
SAM: Self-adaptive Dynamic Analysis for
Multithreaded Programs?

Qichang Chen1, Liqiang Wang1, and Zijiang Yang2

1 Dept. of Computer Science, University of Wyoming, WY, USA.
{qchen2, wang}@cs.uwyo.edu,

2 Dept. of Computer Science, Western Michigan University, MI, USA.
zijiang.yang@wmich.edu

Abstract. Many dynamic analysis techniques have been proposed to
detect incorrect program behaviors resulted from faulty code. However,
the huge overhead incurred by such dynamic analysis prevents thorough
testing of large-scale software systems. In this paper, we propose a novel
framework using compile-time and run-time optimizations on instrumen-
tation and monitoring that aim to significantly reduce the overhead of
dynamic analysis on multithreaded programs. We implemented a tool
called SAM (Self-Adaptive Monitoring) that can selectively turn off ex-
cessive monitoring on repeated code region invocations if the current
program context has been determined to be redundant, which may as-
sist many existing dynamic detection tools to improve their performance.
Specifically, we approximate the program context for a code region in-
vocation as a set of variables, which include path-critical variables and
shared variables accessed in that region. The path-critical variables are
inferred using a use-definition dataflow analysis, and the shared variables
are identified using a hybrid thread-based escape analysis. We have im-
plemented the tool in Java and evaluated it on a set of real-world pro-
grams. Our experimental results show that it can significantly reduce the
runtime overhead of the baseline atomicity violation and data race anal-
yses by an average of 50% and 20%, respectively, while roughly keeping
the accuracy of the underlying runtime detection tools.

1 Introduction

Dynamic analysis often suffers from the expensive runtime overhead which pre-
vents it from scaling up to large-scale enterprise software systems. Despite its
superior accuracy on error reporting compared to static analysis, the dynamic
monitoring overhead has been an issue that prevents many runtime approaches
from being adopted practically. According to our and other researchers’ experi-
ences [4, 8, 6, 19, 11, 1, 2], the runtime overhead is largely due to repetitive mon-
itoring on code blocks’ executions with the same or similar context. For the
programs with intensive memory accesses, the problem is more severe. In our
? The work was supported in part by ONR N000140910740 and NSF CAREER

1054834.

experiment with the benchmark tsp [10], the executions produce as many as
20 million memory access events even under a small input dataset with only
3 threads. With the further investigation, we found that most of these events
are generated from a certain number of code blocks and involve many objects
created from the same class.

Faced to these issues, we are motivated to design a more efficient and scal-
able approach to speed up the widely-used dynamic analysis on multithreaded
programs. In this paper, we propose a novel framework using compile-time and
run-time instrumentation and monitoring optimizations that aim to significantly
reduce the overhead of dynamic analysis on multithreaded programs. We imple-
mented a tool called SAM (Self-Adaptive Monitoring) in Java, which can selec-
tively turn off excessive monitoring on a repeated code region invocation if the
program context of the current thread has been determined to be redundant.
For any code region that has been monitored before, we do not monitor it again
as long as the code region is executed with the same thread context previously
visited, because this usually will not contribute additional information to dy-
namic analysis of multithreaded programs. An important observation is that for
concurrency error detection, where the primary goal is to reveal the bugs re-
sulted from incorrectly using synchronization and accessing shared variables, we
are concerned about the accessing order of shared memory locations rather than
their contents.

To demonstrate its effectiveness, we evaluated SAM over a set of multi-
threaded Java programs in conjunction with two baseline analysis tools, the
Eraser for detecting data race [15] and the DAVE for detecting atomicity viola-
tion [18]. The experimental results show that this approach is more effective in
reducing the subsequent analyses’ performance overhead and better in preserving
the baseline tools’ accuracy than the prior approach [8].

