kernels [3], our
approach has 222%, 197%, and 33% performance improve-
ment on the average, respectively.

The rest of this paper is organized as follows: Section 2
surveys the related work. Section 3 discusses the widely-
used space-efficient sparse matrix formats including CSR,
COO, ELL, as well as HYB format. Section 4 introduces our
empirical GPU performance model. Section 5 discusses how
to find an optimal matrix partitioning. Section 6 presents
how to auto-tune the parameters to optimize performance
of SpMV. Section 7 evaluates the performance of our tool on
a collection of benchmarks. Section 8 gives the conclusion
and future work.

2. RELATED WORK
There are extensive work on SpMV optimization and tun-

ing. Interested readers may refer to some surveys [6, 7].
As an emerging powerful massively parallel computing

platform, GPU has also been used to speed up SpMV. Bolz
et al. first applied GPU computing to SpMV [8]. Their
experiment shows that the performance of their implemen-
tation on NVIDIA’s GeForce FX is nearly two times faster
than the execution on a 3GHz Pentium 4.

The most related work to this paper are [9] and [3]. Bell
and Garland implemented SpMV kernel in CUDA for differ-
ent sparse matrix formats, including DIA, ELLPACK, CSR,
COO, and HYB format [3]. Our SpMV kernels are based
on their implementation [3, 10]. Choi proposed and im-
plemented a blocked ELLPACK (BELLPACK) storage for-
mats and a performance model [9]. By directly modeling the
structure of the streaming multiprocessors (SMs), the GPU-
specific execution time model can accurately predict suitable
tuning parameters for SpMV using the BELLPACK format.
Compared to it, our model can handle more storage formats
and guide matrix partitioning and auto-tune GPU runtime
parameters.

Due to the hardware characteristics and restrictions, the
performance of CUDA kernels is instable. Auto-tuning tech-
nique could be applied to optimize the performance. Nukada
and Matsuoka [11] presented an auto-tuning framework that
can automatically choose the optimal number of threads for
the CUDA-based 3-D FFT library by exhausting the state
space of all possible numbers of threads to find out the best
number of threads. In addition, they also optimized mem-
ory access by inserting padding to 3-D FFT matrices to re-
duce the memory bank conflicts. Their experiments show
that the approach achieves at least 5.0 times speedup over
the NVIDIA’s CUFFT library. Our approach can not only
find out an optimal GPU runtime configuration, such as the
number of threads, but also find out an optimal partition
and storage format.

2 5 0 3

0 6 1 0

8 2 7 9

7 4 0 0

M

2 5 3 *

6 1 * *

8 2 7 9

7 4 * *

0 1 3 *

1 2 * *

0 1 2 3

0 1 * *

data indices

7 4 0 0

0 8 0 4

7 4 * *

8 4 * *

(a) An example Matrix

0 1 * *

1 3 * *

(b) The ELL Storage Representation

ptr=[0 3 5 9 11 13]

indices=[0 1 3 1 2 0 1 2 3 0 1 1 3]

data [2 5 3 6 1 8 2 7 9 7 4 8 4]

row=[0 0 0 1 1 2 2 2 2 3 3 4 4]

indices=[0 1 3 1 2 0 1 2 3 0 1 1 3]

data=[2 5 3 6 1 8 2 7 9 7 4 8 4]data=[2 5 3 6 1 8 2 7 9 7 4 8 4]

(c) The CSR Storage Representation

data=[2 5 3 6 1 8 2 7 9 7 4 8 4]

(d) The COO Storage Representation

Figure 2: Four sparse matrix storage formats. ∗
denotes the padding zero.

3. SPARSE MATRIX COMPRESSION FOR-
MAT

SpMV is widely used for many scientific and engineering
computing applications. We investigate four major formats
for unstructured sparse matrix, i.e., COO, CSR, ELL, and
HYB (ELL/COO). An example matrix with the four formats
is illustrated in Figure 2.