This paper makes the following contributions:

– Our approach uses a refined program context approximation to check pro-
gram state equivalence and avoid repeated monitoring, which results in more
precise context approximation. The program context for a code region invo-
cation is approximated as a set of path-critical variables and shared variables
accessed in that region. We extend use-definition dataflow analysis to infer
the path-critical variables, and design a hybrid thread-based escape analysis
to identify the shared variables.

– SAM is specially designed for multithreaded programs by taking into account
the synchronization information and shared variables when approximating
the program contexts for each thread. Specifically, SAM considers the lockset
held by the current thread.

– SAM can be easily integrated with dynamic analysis tools, which allows
developers to focus on the dynamic analysis design rather than be distracted
on tuning overhead and optimizing performance.

The rest of this paper is organized as follows. Section 2 reviews the liter-
ature and discusses how SAM differs from the related work. Section 3 intro-

duces the motivations and key insights in SAM, and describes our extended use-
def dataflow analysis. Section 4 covers SAM’s implementation details. Section 5
presents our experimental evaluation on SAM and demonstrate its performance
improvement. Section 6 concludes this paper and discusses the future work.

2 Related Works

Different optimization techniques for dynamic analysis have been designed. Fei
et al. [8] present a tool called Artemis, which is the most related work to our tool
SAM. Artemis is a dynamic tool implemented in C and helps reduce the runtime
overhead of the dynamic analysis tools. The code region analyzed by Artemis
is based on the function level. Our current implementation of SAM follows this
approach and also works on the method/function level. All prior observed con-
texts for a code region are recorded in a table. The currently observed context is
compared with the previously preserved contexts to determine whether the mon-
itoring on the function can be safely turned off. The context in Artemis at the
entry point of each function invocation contains all global variables and function
parameter variables. If a variable in the context is in primitive type, its value is
checked when comparing contexts; if a variable in the context is in complex type
(e.g., pointer to a data structure), its type, instead of its value, is checked when
comparing contexts. Note the context of Artemis is an approximation. While it
reduces monitoring overhead, certainly, it will also cause the underlying tools
to miss information, which further affects the accuracy of the baseline tools. In
addition, Artemis does not consider synchronization operation and concurrent
accessing, hence cannot handle multithreaded programs. Our tool SAM utilizes
a more accurate context approximation approach and supports multithreaded
programs.

Arnold et al. [1] design a similar framework that also duplicates code into two
versions: original and instrumented, and inserts counter-based sampling code to
allow statistically turning on/off the monitoring. SAM differs from it in that
it focuses on multithreaded programs, and its context approximation is more
precise.

Sampling is another popular technique to reduce the runtime overhead of dy-
namic analysis. This approach is suitable for the scenarios when multiple runs of
the sampled program yield complementary information. However, it suffers from
under-reporting problem hence may miss errors. Moreover, the need of multiple
runs in the sampling-based monitoring further limits its applicability. Liblit et
al. [11] use the sampling technique to reduce the frequency of code monitoring
for long running programs. Hauswirth and Chilimbi [9] sample the code for pos-
sible memory leak error at a sampling rate that is inversely proportional to the
frequency of code segment execution.

Many other runtime monitoring tools [16, 5] have resorted to static analysis
to reduce the overhead of dynamic analysis. Yong et al. [19] proposes several
techniques that rely on the results of static analysis to remove unnecessary in-
strumentation from the code, which in turns reduces the subsequent dynamic

analysis overhead. The techniques specifically designed to reduce the overhead
of runtime type-checking can also be adopted for other similar dynamic analysis
systems. Although static analysis can guide dynamic analysis to avoid monitor-
ing some code executions, its effect on reducing overhead is usually limited and
quite ad-hoc to applications.

There are also research work in the area of parallelizing runtime checking to
reduce overhead. Patil et al. [14] suggest to use shadow process to check pointer
and array accesses in C program. Oplinger et al. [13] spawn a speculative thread
to execute the checking code. Although these techniques use parallelism to reduce
the checking overhead, they also introduce additional communication overhead
that is usually not negligible.

3 The Design of SAM

3.1 An Overview

The insight for the overhead of dynamic analysis is that monitoring and ana-
lyzing many repeated events inevitably slows down the program’s execution. To
avoid repeated monitoring, SAM relies on checking program context to direct the
baseline tool to avoid monitoring repeated events. As we mentioned before, the
execution of the benchmark tsp contains as many as 20 million access events on
shared variables. Without optimization, such huge number of events will prevent
any dynamic analysis from finishing within reasonable time.

The tool Artemis [8] is a step toward this goal. It adopts a method level
context checking scheme. Artemis keeps track of the method contexts prior to
the entrance of every method. However, besides its inaccurate context, Artemis is
targeted for serial code and cannot handle multithreaded programs. For example,
Artemis does not consider any synchronization state or the currently held locks
when computing the context, which leads to under-approximation of the context.
In contrast, our tool SAM is designed to assist the dynamic tools to analyze
multithreaded programs. It considers the current synchronization state when
computing the context and takes into account the path-critical variables and
shared (escaped) objects accessed in the current method, while Artemis considers
all global variables for the context. For example, if a method f() is invoked by a
thread that holds the locks l1 and l2, then the two acquired locks l1 and l2 will
be included in the context.

Let m be a method, Θm be the program context prior to the execution of m.
The context Θm consists of the following three kinds of variables:

Θm :

Rm : all references to shared (escaped) objects that that are accessed in
m, including “this” and locking objects accessed in m.

PCCVm :

If Rm = ∅, PCCVm is ∅.
If Rm 6= ∅, PCCVm is a set of path-critical context variables,
i.e., the variables that are not defined inside m (e.g.,
method parameters, fields of escaped objects) and could
directly or indirectly affect the execution path of m.

Olck
m :

{
If Rm = ∅, Olck

m is ∅.
If Rm 6= ∅, Olck

m is all locking objects held at the entrance of m.

Thus, Θm is represented by 〈Rm, PCCVm, Olck
m 〉. A variable v in Θm is de-

noted by 〈v, val(v)〉. If v is an object reference, val(v) is its hash code obtained
in runtime. If v is in a primitive type, val(v) is its runtime value.

Figure 1 illustrates how the context check works and the difference between
our tool SAM and Artemis. The code in the then branch of the if statement is
the original code. The deposited value is added to account a1 then allBalance is
updated. In this example, Artemis’s context contains a1, a (method arguments),
and allBalance (global variable), whereas SAM’s context contains only a1 (an
object accessed in the method) and allBalance (global variable), because a is
not a path-critical variable, and allBalance is a global variable that is shared
among multiple threads. Here, Artemis does not consider the address of object
a1 but only its class type. The approximation of the object type would cause
the underlying baseline tool to miss some important information if the method
deposit is invoked twice with two distinct objects of Account, as the second
invocation would be deemed by Artemis as redundant and thus not monitored
by the underlying error detection tool. Therefore, the underlying baseline tool’s
accuracy suffers in this case.

public class Account{
 public static int allBalance = 0;
 private int bal = 0;
 void deposit(Account a1, int a){
 if(artemisCheck(a1, a, allBalance)){
 // original version
 a1.bal += a;
 allBalance += a;
 } {
 // instrumented version
 ...
 }
 }
}

public class Account{
 public static int allBalance = 0;
 private int bal = 0;
 void deposit(Account a1, int a){
 if(samCheck(a1)){
 // original version
 a1.bal += a;
 allBalance += a;
 } {
 // instrumented version
 ...
 }
 }
}

Fig. 1. Code snippets that illustrate the context check in Artemis and SAM.