• Coordinate Storage (COO) is the most simple and in-
tuitive storage scheme to store a sparse matrix in com-
puter memory. It only saves the non-zero elements and
the coordinates (row index and column index) of each
non-zero element.

• Compressed Sparse Row (CSR) (also known as Com-
pressed Row Storage, i.e., CRS) is the most popu-
lar format used in SpMV operations due to its space-
efficiency and fast access latency. The CSR format
consists of three arrays: ptr, indices, and data. The
integer array ptr stores row pointers to the offset of
each row. The integer array indices stores the column
indices of the non-zero elements. The array data stores
the values of non-zero elements. Assume a matrix has
the dimension of M × N and the number of non-zero
elements is P , then the length of ptr is M + 1 and
indices and data has the same length P .

• ELLPACK (ELL) (also known as ITPACK) stores a
sparse matrix in two arrays: indices and data. The
integer array indices stores the column indices of each
non-zero element. The array data stores the non-zero
values. Assume a matrix has the dimension of M ×N
and the maximum number of non-zero elements in a
single row is Q, then the arrays indices and data have
the same size of M ×Q because those rows with fewer
non-zero elements than Q are padded with zeros. If the
number of non-zero elements on the rows is relatively
small and average, ELL may have better performance
than CSR. If the number of non-zeros of different rows
varies significantly, the performance of ELL is worse
than CSR.

• Hybrid ELL/COO (HYB) stores the majority of non-
zero elements (on the left) in ELL format and the re-
maining non-zero elements (on the right) in COO for-
mat [3]. Specifically, the typical number of non-zero
elements per row are stored in the ELL format and
the remaining elements of exceptional rows are stored
in the COO format. [3] computes a histogram of the

row sizes and determines a threshold value. All non-
zero elements at the columns on the left of the thresh-
old value are in the ELL format and the rest non-zero
elements are in the COO format.

4. AN EMPIRICAL CUDA PERFORMANCE
MODEL FOR SPMV

4.1 Overview
Different from host memory, GPU has a very complex

hierarchy of memories. The techniques of this paper are
based on NVIDIA’s GPUs, which contain global memory,
constant memory, texture memory, shared memory, and reg-
isters. Each memory hierarchy has different size and differ-
ent access control policy. Global memory, constant memory,
and texture memory are relatively abundant but slow com-
pared to shared memory and registers. They are visible for
all threads. Shared memory is relatively small but fast. It
can be accessed by threads within the same block. Reg-
isters are even smaller and work as the local memory for
threads. The different sizes and access control policies of
the hierarchical memories complicate the prediction of the
execution time of SpMV CUDA kernel. In this paper, we
assume that global memory, constant memory, and texture
memory are abundant enough, and only the size of shared
memory and register limit the numbers of threads, warps,
and blocks during the execution of CUDA kernels.

Our model is specialized to estimate the execution time for
commonly used SpMV CUDA kernels on NVIDIA’s GPUs.
In the paper, we focus on very large sparse matrices and
the time we calculate in this paper is the statistical average
time. The workflow of our model is as follows:

• Obtain hardware information of GPU according to its
compute capability. (See Section 4.2.1.)

• Compute the number of active thread blocks for a
streaming multiprocessor. (See Section 4.2.2.)

• Compute the total number of thread blocks for the
target matrix. (See Section 4.2.3.)

• Compute the number of iterations. (See Section 4.2.4.)

• Choose several sample matrices and test their execu-
tion time. Then obtain the relationship between the
number of non-zero elements and the execution time.
(See Section 4.3.1.)

• Partition the target matrix into strips. For each matrix
strip, appropriately enlarge the number of non-zero el-
ements for some rows. Then estimate the execution
time of each matrix strip. (See Section 4.3.1.)

• The total execution time of the target matrix is the
sum of each strip’s estimated execution time. (See
Section 4.3.1.)

4.2 GPU memory limitations
The symbols and functions used in our model are shown

in Table 1.