There are trade-offs between accuracy and efficiency for the approach of
SAM. SAM is subject to the thread scheduling nondeterminism that might
cause shared variables or path-critical context variables to be changed during
the method invocation, which may invalidate the initial context checking. Intu-
itively, such scenarios happen very rarely. In addition, SAM’s context does not
include the newly created objects within the current method. Usually, the escap-
ing of these objects, if happens, will occur in the following invocations of other
methods, which will be analyzed when these methods are invoked. Certainly, an
object may escape within the method where it is created (e.g., is assigned to a
static field). However, such possibility is rare. In our experiment shown in Sec-
tion 5, all these scenarios affecting inaccuracy did not appear. Note that each
thread has its own context profiles in SAM does not include any information
from other threads to compute the method context for current thread because
they will not affect monitoring events except for the two cases mentioned before.

Algorithm 1 shows the algorithm of SAM’s context check. We conduct an
intraprocedural analysis to generate a symbolic context for each method. The
symbolic context is similar to the runtime context, except that the symbolic
context contains all object references accessed in the method, and the values of
the context variables are null. In the runtime context, all references to unescaped
objects are removed, and the context variables are updated by the corresponding
runtime values. At the same time, each method is expanded with two versions
of the code: one version consists of the original code, and the other version is
the instrumented code by the baseline tool. A context check is inserted at the
beginning of each method. When a method is invoked, we first call “Remove-
UnescapedObjects (Cm)” to get rid of all non-escaped objects in the symbolic
context Cm. Then “RuntimeValueUpdate(C ′

m, Pm)” is called to update all sym-
bolic names with their runtime values. Then we check whether the current con-
text has ever been contained in the context table CTm that stores all previous
visited contexts. If the current context Θm has been encountered before, we call
the uninstrumented code directly; otherwise, we call the instrumented code and
save Θm into CTm.

3.2 Context Checking for Multithreaded Programs

Given a method m, a variable v is a branching variable if v is included in a branch-
ing expression of m(e.g., the conditional expression in if/for/while/switch
statements). A variable u is a path-critical context variable (PCCV) if u is not
defined inside m (e.g., method parameters or fields of escaped objects) could
directly or indirectly affect the value of a branching variable.

To infer PCCV according to branching variables, we use an extended use-def
dataflow analysis. Use-def analysis [12] identifies and tracks a variable’s definition
and usage sites inside a function. The DU (i.e., def-use) and UD (i.e., use-def)
chains are a concise representation of the dataflow information about a given
variable. The DU chain of a variable starts from the definition site of the variable
and connects it to all the variable use sites where the defined variable can flow

Input:
Cm: the symbolic context for method m generated from static analysis;
Pm: the program runtime state at the entrance of method m;
CTm: the runtime context table storing previously visited contexts for m;

SAM-ContextCheck(Cm, Pm, CTm){
C′

m = RemoveUnescapedObjects(Cm);
Θm = RuntimeValueUpdate(C′

m, Pm);
for each ctm ∈ CTm do

if Θm == ctm then
execute the uninstrumented version of code of m;
return;

end
continue;

end
CTm = CTm ∪ {Θm};
execute the instrumented version of code of m;
}

Algorithm 1: The SAM context check algorithm.

to. In contrast, the UD chain for a variable connects a variable’s use site to all
its definition sites.

Algorithm 2 illustrates how to compute the set of PCCV . We iteratively
apply a use-def intraprocedural dataflow analysis (i.e., UD chain) to identify
and track the path-critical context variables that indirectly affect the program’s
execution path. Specifically, given a branching variable’s use site, we track its
definition statements. For any local variable on the assignment statement’s right-
hand-side (RHS), we continuously track its definition recursively. This search is
repeated till we identify all non locally defined variables whose values directly or
indirectly affect the branching variables. These non-local variables, which may
be object references, fields, or parameter variables, are PCCV for the given
branching variables.

4 Implementation and Optimization

We use the Eclipse JDT [7] to instrument program source code. To simplify
the instrumentation, SAM first duplicates each method in the original program
source into two methods with different suffix names. The method with the suffix
name “ original” represents the original method that will not be instrumented
by the baseline analysis tool. The method with the suffix “ instrumented” is the
method that will be instrumented by the baseline tool. This allows the baseline
tool to easily instrument program source code without resorting to complex
tagging or structure identification mechanism. At each method entrance, SAM
inserts an if statement for the context check and places the function calls to
the original or the instrumented methods into the then and else branches,

Input: ASTM: the abstract syntax tree of a method M.
Output: PCCV: the set of symbolic path-critical context variables.

ComputePCCV(M){
BV = ∅; // the set of branching variables.
PCCV = ∅;
for each statement S in ASTM do

if S contains branching expression, say expr then
for each variable v in expr do

BV = BV ∪ {v};
end

end
end
for each v ∈ BV do

ComputeUseDef(v);
end
}

ComputeUseDef(v) {
compute the definition sites DSv of v;
for each definition site dsv ∈ DSv do

if dsv is on a field of locally created object then
continue;

end
if dsv is out of the scope of M then

PCCV = PCCV ∪ {v};
end
Let RHSV be the list of variables on the RHS of dsv;
for each variable rhsv in RHSV do

ComputeUseDef(rhsv);
end

end
}

Algorithm 2: The algorithm for computing path-critical context variables.

respectively. If the context has been observed before, the original code is chosen.
Otherwise, the instrumented version will be activated in the execution.

Escape analysis plays an important role in our context checking. Thread es-
cape analysis is to determine whether and when a variable becomes shared by
multiple threads. We utilize our thread-based escape analysis to identify escaped
objects, which is based on our previous work [3]. When an object o is created, o
is owned by its creating thread. Object o is said to be thread-escaped or shared
when it becomes accessible by two or more threads. When an object o becomes
accessible by multiple threads, its fields are vulnerable to concurrent accessing,
hence may result in concurrency errors such as data races and atomicity vio-
lations. Thus, it is important to know whether (even when) an object escapes
from its creating thread during the program’s execution. During the program’s
execution, the dynamic thread escape analysis is complemented and refined with

the thread escape information from the context-sensitive flow-insensitive inter-
procedural static analysis for each unexecuted code block to produce the final
hybrid thread escape analysis results. The thread-based escape analysis results
are used to identify the shared objects.

To further reduce the context checking overhead incurred by SAM, we design
the following optimization technique. To avoid maintaining a huge context table
and reduce the memory usage in SAM, we insert an array field to store the con-
texts in different threads for each method in the class, which can be indexed by
the thread ID in runtime. These context tables are initialized with empty con-
tent. When a context check is encountered in runtime, the accessing thread will
use its thread ID as index to retrieve the current context table and compare the
newly computed context against the ones saved in current table. This approach
avoids maintaining a multi-level hierarchical context table for each thread and
reduces the lookup frequency and overhead.

5 Experiments

We present three sets of experimental results over the benchmarks including
Elevator, Tsp, Sor, and Hedc from [17], and Vector, Stack, and Hashtable
from JDK 1.6. For the Elevator benchmark, we tested it with 2 threads using
the provided input data and instrumented a timer that forces the program to
terminate after a wall-clock time of 10 seconds. For the benchmark Tsp, we tested
it with 3 threads using the provided input datasets map13, map14, and map15.
For the benchmark Sor, we tested it with 2 threads and 50 iterations. For the
benchmarks Vector, Stack, and HashTable, we tested them using 2 threads to
concurrently insert, update, and remove elements.

The first experiment measures the performance overhead and effectiveness of
SAM’s context checking without the baseline monitoring tool. The second and
third experiments aim to illustrate the SAM’s performance improvement and
accuracy preservation on the dynamic analysis. Specifically, we evaluate SAM
using our dynamic atomicity violation detector DAVE [18] and the Eraser race
detector [15].