Table 1: Symbols and functions used in our model

wpTB The number of warps per thread block

thpW The warp size

thpTB The block size

NTB The number of thread blocks

P The number of active thread blocks per SM

M The number of SMs

I The total number of iterations

t(i) The execution time of the ith iteration

tSM PTB(i) The execution time for one SM executes P
thread blocks in the ith iteration

φr×c() The execution time for a sample matrix
with r rows and c columns

α, β The arbitrary integers

c The number of columns in a sample matrix

tSample CSR The execution time of sample matrix in
CSR format

Table 2: Symbols of resource usage in .cubin file

Registers / Block reg

Shared Memory / Block (bytes) smem

4.2.1 Basic information of GPUs
The kernel specific information can be obtained by com-

piling and analyzing the kernel code. The block size (thpTB)
is required to be specified before invoking the SpMV kernel.
We can obtain the value of Registers / Thread and Shared
Memory / Block by using “-cubin” option when compiling
the kernel. Their corresponding symbols in the “code” sec-
tion of .cubin file are listed in Table 2. The value of Registers
/ Block can be obtained from multiplying the value of Reg-
isters / Thread by the value of block size (thpTB).

The physical limitations of a specific GPU are determined
by its compute capability. For NVIDIA’s GeForce GTX 295,
its compute capability is 1.3. The physical limitations of
NVIDIA’s GeForce GTX 295 are listed in Table 3.

4.2.2 The number of active thread blocks per SM
The number of active thread blocks is determined by three

factors: the number of active warps, the number of registers
and the size of shared memory.

The number of active thread blocks, denoted by TBSM ,
is determined by the number of active warps.

Table 3: Physical limitations of GPUs with compute
capability 1.3

Threads / Warp 32

Warps / Multiprocessor 32

Threads / Multiprocessor 1024

Thread Blocks / Multiprocessor 8

Total # of 32bit registers / Multiprocessor 16384

Shared Memory / Multiprocessor (bytes) 16384

Table 4: SpMV kernel granularity

Kernel Granularity

CSR (vector) One warp per row

ELL One thread per row

TBSM = bWarps/Multiprocessor

wpTB
c

The number of active thread blocks, denoted by TBregis,
is determined by the number of registers.

TBregis = bTotal # of 32bit registers/Multiprocessor

Registers/Block
c

The number of active thread blocks, denoted by TBshared mem,
is determined by the size of shared memory.

TBshared mem = bSharedMemory/Multiprocessor

SharedMemory/Block
c

The number of active thread blocks, denoted by P , is the
minimum of the above three values.

P = MIN{TBSM , TBregis, TBshared mem}
4.2.3 The total number of thread blocks

We assume the target matrix has m rows. The SpMV
kernel granularity is shown in Table 4.

For CSR vector kernel, one warp (32 threads) is responsi-
ble for computing the multiplication of one row of the matrix
and the vector. Thus, the total number of required warps is
equal to the number of rows of the matrix. Hence, the total
number of thread blocks for CSR vector kernel is,

NTB = dm× thpW

thpTB
e (CSR)

For ELL kernel, one thread corresponds to one row of the
matrix. Thus, the total number of threads required by ELL
kernel is equal to the number of rows in the matrix. Hence,
the total number of thread blocks for ELL kernel is,

NTB = d m

thpTB
e (ELL)

4.2.4 The number of iterations
Assume that the large-scale target matrix can not be pro-

cessed completely by a GPU within one iteration. Instead,
the matrix is processed by several iterations.

The total number of iterations is,

I = d NTB

P ×M
e

4.3 Estimation of execution time
As all the SMs execute concurrently, we assume that all

the SMs finish each iteration at the same time approxi-
mately. We use one SM’s execution time to represent the
entire GPU’s execution time. Hence, the total execution
time of the target matrix, denoted by T , is equivalent to the
sum of one SM’s execution time in each iteration.