To compare SAM with Artemis, we also implement a revised version of
Artemis [8] that can work for multithreaded Java programs context checking.
Specifically, in the enhanced Artemis C (C stands for Concurrent), each thread
rather than the whole program maintains its own context profiles and the con-
text of a method consists of the method parameters and global variables (static
fields) that are accessed in the method.

The experiments are performed on a machine with 1.6 GHz Intel Core Duo
dual-core CPU with 4 GB memory, Windows XP SP3, and Sun JDK 1.6.

5.1 Artemis C and SAM’s Context Checking Overhead

To measure the context check overhead and effectiveness of Artemis C and SAM,
we evaluate Artemis C and SAM over the aforementioned benchmarks without

the baseline monitoring instrumentation. The experimental results are shown in
Figure 2 and Figure 3. The runtime overhead introduced by the context check
in SAM itself is around 270% on average and thus is not significant compared to
the huge overhead (typically in the order of 10x or more) incurred by the baseline
tool for the memory-intensive benchmarks. In addition, SAM filters 67% of all
observed contexts in the benchmarks, which is very effective in filtering out the
redundant monitoring for reducing the subsequent baseline tool’s monitoring
overhead. The runtime overhead introduced by the context check in Artemis C
is about 370% and 72% of the observed contexts are deemed redundant by
Artemis C. Although Artemis C has a higher context filtering rate than SAM,
it does not preserve baseline tool’s accuracy as well as SAM, which is discussed
in the following sections.

Fig. 2. The performance overheads of Artemis C and SAM’s context checking.

5.2 SAM + DAVE vs. Artemis C + DAVE

In the second experiment, we evaluate SAM with our atomicity violation detector
DAVE. DAVE is a dynamic analysis [18] that detects atomicity violations in
multi-threaded Java programs.

The experimental results are shown in Figures 4 and 5. As we can see from
Figure 5, our baseline tool DAVE with SAM has experienced an average 43%
performance improvement, whereas the performance improvement of Artemis C
over DAVE is about 20%.

Program LOC threads effectiveness effectiveness
elevator 339 3 9513 9829 96.79% 9615 9723 98.89%

tsp(map13) 519 3 151689 151875 99.88% 151363 151875 99.66%
tsp(map14) 519 3 226687 227097 99.82% 210643 211869 99.42%
tsp(map15) 519 3 145664 146035 99.75% 144025 145028 99.31%

8253 3 396 402 98.51% 198 402 49.25%
4267 3 9903 9921 99.82% 9898 9921 99.77%

Vector1.4 383 2 4 27 14.81% 4 27 14.81%
Stack1.4 418 2 0 33 0.00% 0 33 0.00%

HashTable1.4 597 2 4 11 36.36% 4 11 36.36%

number of
redundant contexts

(Artemis_C)

number of total
context checks

performed
(Artemis_C)

number of
redundant
contexts
(SAM)

number of total
context checks

performed
(SAM)

sor
hedc

Fig. 3. The effectiveness of Artemis C and SAM’s context checking.

In addition, we can see from Figure 4 that SAM outperforms Artemis C in
preserving the baseline tool DAVE’s atomicity violation coverage in the bench-
marks elevator, tsp(map13), tsp(map14) and hedc. Note that the atomicity
violation coverage is not the number of atomicity violation errors revealed by the
tool in the source program. For example, a program might have only 2 locations
that are involved in an atomicity violation which may occur repeatedly for 1,000
times in the execution. If the dynamic analysis observes the repeated 900 atom-
icity violations occurred in the execution, we say it has a 90% violation coverage.
If the dynamic analysis identifies all the two locations in the source code that are
involved in the atomicity violations, it has no accuracy loss. Figure 8 compares
the DAVE’s accuracy loss when using Artemis C and SAM, respectively. It can
be seen that SAM keeps the accuracy on all benchmarks except for Tsp(map14),
whereas Artemis C loses accuracy on both Elevator and Tsp(map14). In ad-
dition, SAM also outperforms Artemis C on accuracy on Elevator. One of the
main reasons incurs loss of accuracy for SAM and Artemis C is that they failed
to feed some non-redundant events to the baseline analysis tools due to the con-
text appromixation and filtering. Certainly, in order to improve accuracy, we
can incorporate more information when computing the context, but it will lead
to a much higher context checking overhead which might offset the performance
benefits brought about by turning off the repeated monitoring.

5.3 SAM + Eraser vs. Artemis C + Eraser

The Eraser [15] is a dynamic analysis tool for detecting data races. Eraser checks
race conditions based on a simple locking policy, i.e., all accesses to a shared
variable should be protected by a common lock. To simplify experimental setup,
our Eraser implementation does not classify the benign data races and false
positives from the real data race bugs.

Figures 6 and 7 show the violation coverage and performance slowdown of
Eraser using Artemis C and SAM, respectively. As we can see, Eraser+SAM has
about 93% violation coverage on average while Eraser+Artemis C has only about

Fig. 4. DAVE’s atomicity violation coverage when it is integrated with Artemis and
SAM.

Fig. 5. DAVE’s monitoring overhead using Artemis and SAM.

66%. In addition, Eraser+SAM has better violation coverage than Eraser+Artemis C
(90% violation coverage) on most benchmarks except for sor, Vector, Stack,
and Hashtable, on which the baseline tool Eraser does not report any data race
warnings. However, SAM and Artemis C does not reduce the Eraser’s moni-
toring time by a large portion, which is due to the simple on-the-fly analysis
algorithm used in Eraser. As shown in Figure 7, Eraser+SAM has less per-

formance slowdown than Eraser+Artemis C on most benchmarks except for
tsp(map13), hedc and Vector 1.4. Figure 8 compares the Eraser’s data race
accuracy when using Artemis C and SAM, respectively. It can be seen that SAM
also outperforms Artemis C in preserving the Eraser’s accuracy in the bench-
marks elevator, tsp(map13), tsp(map14) and hedc with only an average
accuracy loss of 5%.

Fig. 6. Eraser’s violation coverage when it is integrated with Artemis and SAM.

6 Conclusions and Future Work

In this paper, we propose a self-adaptive monitoring scheme for reducing the
runtime overhead of dynamic program analysis. Our experiments show that this
approach significantly reduces the overhead of the baseline dynamic analysis
tools with slight accuracy loss. It can be utilized by the general dynamic analyses
to improve their runtime performance, reduce the analysis turnaround time, and
scale up to large memory-intensive programs.

Our future work includes integrating it and evaluating its effectiveness with
other dynamic analysis tools, establishing context checking’s cost model, and
investigating more fine-grained block-level context checking scheme.

References

1. M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented
code. SIGPLAN Not., 36(5):168–179, 2001.

Fig. 7. Eraser’s monitoring overhead using Artemis and SAM.

2. S. Callanan. Flexible debugging with controllable overhead. In Ph.D. Dissertation,
Stony Brook University, 2009.

3. Q. Chen, L. Wang, and Z. Yang. HEAT: A Combined Static and Dynamic Ap-
proach for Escape Analysis. In 33rd Annual IEEE International Computer Software
and Applications Conference (COMPSAC2009), Seattle, USA, July 2009. IEEE
Press.

4. Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting Atomicity Viola-
tions via Integrated Dynamic and Static Analysis. In International Conference on
Fundamental Approaches to Software Engineering (FASE), European Joint Con-
ferences on Theory and Practice of Software (ETAPS), York, UK, March 2009.
Springer-Verlag.

5. J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Ef-
ficient and precise datarace detection for multithreaded object-oriented programs.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming language
design and implementation, PLDI ’02, pages 258–269, New York, NY, USA, 2002.
ACM.

6. M. B. Dwyer, A. Kinneer, and S. Elbaum. Adaptive online program analysis. In
ICSE ’07: Proceedings of the 29th international conference on Software Engineer-
ing, pages 220–229, Washington, DC, USA, 2007. IEEE Computer Society.