T =

I∑
i=1

t(i) (*)

In each iteration, each SM holds P thread blocks. Thus,
the execution time is equivalent to the time that one SM
executes P thread blocks.

t(i) = tSM PTB(i)

where tSM PTB(i) is the time that one SM executes P
thread blocks in the ith iteration.

To estimate the execution time of each iteration, we first
evaluate some sample matrices which are similar to the ma-
trix strip of the target matrix executed on GPUs in each
iteration. Then we estimate the execution time of the ma-
trix strip of the target matrix in each iteration according
to those sample matrices. Finally, we use equation (*) to
obtain the total execution time.

By analyzing the kernel code, we find that the time com-
plexity of CSR vector kernel is proportional to the number
of operations. Furthermore, the number of operations is also
proportional to the number of non-zero elements of the ma-
trix. Therefore, the execution time should be proportional to
the number of non-zero elements of the matrix if the number
of non-zero elements is large enough; otherwise the compute
capability of GPU is not fully employed. For ELL kernel,
the execution time is closely related to both the number of
non-zero elements per row and the number of rows. Accord-
ing to [3], one thread corresponds to one non-zero element
in COO kernel, hence, the execution time is proportional to
the total number of non-zero elements of the matrix.

4.3.1 Estimation for CSR vector kernel
The principle of selecting sample matrices for CSR vector

kernel is as follows:

• The sample matrices should utilize all the active thread
blocks in all SMs, which ensures that the GPU’s com-
pute capability is fully utilized. For CSR vector ker-
nel, one warp corresponds to one row, so the number
of rows of the sample matrix is (M · P · wpTB).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12
x 10

5

nonzeros per row

ex
ec

. t
im

e
(n

s)

sample

Figure 3: Number of non-zero elements per row vs
execution time of sample matrices (CSR).

• To find out the threshold value of the linear relation
between the execution time and the number of non-
zero elements, the number of non-zero elements per
row should be the same as a sample matrix.

To effectively avoid the affection of a long initialization
delay and accurately measure the execution time of a sample
matrix, we first invoke the SpMV kernel β times, where β
is an arbitrary integer between 2 and 100. Then we invoke
the SpMV kernel for another α times, where α = 1, 2, 3 · · · .
Note that α < β is required.

The execution time of the sample matrix for CSR is

tSample CSR =

∑β
j=1 φ(M·P ·wpT B)×c −

∑α
j=1 φ(M·P ·wpT B)×c

β − α

where wpTB =
thpT B

thpW
, and φ indicates the execution time

of the sample matrix and its subscript indicates the dimen-
sion of the sample matrix.

The relation between the number of non-zero elements per
row and the execution time of the sample matrices is shown
in Figure 3. We find that there exists a threshold: when
the number of non-zero elements in each row of the sample
matrices is smaller than the threshold, the relationship is
nearly conic curve (these nodes are crowded at the beginning
of Figure 3); while the number is larger than the threshold,
the relationship is nearly linear. Therefore, we use a conic
curve and a linear line to fit these two parts respectively.

The linear relation between the total number of non-zero
elements of the sample matrices and the corresponding exe-
cution time is illustrated in Figure 4. Here the total number
of non-zeros in the sample matrix must be greater than a
minimal value, which is calculated from the threshold ob-
tained from Figure 3.

The steps to estimate the execution time are as follows:

• Partition: We partition our target matrix into matrix
strips by row. The number of rows for each strip, (M ·
P · wpTB), is the same as that of sample matrices.

• Extend and Count: We measure the execution time of
each matrix strip to estimate execution time in each

0 1 2 3 4 5 6 7 8 9

x 10
6

−2

0

2

4

6

8

10

12
x 10

5

total number of nonzeros

ex
ec

. t
im

e
(n

s)

fitting
sample

Figure 4: Fitting result for sample matrices (CSR).

iteration. For the matrix strip in each iteration, we ex-
tend the rows, where the number of non-zero elements
is less than the threshold value, to the point which has
the same execution time in the linear line in Figure 3
for easier calculation. Then we count the total num-
ber of non-zero elements of the extended matrix strip.
Figure 4 reveals the proportional relation between the
total number of non-zeros elements and the execution
time. We can estimate the execution time according
to the linear curve in Figure 4.