7. Eclipse. Available from http://www.eclipse.org/.
8. L. Fei and S. P. Midkiff. Artemis: practical runtime monitoring of applications for

execution anomalies. SIGPLAN Not., 41(6):84–95, 2006.
9. M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using

adaptive statistical profiling. SIGPLAN Not., 39(11):156–164, 2004.
10. Java Grande Forum. Java Grande Multi-threaded Benchmark Suite. version 1.0.

Available from http://www.javagrande.org/.
11. B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote

program sampling. SIGPLAN Not., 38(5):141–154, 2003.
12. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1997.

Program Base(s) Dummy(s) DAVE Eraser

time(s) time(s) time(s) time(s) time(s) time(s)
elevator 0.25 0.95 5.73 18 2.16 18 2.96 16 2.18 43 1.65 41 1.78 3
tsp(map13) 0.33 4.63 30.57 0 19.18 0 28.13 0 3.38 11 2.02 11 1.98 5
tsp(map14) 0.43 5.78 41.46 14 21.13 12 37.13 12 6.48 12 5.35 10 5.72 5
tsp(map15) 0.41 5.62 52.12 26 31.42 26 44.21 26 4.48 13 3.43 11 3.94 7

0.6 0.92 2.20 0 0.72 0 1.54 0 10.35 0 7.83 0 9.37 0
1.64 3.65 8.50 7 2.79 7 5.21 7 1.57 27 1.37 25 1.34 15

Vector1.4 0.1 0.2 0.80 6 0.4 6 0.61 6 0.58 0 0.48 0 0.47 0
Stack1.4 0.1 0.2 0.82 6 0.51 6 0.72 6 0.6 0 0.49 0 0.52 0
HashTable1.4 0.2 0.3 0.92 2 0.55 2 0.71 2 0.61 0 0.47 0 0.54 0

DAVE with
SAM

DAVE with
Artemis_C

Eraser with
SAM

Eraser with
Artemis_C

nAV nAV nAV nDR nDR nDR

sor
hedc

Fig. 8. Comparison of the performance and accuracy of the DAVE, DAVE+SAM,
DAVE+Artemis C, Eraser, Eraser+SAM, and Eraser+Artemis C. “Base” is the orig-
inal program’s running time without instrumentation. “Dummy” is the instrumented
program’s running time without any analysis (intercepting events only). The column
“nAV” denotes the number of atomicity violations, which are counted based on the
places in source code involved in atomicity violations. The column “nDR” denotes the
number of data races, which are counted based on the source code locations involved
in data races. All execution times are measured in seconds.

13. J. Oplinger and M. S. Lam. Enhancing software reliability with speculative threads.
SIGARCH Comput. Archit. News, 30:184–196, October 2002.

14. H. Patil and C. Fischer. Low-cost, concurrent checking of pointer and array accesses
in c programs. Softw. Pract. Exper., 27:87–110, January 1997.

15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

16. S. Vakkalanka, G. Szubzda, A. Vo, G. Gopalakrishnan, R. Kirby, and R. Thakur.
Static-analysis assisted dynamic verification of mpi waitany programs (poster ab-
stract). In M. Ropo, J. Westerholm, and J. Dongarra, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 5759 of Lecture
Notes in Computer Science, pages 329–330. Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-03770-2 43.

17. C. von Praun and T. R. Gross. Object race detection. In Proc. 16th ACM Con-
ference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), volume 36(11) of SIGPLAN Notices, pages 70–82. ACM Press, Oct.
2001.

18. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity
errors in concurrent programs. In Proc. ACM SIGPLAN 2006 Symposium on
Principles and Practice of Parallel Programming (PPoPP). ACM Press, March
2006.

19. S. H. Yong and S. Horwitz. Using static analysis to reduce dynamic analysis
overhead. Form. Methods Syst. Des., 27:313–334, November 2005.