• Summarize: We finally estimate the total execution
time by equation (*).

4.3.2 Estimation for ELLPACK kernel
The method to estimate the execution time for ELL ker-

nel is similar to that of CSR vector kernel. By analyzing the
ELL kernel code and the experiment results, we find that
the execution time of ELL kernel is related to both the num-
ber of non-zero elements per row and the number of rows.
Since the execution time depends on the two factors, we use
two-dimension interpolation to estimate the execution time.
The relation between the execution time and the two fac-
tors is illustrated in Figure 5. X, Y, and Z-coordinates are
the logarithm of number of non-zero elements per row, the
logarithm of number of rows, and the logarithm of execu-
tion time, respectively. After interpolation, we obtain Z, a
two-dimension array, as the basis for our estimation.

To estimate the execution time of a target matrix in ELL
format, we first scan the number of non-zero elements per
row and find the row with the maximum value. Then we pad
other rows to ensure that all the rows have the same number
of non-zero elements. We assign the number of non-zero
elements per row to x, i.e., the maximum value obtained
above, and assign the number of rows to y. To obtain log(z)
value, we calculate the logarithm of x and y, respectively,
and find out the nearest point in Z array according to log(x)
and log(y). Finally, we calculate the exponential of log(z)
to obtain estimate execution time z.

4.3.3 Estimation for HYB kernel
The HYB kernel is the combination of ELL and COO

kernels. Since we have already discussed the model of ELL,
here, we only discuss the COO model. The linear relation

Figure 5: Interpolation result for sample matrices
(ELL).

0 1 2 3 4 5 6

x 10
6

0

0.5

1

1.5

total number of nonzeros

ex
ec

. t
im

e
(m

s)

sample
fitting

Figure 6: Fitting result for sample matrices (COO).

between the total number of non-zero elements and the exe-
cution time is demonstrated in Figure 6. So given a matrix,
we can count its total number of non-zero elements, then
estimate the execution time using this linear relation.

To estimate the execution time for a given matrix in HYB
format, we first calculate the threshold value that separates
ELL and COO, which is the same method used in [3]. Then
the left part of the matrix is assigned to ELL model, the right
part is assigned to COO model. We estimate the execution
time of the entire matrix using the methods discussed above
for ELL and COO. Finally, the total execution time of the
matrix in HYB storage format is the sum of the two parts’
execution time.

5. MODEL-DRIVEN SPARSE MATRIX PAR-
TITIONING

The target matrix is sorted in descending order by the
number of non-zero elements per row before partitioning.
Our performance prediction model will benefit from the sorted
target matrix.

To simplify the partitioning procedure, we first consider
two popular space-saving matrix formats,i.e., CSR and ELL.
As we mentioned in Section 1, CSR storage format is usually
good for the sparse matrices with large number of non-zero
elements, and ELL storage format is usually good for sparse

matrices with nearly equal and small number of non-zero
elements per row.

For a sorted target matrix, we infer a separator to parti-
tion the matrix into two partitions by row. Each partition
consists of several matrix strips. We adopt a uniform 960-
row as the size of one matrix strip when partitioning the
matrix. For NVIDIA’s GeForce GTX 295, the granularity
of the CSR vector kernel in Table 4 is one warp per row and
960 is the maximum number of warps that all the SMs can
hold once, hence 960-row is a full-load for CSR vector kernel
on NVIDIA’s GeForce GTX 295. The performance model
estimates the execution time of the CSR vector kernel by
using 960-row as a basic unit of matrix strip.

The partitioning procedure works as follows: Initially, the
separator starts at the bottom of the first matrix strip, then
moves toward the end of target matrix step by step. The
whole matrix strip (960 rows) is the step length which the
separator moves. Every time when the separator moves to
a new position, we estimate the execution time of the ma-
trix partitions above and below the separator by using the
methods in Sections 4.3.1 and 4.3.2, respectively. The total
estimated execution time is equal to the sum of each par-
tition’s estimated execution time. The procedure continues
till the separator moves to the bottom of the target ma-
trix. Since the procedure to find the separator works in a
top-down fashion, we exhaust all possible partitioning sce-
narios. The best partition will be chosen as the strategy for
subsequent SpMV computation.

If the partition strategy cannot bring significant perfor-
mance improvement, instead, our tool will report which stor-
age format (e.g., CSR, ELL, or HYB) can bring the best
execution time based on the performance model. In our ex-
periment of Section 7, the HYB storage format can bring
some matrices significant benefit.

6. AUTO-TUNING SPMV CUDA KERNELS
Some CUDA parameters can affect the performance of

SpMV notably. According to our experiment, there are
three parameters playing decisive roles for SpMV kernels on
GPUs, which are Num Threads, Block Size and Warp Size.
Tuning these parameters can remarkably affect the perfor-
mance of SpMV CUDA kernels. Table 5 shows the tuning
parameters for different SpMV kernels. For CSR vector ker-
nel, all of three parameters affect the performance. For ELL
kernel, only Block Size affects the performance notably. For
COO kernel, only Num Threads matters. Since scientific
computations usually contain many iterations, given a ma-
trix with a specific storage format, the auto-tuning frame-
work uses some loops to try all feasible combinations of these
parameters in the first iteration, then chooses a combination
with the best performance for the rest iterations.

Figure 7, Figure 8, and Figure 9 compare the performance
of auto-tuning three parameters. Our experiment is con-
ducted on the 14 matrices used by [3]. By auto-tuning pa-
rameters, the best performance of our CSR vector kernel is
average 33% faster than NVIDIA’s CSR kernel [3]; our HYB
kernel is average 9% faster than NVIDIA’s HYB kernel; our
COO kernel is average 16% faster than NVIDIA’s COO ker-
nel. Auto-tuning parameters for ELL does not have much
effect.

The details about how to choose the values of Num Threads,
Block Size, and Warp Size appeared in our preliminary
work [12], where only CSR format is considered.

Table 5: Tuning parameters for SpMV kernels

Kernel
Tuning Parameters

Num Threads Block Size Warp Size

CSR (vector) × × ×

ELL ×

HYB × ×

�����
��������� ��	
������������ �� �� ���� �� ��� �� !"� #� ��� �� ��� �� !"� $% &'&()� �� ��� �� !"�

Figure 7: Performance evaluation on CSR kernel.

�����
����

� ��� ��	
���� ��� ���� � ���� �������� !� "���� �������� !� #$%&%'(� �������� !�
Figure 8: Performance evaluation on HYB kernel.

����
���

� �	
 �	����������� �� �� ���� �� � ! �"#$%� &!��� �� � ! �"#$%� '()*)+,� �� � ! �"#$%�
Figure 9: Performance evaluation on COO kernel.

��������������������������	
������ ����������������� ��� ����� �������� �� ������ � ! �� ������ "## �� ������ $%& '() �**)+,-.
Figure 10: Performance evaluation of our approach
compared to NVIDIA’s CSR, ELL and HYB kernel.

7. PERFORMANCE EVALUATION
Similar to the experiment in Section 6, the partition ap-

proach is evaluated on the 14 matrices used by [2] by using
NVIDIA’s GeForce GTX 295. For SpMV, a randomly gen-
erated vector is used in our experiment, since the actual
content of the vector will not affect the performance.

The comparison of our approach with NVIDIA’s imple-
mentation (i.e., SpMV CUDA kernels for CSR, ELL, and
HYB [3]) on single-precision SpMV is shown in Figure 10.
We did not consider the time to sort the target matrix and
adjust the result. The ELL kernel cannot execute the matri-
ces “Webase” and “LP” because their memory requirement
is beyond our current GPU memory size. Our partition
schema is usually the combination of CSR and ELL. The
combination of CSR and HYB does not have benefit be-
cause the matrix to be processed has been sorted. In our
generated partitions, the majority of non-zero elements are
in CSR format, and the rows with few non-zero elements
are in ELL. Some matrices may not need any partition. For
example, our approach reports that “HYB” is already the
best format for the matrices “FEM/Spheres”, “Economics”,
“Epidemiology”, “FEM/Accelerator”, “Circuit” and “LP”. In
conclusion, compared to NVIDIA’s CSR vector kernel, our
approach has 222% performance improvement on the aver-
age on the 14 matrices. Compared to NVIDIA’s ELL kernel,
our approach has 197% performance improvement on the av-
erage. Compared to NVIDIA’s HYB kernel, our approach
has 33% performance improvement on the average.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented a framework that com-

putes SpMV efficiently. The framework is based on an em-
pirical GPU model that estimates the execution time for
a given matrix in various formats. We design and imple-
ment a model-driven partitioning approach to predict how
to partition the target sparse matrix and transform each
partition into appropriate storage format based on differ-
ent storage characteristics. Our partition explores differ-
ent combinations of formats to find an optimal partition for
large-scale matrices using the performance prediction model.
The designing principle is based on the fact that the differ-
ent storage formats of sparse matrix can significantly affect
the performance of SpMV. The auto-tuning tool can au-
tomatically adjust CUDA-specific parameters to optimize
performance. We integrate model-driven partitioning and
auto-tuning to maximize the benefit of performance. Our

experiment shows that this approach has substantial perfor-
mance improvement compared to the existing SpMV CUDA
kernels [3].

In the future work, we will refine the performance model
to predict the matrix partitioning more accurately. We will
improve and extend the current framework to include more
SpMV kernels. In addition, we will apply our approach to
more areas of scientific and engineering applications.

9. REFERENCES
[1] J. Kurzak, W. Alvaro, and J. Dongarra. Optimizing

matrix multiplication for a short-vector simd
architecture-cell processor. Parallel Comput.,
35(3):138–150, 2009.

[2] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In In
Proc. 2007 ACM/IEEE Conference on
Supercomputing, 2007.

[3] N. Bell and M. Garland. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, pages 1–11, New York, NY, USA, 2009.

[4] M. M. Baskaran and R. Bordawekar. Optimizing
sparse matrix-vector multiplication on gpus using
compile-time and run-time strategies. Technical
report, Research Report RC24704, IBM TJ Watson
Research Center, december 2008.

[5] NVIDIA CUDA (Compute Unified Device
Architecture): Programming Guide,Version 2.1,
December 2008.

[6] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. C. Whaley R. Vuduc, and K. Yelick.
Self-adapting linear algebra algorithms and software.
Proceeding of IEEE, 93(2):293–312, 2005.

[7] Eun-Jin Im, Katherine Yelick, and Richard Vuduc.
Sparsity: Optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl.,
18(1):135–158, 2004.

[8] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder.
Sparse matrix solvers on the gpu: conjugate gradients
and multigrid. ACM Trans. Graph., 22(3):917–924,
2003.

[9] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus.
In PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of
parallel programming, pages 115–126, New York, NY,
USA, 2010.

[10] N. Bell and M. Garland. Efficient sparse matrix-vector
multiplication on cuda. Technical report, Nvidia
Technical Report NVR-2008-004, 2008.

[11] A. Nukada and S. Matsuoka. Auto-tuning 3-d fft
library for cuda gpus. In SC ’09: Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–10, New
York, NY, USA, 2009.

[12] Ping Guo and Liqiang Wang. Auto-tuning cuda
parameters for sparse matrix-vector multiplication on
gpus. Computational and Information Sciences,
International Conference on, 0:1154–1157, 2010.

